請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李國譚 | zh_TW |
| dc.contributor.advisor | Kuo-Tan Li | en |
| dc.contributor.author | 柳沐真 | zh_TW |
| dc.contributor.author | Mu-Chen Liu | en |
| dc.date.accessioned | 2024-03-05T16:14:44Z | - |
| dc.date.available | 2024-03-06 | - |
| dc.date.copyright | 2024-03-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-04 | - |
| dc.identifier.citation | Council of Agriculture, Executive Yuan. 2021. Production value of grapes in Taiwan. <https://agrstat.coa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx>.
Agrawal, A.A., M. Fishbein, R. Jetter, J.P. Salminen, J.B. Goldstein, A.E. Freitag, and J.P. Sparks. 2009. Phylogenetic ecology of leaf surface traits in the milkweeds (Asclepias spp.): chemistry, ecophysiology, and insect behavior. New Phytol. 183:848-867. Amada, G., Y. Onoda, T. Ichie, and K. Kitayama. 2017. Influence of leaf trichomes on boundary layer conductance and gas-exchange characteristics in Metrosideros polymorpha (Myrtaceae). Biotropica 49:482-492. Benz, B.W. and C.E. Martin. 2006. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). J. Plant Physiol. 163:648-656. Bernacchi, C.J., A.R. Portis, H. Nakano, S. von Caemmerer, and S.P. Long. 2002. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in Vivo. Plant Physiol. 130:1992-1998. Boguszewska-Mańkowska, D., M. Pieczyński, A. Wyrzykowska, H.M. Kalaji, L. Sieczko, Z. Szweykowska-Kulińska, and B. Zagdańska. 2018. Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought. J. Agron. Crop Sci. 204:13-30. Bota, B.J., J. Flexas, and H. Medrano. 2001. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol. 138:353-361. Boughalleb, F. and H. Hajlaoui. 2011. Physiological and anatomical changes induced by drought in two olive cultivars (cv Zalmati and Chemlali). Acta Physiol. Plant 33:53-65. Buckley, T.N. and A. Diaz-Espejo. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant Cell Environ. 38:1200-1211. Caemmerer, S. 2000. Biochemical models of leaf photosynthesis. CSIRO, Collingwood, Australia. Chaves, M.M., T.P. Santos, C.R. Souza, M.F. Ortuño, M.L. Rodrigues, C.M. Lopes, J.P. Maroco, and J.S. Pereira. 2007. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 150:237-252. Chen, T.-W., M. Henke, P.H.B. De Visser, G. Buck-Sorlin, D. Wiechers, K. Kahlen, and H. Stützel. 2014. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy? Ann. Bot. 114:677-688. Clemente-Moreno, M.J., J. Gago, P. Diaz-Vivancos, A. Bernal, E. Miedes, P. Bresta, G. Liakopoulos, A.R. Fernie, J.A. Hernandez, and J. Flexas. 2019. The apoplastic antioxidant system and altered cell wall dynamics influence mesophyll conductance and the rate of photosynthesis. Plant J. 99:1031-1046. da Silva, J.R., A.E. Patterson, W.P. Rodrigues, E. Campostrini, and K.L. Griffin. 2017. Photosynthetic acclimation to elevated CO2 combined with partial rootzone drying results in improved water use efficiency, drought tolerance and leaf carbon balance of grapevines (Vitis labrusca). Environ. Exp. Bot. 134:82-95. de Souza, C.R., J.P. Maroco, T.P. dos Santos, M.L. Rodrigues, C. Lopes, J.S. Pereira, and M.M. Chaves. 2005. Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars. Agric. Ecosyst. Environ. 106:261-274. Dias, M.C. and W. Brüggemann. 2010. Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica 48:96-102. Ehleringer, J., O. Björkman, and H.A. Mooney. 1976. Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science 192:376-377. Ennajeh, M., A.M. Vadel, H. Cochard, and H. Khemira. 2010. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. J. Hortic. Sci. Biotechnol. 85:289-294. Ethier, G.J. and N.J. Livingston. 2004. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ. 27:137-153. Evans, J.R., T.D. Sharkey, J.A. Berry, and G.D. Farquhar. 1986. Carbon isotope discrimination measured concurrently with gas exchange to investigate CO2 diffusion in leaves of higher plants. Funct. Plant Biol. 13:281-292. FAO. 2017. The future of food and agriculture- Trends and challenges. United Nations, Rome. FAO, United Nations. 