Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92092
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡怡陞zh_TW
dc.contributor.advisorIsheng Jason Tsaien
dc.contributor.author林婕蘋zh_TW
dc.contributor.authorChieh-Ping Linen
dc.date.accessioned2024-03-05T16:15:01Z-
dc.date.available2024-03-06-
dc.date.copyright2024-03-05-
dc.date.issued2024-
dc.date.submitted2024-02-05-
dc.identifier.citationAbarenkov, K., Henrik Nilsson, R., Larsson, K., Alexander, I. J., Eberhardt, U., Erland, S., Høiland, K., Kjøller, R., Larsson, E., Pennanen, T., Sen, R., Taylor, A. F. S., Tedersoo, L., Ursing, B. M., Vrålstad, T., Liimatainen, K., Peintner, U., & Kõljalg, U. (2010). The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist, 186(2), 281–285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
Aydogan, E. L., Moser, G., Müller, C., Kämpfer, P., & Glaeser, S. P. (2018). Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00144
Bahram, M., Hildebrand, F., Forslund, S. K., Anderson, J. L., Soudzilovskaia, N. A., Bodegom, P. M., Bengtsson-Palme, J., Anslan, S., Coelho, L. P., Harend, H., Huerta-Cepas, J., Medema, M. H., Maltz, M. R., Mundra, S., Olsson, P. A., Pent, M., Põlme, S., Sunagawa, S., Ryberg, M., … Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560(7717), 233–237. https://doi.org/10.1038/s41586-018-0386-6
Bai, Y., Kissoudis, C., Yan, Z., Visser, R. G. F., & van der Linden, G. (2018). Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. The Plant Journal, 93(4), 781–793. https://doi.org/10.1111/tpj.13800
Baldrian, P. (2017). Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiology Reviews, 41(2), 109–130. https://doi.org/10.1093/femsre/fuw040
Baldrian, P., López-Mondéjar, R., & Kohout, P. (2023). Forest microbiome and global change. Nature Reviews Microbiology, 21(8), 487–501. Nature Research. https://doi.org/10.1038/s41579-023-00876-4
Bengtsson‐Palme, J., Ryberg, M., Hartmann, M., Branco, S., Wang, Z., Godhe, A., De Wit, P., Sánchez‐García, M., Ebersberger, I., de Sousa, F., Amend, A., Jumpponen, A., Unterseher, M., Kristiansson, E., Abarenkov, K., Bertrand, Y. J. K., Sanli, K., Eriksson, K. M., Vik, U., … Nilsson, R. H. (2013). Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution, 4(10), 914–919. https://doi.org/10.1111/2041-210X.12073
Blaalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., & Kauserud, H. (2013). ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13(2), 218–224. https://doi.org/10.1111/1755-0998.12065
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10(1), 421. https://doi.org/10.1186/1471-2105-10-421
Chamberlain, S. A., & Boettiger, C. (2017). R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints, 5, e3304v1. https://doi.org/https://doi.org/10.7287/peerj.preprints.3304v1
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Creer, S., Deiner, K., Frey, S., Porazinska, D., Taberlet, P., Thomas, W. K., Potter, C., & Bik, H. M. (2016). The ecologist’s field guide to sequence-based identification of biodiversity. Methods in Ecology and Evolution, 7(9), pp. 1008–1018). British Ecological Society. https://doi.org/10.1111/2041-210X.12574
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9.