2021. Production of grapes. <https://www.fao.org/faostat/en/#data/QCL>. Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33:317-345. Farquhar, G.D. and T.D. Sharkey. 1994. Photosynthesis and carbon assimilation, p. 187-210. In: K.J. Boote, J.M. Bennett, T.R. Sinclair, and G.M. Paulsen (eds.). Physiology and determination of crop yield. American Society of Agronomy, Madison, Wisconsin, USA. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A Biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90. Ferrio, J.P., A. Pou, I. Florez-Sarasa, A. Gessler, N. Kodama, J. Flexas, and M. Ribas-Carbo. 2012. The Peclet effect on leaf water enrichment correlates with leaf hydraulic conductance and mesophyll conductance for CO2. Plant Cell Environ. 35:611-625. Flexas, J., M. Barón, J. Bota, J.M. Ducruet, A. Gallé, J. Galmés, M. Jimenéz, A. Pou, M. Ribas-Carbo, C. Sajnani, M. Tomás, and H. Medrano. 2009. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandierixV.rupestris). J. Exp. Bot 60:2361-2377. Flexas, J., J. Bota, J.M. Escalona, B. Sampol, and H. Medrano. 2002. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Biol. 29:461-471. Flexas, J., J.M. Escalona, and H. Medrano. 1999. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines. Plant Cell Environ. 22:39-48. Flexas, J., J. Galmes, A. Galle, J. Gulias, A. Pou, M. Ribas-Carbo, M. Tomas, and H. Medrano. 2010. Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust. J. Grape Wine Res. 16:106-121. Flexas, J., M. Ribas-Carbó, D.T. Hanson, J. Bota, B. Otto, J. Cifre, N. Mcdowell, H. Medrano, and R. Kaldenhoff. 2006. Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J. 48:427-439. Florez-Sarasa, I., M.J. Clemente-Moreno, J. Cifre, M. Capo, M. Llompart, A.R. Fernie, and J. Bota. 2020. Differences in metabolic and physiological responses between local and widespread grapevine cultivars under water deficit stress. Agronomy 10:1052. Galdon-Armero, J., M. Fullana-Pericas, P.A. Mulet, M.A. Conesa, C. Martin, and J. Galmes. 2018. The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato). Plant J. 96:607-619. Galle, A., I. Florez-Sarasa, M. Tomas, A. Pou, H. Medrano, M. Ribas-Carbo, and J. Flexas. 2009. The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J. Exp. Bot 60:2379-2390. Gasparini, K., M.F. Da Silva, L.C. Costa, S.C.V. Martins, D.M. Ribeiro, L.E.P. Peres, and A. Zsögön. 2021. The Lanata trichome mutation increases stomatal conductance and reduces leaf temperature in tomato. J. Plant Physiol. 260:153413. Genty, B., J.-M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87-92. Grassi, G. and F. Magnani. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28:834-849. Greer, D.H. 2018. The short-term temperature-dependency of CO2 photosynthetic responses of two Vitis vinifera cultivars grown in a hot climate. Environ. Exp. Bot. 147:125-137. Greer, D.H. and M.M. Weedon. 2012. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ. 35:1050-1064. Guan, X.Q., S.J. Zhao, D.Q. Li, and H.R. Shu. 2004. Photoprotective function of photorespiration in several grapevine cultivars under drought stress. Photosynthetica 42:31-36. Guerfel, M., O. Baccouri, D. Boujnah, W. Chaïbi, and M. Zarrouk. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic. 119:257-263. Harley, P.C., F. Loreto, G. Di Marco, and T.D. Sharkey. 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 98:1429-1436. Harley, P.C., R.B. Thomas, J.F. Reynolds, and B.R. Strain. 1992. Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ. 15:271-282. Huttunen, P., K. Karkkainen, G. Loe, P. Rautio, and J. Agren. 2010. Leaf trichome production and responses to defoliation and drought in Arabidopsis lyrata (Brassicaceae). Ann. Bot. Fennici 47:199-207. Ichie, T., Y. Inoue, N. Takahashi, K. Kamiya, and T. Kenzo. 2016. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest. J. Plant Res. 129:625-635. Johnson, H.B. 1975. Plant pubescence: An ecological perspective. Bot. Rev. 41:233-258. Jones, H.G. 1985. Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant Cell Environ. 8:95-104. Keller, M. 2010. The science of grapevines: Anatomy and physiology. Academic Press, Burlington, MA, USA. Kenzo, T., R. Yoneda, M.A. Azani, and N.M. Majid. 2008. Changes in leaf water use after removal of leaf lower surface hairs on Mallotus macrostachyus (Euphorbiaceae) in a tropical secondary forest in Malaysia. J. For. Res. 13:137-142. Knauer, J., M. Cuntz, J.R. Evans, Ü. Niinemets, T. Tosens, L.L. Veromann‐Jürgenson, C. Werner, and S. Zaehle. 2022. Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. New Phytol. 236:357-368. Kok, B. 1948. A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 13:1-56. Kono, A., Y. Ban, N. Mitani, H. Fujii, S. Sato, K. Suzaki, A. Azuma, N. Onoue, and A. Sato. 2018. Development of SSR markers linked to QTL reducing leaf hair density and grapevine downy mildew resistance in Vitis vinifera. Mol. Breeding 38:138. Kortekamp, A. and E. Zyprian. 1999. Leaf hairs as a basic protective barrier against downy mildew of grape. J. Phytopathol. 147:453-459. Laisk, A.K. 1977. Kinetics of photosynthesis and photorespiration of C3 in plants. [In Russ.] Nauka, Moscow Loreto, F., P.C. Harley, G. Di Marco, and T.D. Sharkey. 1992. Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol. 98:1437-1443. Martinez-Luscher, J., F. Morales, S. Delrot, M. Sanchez-Diaz, E. Gomes, J. Aguirreolea, and I. Pascual. 2015. Characterization of the adaptive response of grapevine (cv. Tempranillo) to UV-B radiation under water deficit conditions. Plant Sci. 232:13-22. Maul, E., Institute for Grapevine Breeding Geilweilerhof. 2023. VIVC. 2023. <www.vivc.de>. Moualeu-Ngangue, D.P., T.-W. Chen, and H. Stützel. 2017. A new method to estimate photosynthetic parameters through net assimilation rate−intercellular space CO2 concentration (A-Ci) curve and chlorophyll fluorescence measurements. New Phytol. 213:1543-1554. OIV. 2019. 2019 Statistical report on world vitiviniculture. 2022. <https://www.oiv.int/public/medias/6782/oiv-2019-statistical-report-on-world-vitiviniculture.pdf>. Olsovska, K., M. Kovar, M. Brestic, M. Zivcak, P. Slamka, and H.B. Shao. 2016. Genotypically identifying wheat mesophyll conductance regulation under progressive drought stress. Front. Plant Sci. 7. Patakas, A., B. Noitsakis, and A. Chouzouri. 2005. Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status. Agric. Ecosyst. Environ. 106:253-259. Patakas, A., D. Stavrakas, and I. Fisarakis. 2003. Relationship between CO2 assimilation and leaf anatomical characteristics of two grapevine cultivars. Agronomie 23:293-296. Perez-Estrada, L.B., Z. Cano-Santana, and K. Oyama. 2000. Variation in leaf trichomes of Wigandia urens: environmental factors and physiological consequences. Tree Physiol. 20:629-632. Perez-Martin, A., J. Flexas, M. Ribas-Carbo, J. Bota, M. Tomas, J.M. Infante, and A. Diaz-Espejo. 2009. Interactive effects of soil water deficit and air vapour pressure deficit on mesophyll conductance to CO2 in Vitis vinifera and Olea europaea. J. Exp. Bot 60:2391-2405. Pons, T.L., J. Flexas, S. von Caemmerer, J.R. Evans, B. Genty, M. Ribas-Carbo, and E. Brugnoli. 2009. Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J. Exp. Bot 60:2217-2234. Salazar-Parra, C., J. Aguirreolea, M. Sanchez-Diaz, J.J. Irigoyen, and F. Morales. 2012. Photosynthetic response of Tempranillo grapevine to climate change scenarios. Ann. Appl. Biol. 161:277-292. Salazar-Parra, C., I. Aranjuelo, I. Pascual, G. Erice, A. Sanz-Saez, J. Aguirreolea, M. Sanchez-Diaz, J.J. Irigoyen, J.L. Araus, and F. Morales. 2015. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J. Plant Physiol. 174:97-109. Schreuder, M.D.J., C.A. Brewer, and C. Heine. 2001. Modelled influences of non-exchanging trichomes on leaf boundary layers and gas exchange. J. Theor. Biol. 210:23-32. Schuepp, P.H. 1993. Tansley Review No. 59 Leaf boundary layers. New Phytol. 125:477-507. Sharkey, T.D. 1985. Photosynthesis in intact leaves of C3 plants: Physics, physiology and rate limitations. Bot. Rev. 51:53-105. Sharkey, T.D. 2016. What gas exchange data can tell us about photosynthesis. Plant Cell Environ. 39:1161-1163. Sharkey, T.D., C.J. Bernacchi, G.D. Farquhar, and E.L. Singsaas. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30:1035-1040. Silim, S.N., N. Ryan, and D.S. Kubien. 2010. Temperature responses of photosynthesis and respiration in Populus balsamifera L.: Acclimation versus adaptation. Photosyn. Res. 104:19-30. Sun, Y., L. Gu, R.E. Dickinson, S.G. Pallardy, J. Baker, Y. Cao, F.M. Damatta, X. Dong, D. Ellsworth, D. Van Goethem, A.M. Jensen, B.E. Law, R. Loos, S.C.V. Martins, R.J. Norby, J. Warren, D. Weston, and K. Winter. 2014. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ. 37:978-994. Tezara, W., V.J. Mitchell, S.D. Driscoll, and D.W. Lawlor. 1999. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914-917. Thitz, P., B.J.H.M. Possen, E. Oksanen, L. Mehtätalo, V. Virjamo, and E. Vapaavuori. 2017. Production of glandular trichomes responds to water stress and temperature in silver birch (Betula pendula) leaves. Can. J. For. Res. 47:1075-1081. Tomás, M., J. Flexas, L. Copolovici, J. Galmés, L. Hallik, H. Medrano, M. Ribas-Carbó, T. Tosens, V. Vislap, and Ü. Niinemets. 2013. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J. Exp. Bot 64:2269-2281. Tomás, M., H. Medrano, E. Brugnoli, J.M. Escalona, S. Martorell, A. Pou, M. Ribas-Carbó, and J. Flexas. 2014. Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Aust. J. Grape Wine Res. 20:272-280. Tzortzakis, N., A. Chrysargyris, and A. Aziz. 2020. Adaptive response of a native mediterranean grapevine cultivar upon short-term exposure to drought and heat stress in the context of climate change. Agronomy 10:249. Vasco, A., M. Thadeo, M. Conover, and D.C. Daly. 2014. Preparation of samples for leaf architecture studies, a method for mounting cleared leaves. Appl. Plant Sci. 2:1400038. Walker, B.J. and D.R. Ort. 2015. Improved method for measuring the apparent CO2 photocompensation point resolves the impact of multiple internal conductances to CO2 to net gas exchange. Plant Cell Environ. 38:2462-2474. Weil, R.R. and N.C. Brady. 2017. Soil water: Characteristics and behavior, p. 207-250. In: D. Fox (ed.). The nature and properties of soils. Pearson Education, Essex, U.K. Werker, E. 2000. Trichome diversity and development. Adv. Bot. Res. 31:1-35. Wilson, K.B., D.D. Baldocchi, and P.J. Hanson. 2000. Quantifying stomatal and non-stomatal limitations to carbon assimilation resulting from leaf aging and drought in mature deciduous tree species. Tree Physiol. 20:787-797. Yang, Y.-S. 2005. Grapes, p. 217-226. In: Council of Agriculture, Executive Yuan (ed.). Taiwan agriculture encyclopedia. Council of Agriculture, Executive Yuan, Taipei. Yin, X., P.C. Struik, P. Romero, J. Harbinson, J.B. Evers, P.E.L. Van Der Putten, and J. Vos. 2009. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum). Plant Cell Environ. 32:448-464. Yin, X., Z. Sun, P.C. Struik, and J. Gu. 2011. Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J. Exp. Bot 62:3489-3499. Zufferey, V., J.L. Spring, T. Verdenal, A. Dienes, S. Belcher, F. Lorenzini, C. Koestel, J. Rosti, K. Gindro, J. Spangenberg, and O. Viret. 2017. Influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot noir wines in Switzerland. Oeno One 51:37-57. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92091 | - |
| dc.description.abstract | 葡萄(Vitis spp.)為世界重要的園藝作物,主要的栽培種包括歐洲種(V. vinifera),及其與美洲種(V. labrusca)的雜交種,後者因較適應亞熱帶地區潮濕的氣候,在臺灣廣泛栽培。歐美雜交種葡萄遺傳V. labrusca的特徵,如‘金香’以及‘黑后’葉片背面具有絨毛。絨毛影響葉片的氣體交換,並且被視為忍受乾旱逆境的特徵之一。本文探討‘麗絲玲’(V. vinifera ‘Riesling’) 與雜交種葡萄‘黑后’(‘Black Queen’)和‘金香’(‘Golden Muscat’)氣體交換差異,進一步比較不同程度乾旱逆境下之光合作用特徵,並將數據利用FvCB模型(Farquhar, von Caemmerer, and Berry biochemical model)進行擬合以得到葉肉細胞導度(mesophyll conductance, gm)以及光合生化反應參數。在無水分逆境的環境下,‘麗絲玲’於二氧化碳濃度400 μmol∙mol-1之光合作用淨同化速率(net assimilation rate, A)以及氣孔導度 (stomata conductance, gs)最高。水分利用效率(intrinsic water use efficiency, WUEi)與gm /gs呈現正相關,‘金香’之WUEi與 gm /gs 為三個品種中最高。利用數值積分方法(numerical integrated method)發現飽和光度最大電子傳遞能力(maximum electron transport capacity under saturating light, Jmax)為‘黑后’及‘金香’之A較‘麗絲玲’低的主要因子。為進一步了解gm和WUEi的關係,在不同程度的缺水進行第二個氣體交換測量分析試驗。利用氣孔導度區分不同的缺水程度,結果顯示三葡萄品種之A, Jmax以及初始電子傳遞效率斜率(the initial slope of electron transport rate versus light, φ)皆隨著乾旱程度上升而下降,而WUEi以及gm /gs在乾旱逆境中仍呈現正相關。‘金香’的A受乾旱之影響最小,且在極度乾旱時仍較‘麗絲玲’高。透過數值積分方法分析,擴散性因子(diffusional factors, gs及gm)為兩個雜交種葡萄在乾旱逆境下光合作用效率下降的主要原因,但在‘麗絲玲’中則非主因。但極度乾旱時,gm則是雜交種葡萄維持較‘麗絲玲’高的光合同化效率之主因。觀察葉背絨毛以及氣孔密度,結果顯示‘金香’具有最高的絨毛密度,和WUEi以及耐旱程度一致。本試驗顯示‘黑后’及‘金香’雜交種葡萄不僅具較高絨毛密度,且在缺水逆境下能夠透過維持gm以及WUEi,故較‘麗絲玲’良好的抗乾旱能力。 | zh_TW |
| dc.description.abstract | Grapes (Vitis spp.) are one of the most important horticultural crops worldwide. Commercial cultivars are mainly derived from the European grape, V. vinifera and its hybrids with American grape, V. labrusca. The hybrid grapes are widely cultivated in Taiwan and other subtropical regions, due to their better tolerance to humid climates. The hybrid cultivars ‘Golden Muscat’ and ‘Black Queen’ inherited the leaf abaxial trichomes from V. labrusca. The leaf trichome may affect leaf gas exchange and has been identified as an indicator of drought tolerance. This thesis aimed to reveal the gas exchange differences between ‘Golden Muscat’, ‘Black Queen’ and V. vinifera ‘Riesling’ and their responses to drought. In this study, light response and CO2 response (A-Ci) curves of gas exchange behaviors of potted vinifera ‘Riesling’ and two hybrid cultivars, ‘Black Queen’ and ‘Golden Muscat’ vines were measured at air temperature 25℃. Data were fitted to a modified Farquhar, von Caemmerer, and Berry biochemical model (FvCB) to estimate mesophyll conductance (gm) and biochemical parameters. In the first experiment, gas exchange at ambient CO2 concentration (Ca, 400 μmol∙mol-1) was measured under well-watered condition. The results showed that ‘Riesling’ exhibited the highest net assimilation rate (A) and stomata conductance (gs). Water use efficiency (WUEi) was positive related to gm /gs, which ‘Golden Muscat’ had the highest intrinsic water use efficiency (WUEi) and gm /gs. The data were further analyzed with a numerical integration approach and the result showed that the biochemical factor maximum electron transport capacity under saturating light (Jmax) was the major contributor to the lower A of the hybrid cultivars. In the second experiment, the effect of gm on WUEi, was investigated on vines subject to various drought indicated by gs. The results showed that at ambient CO2 concentration (Ca, 400 μmol∙mol-1), A, Jmax, and the initial slope of electron transport rate versus light (φ) decreased in all three cultivars in vines suffering moderate drought stress. The positive relationship between gm /gs and WUEi was maintained under water deficiency. A of ‘Golden Muscat’ was less influenced by drought stress and superior then that of ‘Riesling’ at extreme water deficiency. the data were further analyzed using a numerically integrated method and the results showed that as the drought stress increased, diffusional factors (gs and gm) were the major contributors to the decrease in A in the two hybrid vines but had little influence in ‘Riesling’ vines. However, in the extreme drought stress, gm was the main positive contributor maintaining a rather stable A of the two hybrids over ‘Riesling’. The trichome densities were positive correlated to WUEi, which ‘Golden Muscat’ was the highest of all. This thesis suggests hybrid cultivars have a better photosynthetic response to extreme water deficiency by maintaining gm and WUEi. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:14:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-05T16:14:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 (Chinese Abstract) ii Abstract iii Table of contents v List of Tables viii List of Figures ix Chapter 1 Literature review and hypothesis 1 Introduction 1 1.2. Photosynthesis response of grapes under water stress 2 1.2.1. Gas exchange of grapes in response to drought 2 1.2.2. Photosynthetic biochemical processes of grapes in response to drought 3 1.2.3. Variability in the photosynthetic responses of grape cultivars to water deficiency 4 1.2.4. Effect of trichomes to leaf water use and gas exchange 5 1.3. Modelling leaf gas exchange 7 1.3.1. Farquhar, von Caemmerer, and Berry (FvCB) model 7 1.3.2. Estimation of the FvCB parameters 8 1.4. Analyze the limitations and contribution of individual variables to photosynthesis 10 1.4.2. Photosynthetic limitation under drought 13 1.5. Objective and hypothesis 13 Chapter 2. Materials and Methods 15 2.1. Plant materials 15 2.2. The leaf gas exchange behavior of hybrid and vinifera grapes 15 2.2.1. The leaf gas exchange behavior of hybrid and vinifera grapes under well-watered condition 15 2.2.2. The leaf gas exchange behavior under drought 16 2.3. Gas exchange measurement 16 2.4. Leaf gas exchange model fitting 18 2.5. Contribution of the variables to the change of the A 21 2.6. The soil water content 22 2.7. Trichome density 22 2.8. Stomata density 23 2.9. Data analysis 24 Chapter 3. Results 26 3.1. Gas exchange measurements of the hybrid and vinifera grape cultivars 26 3.1.1. Gas exchange behavior 26 3.1.2. Farquhar, von Caemmerer, and Berry (FvCB) model fitting variables 27 3.1.3. The correlation between gas exchange and FvCB variables 27 3.1.4. Contribution of the variables to the A difference on hybrid cultivars 28 3.2. The gas exchange behavior of the hybrid and vinifera grape under various drought conditions 29 3.2.1. Gas exchange measurement under various drought conditions 29 3.2.2. FvCB variables of three grape cultivars under various drought conditions 31 3.2.3. The correlation of gas exchange variables and the FvCB variables under various drought conditions 31 3.2.4. Contribution of the variables to the A difference under various medium water contents 32 3.2.5. Contribution of the variables to A response to various drought conditions of hybrid cultivars and vinifera grapes 33 3.3. Trichome density and stomata density of the hybrid and vinifera grapes 33 3.3.1 Relationship of trichome densities and gas exchange variables 34 Chapter 4. Discussion 58 4.1. Gas exchange behaviors of grapes under well-water condition 58 4.2. Gas exchange and FvCB variables at various water availability 59 4.3. Relationship of intrinsic water use efficiency (WUEi) and Ci to gm and gs 61 4.4. Cultivar differences in the photosynthetic response 62 4.5. Trichome densities and gas exchange behavior 63 Chapter 5 Conclusion 64 References 65 Appendix 77 | - |
| dc.language.iso | en | - |
| dc.subject | FvCB模擬 | zh_TW |
| dc.subject | 葉肉細胞導度 | zh_TW |
| dc.subject | 飽和光度最大電子傳遞能力 | zh_TW |
| dc.subject | 數值積分方法 | zh_TW |
| dc.subject | numerical integration approach | en |
| dc.subject | FvCB model | en |
| dc.subject | mesophyll conductance | en |
| dc.subject | maximum electron transport capacity | en |
| dc.title | 歐洲種及雜交種葡萄對乾旱逆境之光合作用生理反應 | zh_TW |
| dc.title | Photosynthetic physiology of vinifera and hybrid grapes in response to drought stress | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李金龍;張哲嘉;林宣佑 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Lung Lee;Jer-Chia Chang;Syuan-You Lin | en |
| dc.subject.keyword | FvCB模擬,葉肉細胞導度,飽和光度最大電子傳遞能力,數值積分方法, | zh_TW |
| dc.subject.keyword | FvCB model,mesophyll conductance,maximum electron transport capacity,numerical integration approach, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202400535 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 2.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