D’Andreano, S., Cuscó, A., & Francino, O. (2021). Rapid and real-Time identification of fungi up to species level with long amplicon nanopore sequencing from clinical samples. Biology Methods and Protocols, 6(1). https://doi.org/10.1093/biomethods/bpaa026
Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998. https://doi.org/10.1038/nmeth.2604
Edgar, R. C. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv. https://doi.org/10.1101/081257
Ehrenberg, R. (2015). Global forest survey finds trillions of trees. Nature, 525(7568), 170-171. https://doi.org/10.1038/nature.2015.18287
Ficetola, G. F., Taberlet, P., & Coissac, E. (2016). How to limit false positives in environmental DNA and metabarcoding? Molecular Ecology Resources, 16(3), 604–607. https://doi.org/10.1111/1755-0998.12508
Friedman, J., & Alm, E. J. (2012). Inferring Correlation Networks from Genomic Survey Data. PLoS Computational Biology, 8(9), e1002687. https://doi.org/10.1371/journal.pcbi.1002687
Garnica, S., Schön, M. E., Abarenkov, K., Riess, K., Liimatainen, K., Niskanen, T., Dima, B., Soop, K., Frøslev, T. G., Jeppesen, T. S., Peintner, U., Kuhnert-Finkernagel, R., Brandrud, T. E., Saar, G., Oertel, B., & Ammirati, J. F. (2016). Determining threshold values for barcoding fungi: lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiology Ecology, 92(4), fiw045. https://doi.org/10.1093/femsec/fiw045
Heeger, F., Bourne, E. C., Baschien, C., Yurkov, A., Bunk, B., Spröer, C., Overmann, J., Mazzoni, C. J., & Monaghan, M. T. (2018). Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments. Molecular Ecology Resources, 18(6), 1500–1514. https://doi.org/10.1111/1755-0998.12937
Hoang, M. T. V., Irinyi, L., Chen, S. C. A., Sorrell, T. C., & Meyer, W. (2019). Dual DNA Barcoding for the Molecular Identification of the Agents of Invasive Fungal Infections. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01647
Kauserud, H. (2023). ITS alchemy: On the use of ITS as a DNA marker in fungal ecology. Fungal Ecology, 65, 101274. https://doi.org/10.1016/j.funeco.2023.101274
Koch, A., & Kaplan, J. O. (2022). Tropical forest restoration under future climate change. Nature Climate Change, 12(3), 279–283. https://doi.org/10.1038/s41558-022-01289-6
Łaźniewska, J., Macioszek, V. K., & Kononowicz, A. K. (2012). Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78, 24–30. https://doi.org/10.1016/j.pmpp.2012.01.004
Lee, T. J., Liu, Y. C., Liu, W. A., Lin, Y. F., Lee, H. H., Ke, H. M., Huang, J. P., Lu, M. Y. J., Hsieh, C. L., Chung, K. F., Liti, G., & Tsai, I. J. (2022). Extensive sampling of Saccharomyces cerevisiae in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research, 32(5), 864–877. https://doi.org/10.1101/gr.276286.121
Leveau, J. H. (2019). A brief from the leaf: latest research to inform our understanding of the phyllosphere microbiome. Current Opinion in Microbiology, 49, 41–49. https://doi.org/10.1016/j.mib.2019.10.002
Li, C., Chytrý, M., Zelený, D., Chen, M., Chen, T., Chiou, C., Hsia, Y., Liu, H., Yang, S., Yeh, C., Wang, J., Yu, C., Lai, Y., Chao, W., & Hsieh, C. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16(4), 698–719. https://doi.org/10.1111/avsc.12025
Liber, J. A., Bonito, G., & Benucci, G. M. N. (2021). CONSTAX2: improved taxonomic classification of environmental DNA markers. Bioinformatics, 37(21), 3941–3943. https://doi.org/10.1093/bioinformatics/btab347
Lin, J.-C., Chiou, C.-R., Chan, W.-H., & Wu, M.-S. (2021). Valuation of Forest Ecosystem Services in Taiwan. Forests, 12(12), 1694. https://doi.org/10.3390/f12121694
Liu, S., García-Palacios, P., Tedersoo, L., Guirado, E., van der Heijden, M. G. A., Wagg, C., Chen, D., Wang, Q., Wang, J., Singh, B. K., & Delgado-Baquerizo, M. (2022). Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nature Ecology and Evolution, 6(7), 900–909. https://doi.org/10.1038/s41559-022-01756-5
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200
McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217
Meiser, A., Bálint, M., & Schmitt, I. (2014). Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytologist, 201(2), 623–635. https://doi.org/10.1111/nph.12532
Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. (2016). FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006
Ogwu, M. C., Takahashi, K., Dong, K., Song, H. K., Moroenyane, I., Waldman, B., & Adams, J. M. (2019). Fungal Elevational Rapoport pattern from a High Mountain in Japan. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43025-9
Peay, K. G., Kennedy, P. G., & Talbot, J. M. (2016). Dimensions of biodiversity in the Earth mycobiome. Nature Reviews Microbiology, 14(7), 434–447. https://doi.org/10.1038/nrmicro.2016.59
Rojas-Jimenez, K., Fonvielle, J. A., Ma, H., & Grossart, H. P. (2017). Transformation of humic substances by the freshwater Ascomycete Cladosporium sp. Limnology and Oceanography, 62(5), 1955–1962. https://doi.org/10.1002/lno.10545
Rosier, A., Bishnoi, U., Lakshmanan, V., Sherrier, D. J., & Bais, H. P. (2016). A perspective on inter-kingdom signaling in plant–beneficial microbe interactions. Plant Molecular Biology, 90(6), 537–548. https://doi.org/10.1007/s11103-016-0433-3
RStudio Team. (2020). RStudio: Integrated Development Environment for R. RStudio, PBC.
Sasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates Shape the Root Microbiome? Trends in Plant Science, 23(1), 25–41. https://doi.org/10.1016/j.tplants.2017.09.003
Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., … Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. https://doi.org/10.1093/nar/gkab1112
Schiro, G., Verch, G., Grimm, V., & Müller, M. (2018). Alternaria and Fusarium Fungi: Differences in Distribution and Spore Deposition in a Topographically Heterogeneous Wheat Field. Journal of Fungi, 4(2), 63. https://doi.org/10.3390/jof4020063
Stone, B. W. G., Weingarten, E. A., & Jackson, C. R. (2018). The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews Online, 1(2), 533–556. https://doi.org/10.1002/9781119312994.apr0614
Syed Ab Rahman, S. F., Singh, E., Pieterse, C. M. J., & Schenk, P. M. (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science, 267, 102–111. https://doi.org/10.1016/j.plantsci.2017.11.012
Taberlet, P., Prud’Homme, S. M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L., Rioux, D., Choler, P., Clément, J., Melodelima, C., Pompanon, F., & Coissac, E. (2012). Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Molecular Ecology, 21(8), 1816–1820. https://doi.org/10.1111/j.1365-294X.2011.05317.x
Tedersoo, L., Anslan, S., Bahram, M., Põlme, S., Riit, T., Liiv, I., Kõljalg, U., Kisand, V., Nilsson, R. H., Hildebrand, F., Bork, P., & Abarenkov, K. (2015). Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys, 10, 1–43. https://doi.org/10.3897/mycokeys.10.4852
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., … Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213). https://doi.org/10.1126/science.1256688
Tedersoo, L., & Lindahl, B. (2016). Fungal identification biases in microbiome projects. Environmental Microbiology Reports, 8(5), 774–779. https://doi.org/10.1111/1758-2229.12438
Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., Prill, R. J., Tripathi, A., Gibbons, S. M., Ackermann, G., Navas-Molina, J. A., Janssen, S., Kopylova, E., Vázquez-Baeza, Y., González, A., Morton, J. T., Mirarab, S., Xu, Z. Z., Jiang, L., … Zhao, H. (2017). A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551(7681), 457–463. https://doi.org/10.1038/nature24621
Tomao, A., Antonio Bonet, J., Castaño, C., & de-Miguel, S. (2020). How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. Forest Ecology and Management, 457, 117678. https://doi.org/10.1016/j.foreco.2019.117678
Truchado, P., Gil, M. I., Moreno-Candel, M., & Allende, A. (2019). Impact of weather conditions, leaf age and irrigation water disinfection on the major epiphytic bacterial genera of baby spinach grown in an open field. Food Microbiology, 78, 46–52. https://doi.org/10.1016/j.fm.2018.09.015
Vilgalys lab. (1992). Conserved primer sequences for PCR amplification and sequencing from nuclear ribosomal RNA. https://sites.duke.edu/vilgalyslab/files/2017/08/rDNA-primers-for-fungi.pdf
Villanueva, R. A. M., & Chen, Z. J. (2019). ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Measurement: Interdisciplinary Research and Perspectives, 17(3), 160–167. https://doi.org/10.1080/15366367.2019.1565254
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E. E., & van der Heijden, M. G. A. (2019). Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12798-y
Watts, S. C., Ritchie, S. C., Inouye, M., & Holt, K. E. (2019). FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics, 35(6), 1064–1066. https://doi.org/10.1093/bioinformatics/bty734
Yan, L., Zhu, J., Zhao, X., Shi, J., Jiang, C., & Shao, D. (2019). Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology, 103(8), 3327–3340. https://doi.org/10.1007/s00253-019-09713-2
Yang, H., Yang, Z., Wang, Q.-C., Wang, Y.-L., Hu, H.-W., He, J.-Z., Zheng, Y., & Yang, Y. (2022). Compartment and Plant Identity Shape Tree Mycobiome in a Subtropical Forest. Microbiology Spectrum, 10(4). https://doi.org/10.1128/spectrum.01347-22
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92092-
dc.description.abstract真菌在自然環境中扮演著多樣且重要的角色,其豐富性可直接反映生態系統的穩定性和功能性,故對於永續生態管理,了解森林真菌群是至關重要的。本研究中,我們以八種殼斗科物種作為研究材料,採集樹葉、枝條、落葉及土壤等四種介質,共864個樣本的真菌ITS2區域進行擴增,再以高通量分子條碼(metabarcoding) 技術,調查臺灣熱帶及亞熱帶森林的真菌多樣性及組成。採集點之海拔落於500至2500公尺之間。分析結果共鑑定了11,600個擴增子序列變異(Amplicon sequencing variants; ASVs),平均每樣本有69個,於其中有兩個普遍存在且無顯著生態為偏好的ASV,分類上分別屬於Cladosporium sp.及Pyrenochaetopsis sp.。由樹葉、枝條及落葉組成的葉際中,共享的ASV有12個,平均佔樣本相對豐度的5%。在α多樣性分析上,落葉的真菌多樣性最高,其次為葉子及枝條,而土壤在這四種介質中則最低。在真菌的組成上,受地理位置影響最為顯著,其次為介質、季節及寄主物種。高海拔的樣本(超過1500 公尺)在真菌組成上較低海拔樣本(低於800公尺)更為相似。分析結果顯示,同物種寄主的真菌組成在不同森林中存在差異,其相似度會隨著海拔高度的增加而升高。季節變化對真菌整體多樣性有顯著影響,其中長期的降雨量為主導因素。在組成比例上,子囊菌門的真菌佔比最高,又以一Cladosporium sp.最為優勢。這佔有高豐度的Cladosporium ASV也是本研究分析結果中唯一的關鍵物種,且後續藉由長片段擴增子定序技術(Long amplicon sequencing)驗證為單一物種。我們的研究深入了解了臺灣闊葉林的真菌多樣性,揭示了海拔驅動的變化、季節影響,以及關鍵物種— Clasoporium sp.的優勢。zh_TW
dc.description.abstractDiversity of the fungal community directly reflects the stability of the whole ecological system. Understanding the forest mycobiome is crucial for managing ecosystems sustainably. In this study, we investigated the fungal diversity of seven Fagaceae species in tropical and subtropical forests in Taiwan using a metabarcoding approach by sequencing ITS3/ITS4 amplicon in a total of 864 samples across four different substrates (leaf, twig, litter and soil). The locations of the trees range in altitude from 500 to 2500 meters. We identified a total of 11,600 amplicon sequencing variants (ASVs) with averaging 69 ASVs per sample. There were two ubiquitous ASVs, Cladosporium and Pyrenochaetopsis, with unclassified species and no significant niche preference. Phyllosphere, including leaf, twig, and litter, shared 12 ASVs, accounting on average 5% of samples’ relative abundance. Across substrates, higher α-diversity was observed in litter than twig and leaf, while soil had the lowest diversity. Mycobiome composition was most significantly influenced by host tree’s location, followed by substrates, season, and host species. Samples from high altitudes (over 1500 m) had a similar composition compared to those from low altitudes (below 800 m). Our results revealed that the mycobiome composition varies across forests from same host species, and had a tendency of being similar along with the altitude. Seasonal changes have a significant influence on the total fungal diversity, with long-term precipitation serves as the predominant factor. The majority of the observed mycobiome was composed of Ascomycota taxa, with a Cladosporium sp. as the dominant ASV. The prevalent Cladosporium ASV is also detected as the only keystone species in our study and is verified as a single species via long amplicon sequencing of the full ribosomal operon. Our study brings insight into the fungal diversity of Taiwanese broadleaf forests, revealing altitude-driven variations, seasonal influences, and the dominance of the keystone species — Cladosporium sp.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:15:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-05T16:15:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
ACKNOWLEDGEMENT/致謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vii
LIST OF FIGURES viii
LIST OF SUPPLEMENTARY MATERIALS ix
CHAPTER 1. Introduction 1
CHAPTER 2. Materials and Methods 5
2.1 Sample collection, preprocessing and DNA extraction 5
2.2 Sample preprocessing and DNA extraction 6
2.3 Amplicon library construction and sequencing 7
2.4 Statistical analyses 8
2.5 Network analysis 9
2.6 Long amplicon sequencing 9
CHAPTER 3. Results 12
3.1 Fungal diversity and composition differences through time among forests with the same host species and niches 12
3.2 Biological replicate consistency of the forest mycobiome 18
3.3 Effects of abiotic factor on forest mycobiome 19
3.4 Co-occurrence network analysis and putative keystone species 21
3.5 Finding the exact ASV of putative keystone species by long amplicon sequencing 24
CHAPTER 4. Discussions 26
References 29
Supplementary Materials 39
-
dc.language.isoen-
dc.subject高通量分子條碼zh_TW
dc.subject森林真菌菌相zh_TW
dc.subject殼斗科zh_TW
dc.subject熱帶及亞熱帶森林zh_TW
dc.subjectFagaceaeen
dc.subjectMycobiomeen
dc.subjectEpiphytic fungien
dc.subjectTropical and subtropical forestsen
dc.subjectMetabarcodingen
dc.title臺灣殼斗科森林之真菌菌相探討zh_TW
dc.titleMycobiome of Taiwanese Fagaceae Forestsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃兆立;柯惠棉;陳可萱zh_TW
dc.contributor.oralexamcommitteeChao-Li Huang;Huei-Mien Ke;Ko-Hsuan Chenen
dc.subject.keyword高通量分子條碼,森林真菌菌相,殼斗科,熱帶及亞熱帶森林,zh_TW
dc.subject.keywordMetabarcoding,Mycobiome,Epiphytic fungi,Fagaceae,Tropical and subtropical forests,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202304440-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-07-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept基因體與系統生物學學位學程-
顯示於系所單位:基因體與系統生物學學位學程

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf5.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved