請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92087
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳肇欣 | zh_TW |
dc.contributor.advisor | Chao-Hsin Wu | en |
dc.contributor.author | 許博勳 | zh_TW |
dc.contributor.author | Po-Hsun Hsu | en |
dc.date.accessioned | 2024-03-05T16:13:33Z | - |
dc.date.available | 2024-03-06 | - |
dc.date.copyright | 2024-03-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-05 | - |
dc.identifier.citation | [1] R. R. Schaller, "Moore''s law: past, present and future," in IEEE Spectrum, vol. 34, no. 6, pp. 52-59, June 1997, doi: 10.1109/6.591665.Mimura, Takashi. (2002). The early history of the high electron mobility transistor (HEMT). Microwave Theory and Techniques, IEEE Transactions on. 50. 780 - 782. 10.1109/22.989961.
[2] P. S. Park, "Advanced Channel Engineering in III-Nitride HEMTs for High Frequency Performance," The Ohio State University, 2013. [3] Y. W. Dean Brenner, "What can we do with 5G NR Spectrum Sharing that isn’t possible today?," 2017. [4] H. Technologies, "5G Spectrum Public Policy Position " 2017. [5] Accton, “The Emergence of 5G mmWave”, https://www.accton.com/Technology- Brief/the-emergence-of-5g-mmwave [6] Alex Lidow, “Can Gallium Nitride Replace Silicon?” Power Electronics Europe, issue 2, 2010. [7] Ambacher, Oliver et al ”Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp.3222-3233, Mar. 1999. [8] Bommalingaiah, B., Narayan Gaonkar, and R. G. Vaidya. "Effect of spontaneous polarization field on diffusion thermopower in AlGaN/GaN Heterostructures." Chemical Physics Impact (2023): 100251.. [9] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures," vol. 85, no. 6, pp. 3222-3233, 1999. [10] B. J. J. I. E. D. L. Baliga, "Power semiconductor device figure of merit for high frequency applications," vol. 10, no. 10, pp. 455-457, 1989. [11] Editorial Team, everything RF, “Comparing GaN Substrates” June, 2020, https://www.everythingrf.com/community/comparing-gan-substrates [12] Kukushkin, S., A. V. Osipov, V. Bessolov, B. Medvedev, V. Nevolin and K. A. Tcarik. “Substrates for Epitaxy of Gallium Nitride: New Materials and Techniques.” (2008). [13] Yole Development, “Accelerated Adoption of RF GaN Devices for Telecom Infrastructure, Along with New Opportunities for GaN-on-Si Technology”. https://www.yolegroup.com/product/report/rf-gan-2023/ [14] Nela, Luca, et al. "A perspective on multi-channel technology for the next-generation of GaN power devices." Applied Physics Letters 120.19 (2022). [15] Gaska, R., et al. "Two-channel AlGaN/GaN heterostructure field effect transistor for high power applications." Journal of applied physics 85.5 (1999): 3009-3011. [16] Chu, Rongming, et al. "AlGaN-GaN double-channel HEMTs." IEEE Transactions on electron devices 52.4 (2005): 438-446. [17] T. Dutta et al., "Origins of the short channel effects increase in III-V nMOSFET technologies," 2012 13th International Conference on Ultimate Integration on Silicon (ULIS), 2012, pp. 25-28, doi: 10.1109/ULIS.2012.6193348. [18] Tanaya Katakkar, “All about FINFET,” https://www.engineersgarage.com/all-about-finfet/ [19] T. Zimmermann, Y. Cao, J. Guo, X. Luo, D. Jena, H. Xingt, "Top-down AlN/GaN enhancement- & depletion-mode nanoribbon HEMT," Device Research Conference, 2009 [20] M.A. Khayer, and R. K. Lake, "Modeling and performance analysis of high-speed, high-power GaN nanowire FETs," Device Research Conference, 2009 [21] M. Zhang, X. Ma, M. Mi, L. Yang, S. Wu, B. Hou, Q. Zhu, H. Zhang, M. Wu,Y. Hao, "Influence of fin width and gate structure on the performance of AlGaN/GaN fin‐ shaped HEMTs," Device And Circuits For Millimeter Wave And THz Application, 2019Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, IEEE Trans. Electron Devices 53, 2207 (2006). [22] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka and D. Ueda, IEDM Tech. Dig., 2006, p.907. [23] E. Ture, "GaN-Based Tri-Gate High Electron Mobility Transistors," 2018 [24] Guerra, Diego, et al. "Aspect ratio impact on RF and DC performance of state-of-the-art short-channel GaN and InGaAs HEMTs." IEEE Electron Device Letters 31.11 (2010): 1217-1219. [25] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys. 85, 3222 (1999). [26] Hiroki, M., N. Maeda, and N. Kobayashi. "Metalorganic vapor phase epitaxy growth of AlGaN/GaN heterostructures on sapphire substrates." Journal of crystal growth 237 (2002): 956-960. [27] Gary Tuttle, Contact resistance and TLM measurements, https://tuttle.merc.iastate.edu/ee432/topics/metals/tlm_measurements.pdf [28] Liu Q Z, Lau S S. A review of the metal–GaN contact technology.Solid-State Electron, 1998, 42(5): 677 [29] Dong Z, Wang J, Gong R, et al. Multiple Ti/Al stacks inducedthermal stability enhancement in Ti/Al/Ni/Au ohmic contact onAlGaN/GaN heterostructure. Proceedings of 10th IEEE Interna-tional Conference on Solid-State and Integrated Circuit Technol-ogy, Shanghai, China, 2010: 1359 [30] 1B. Lu, O. I. Saadat, and T. Palacios, IEEE Electron Device Lett. 31, 990 (2010). [31] Arulkumaran, S. "Surface passivation effects in AlGaN/GaN HEMTs on high-resistivity Si substrate." 2007 International Workshop on Physics of Semiconductor Devices. IEEE, 2007.B. Lu, E. Matioli, and T. Palacios, IEEE Electron Device Lett. 33, 360 (2012). [32] Nyikayaramba, Gift, and Boris Murmann. "S-Parameter-Based Defect Localization for Ultrasonic Guided Wave SHM." Aerospace 7.3 (2020): 33 [33] P. Someswaran, "Large Signal Modelling of AlGaN/GaN HEMT for Linearity Prediction," The Ohio State University, 2015 [34] Umesh K. Mishra, et al. "Noise of AlGaN/GaN HEMTs and Oscillators. " https://picture.iczhiku.com/resource/eetop/whiGQzOwrFlpOxBV.pdf. [35] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, "A new method for determining the FET small-signal equivalent circuit," in IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 7, pp. 1151-1159, July 1988, doi:10.1109/22.3650. [36] G. Crupi et al., "Accurate multibias equivalent-circuit extraction for GaN HEMTs," vol. 54, no. 10, pp. 3616-3622, 2006. [37] F. Diamand and M. Laviron, "Measurement of the extrinsic series elements of a microwave MESFET under zero current conditions," in 1982 12th European Microwave Conference, 1982, pp. 451-456: IEEE. [38] Anwar Jarndal & Günter Kompa (2016): A simple, direct and reliable extraction method applied to GaN devices, International Journal of Electronics, doi: 10.1080/00207217.2016.1218058 [39] Rudolph, M., Fager, C., & Root, D. (Eds.). (2011). Nonlinear Transistor Model Parameter Extraction Techniques (The Cambridge RF and Microwave Engineering Series). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139014960 [40] Teke, Ali, et al. "The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures." New Journal of Physics 11.6 (2009): 063031.Z. Liu, X. Huang, F. C. Lee, and Q. Li, IEEE Trans. Power Electron. 29, 1977 (2014). [41] Nirmal, D., and L. Arivazhagan. "Impact of AlGaN Back Barrier in AlGaN/GaN HEMT on GaN substrate." 2020 5th International Conference on Devices, Circuits and Systems (ICDCS). IEEE, 2020.W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, IEEE Trans. Electron Devices 53, 356 (2006). [42] Kukushkin, S., A. V. Osipov, V. Bessolov, B. Medvedev, V. Nevolin and K. A. Tcarik. “Substrates for Epitaxy of Gallium Nitride: New Materials and Techniques.” (2008). [43] Chu, Rongming, et al. "AlGaN-GaN double-channel HEMTs." IEEE Transactions on electron devices 52.4 (2005): 438-446. [44] A. Chakrabarty, R. Swain and A. K. Panda, "Fin Width dependent Threshold Voltage Modeling in AlGaN/GaN Fin shaped nano channel HEMT," 2020 IEEE Calcutta Conference (CALCON), 2020, pp. 356-358, doi: 10.1109/CALCON49167.2020.9106486. [45] Chang, Li-Cheng, et al. "Investigation of GaN Fin-HEMTs with micron-scale fin width." Gallium Nitride Materials and Devices XII. Vol. 10104. SPIE, 2017. [46] S. Turuvekere, N. Karumuri, A. A. Rahman, A. Bhattacharya, A. DasGupta and N. DasGupta, "Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and Modeling," in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3157-3165, Oct. 2013, doi: 10.1109/TED.2013.2272700. [47] D. Marti et al., "94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon With Regrown Ohmic Contacts," in IEEE Electron Device Letters, vol. 36, no. 1, pp. 17-19, Jan. 2015, doi: 10.1109/LED.2014.2367093.X. Lu, K. Yu, H. Jiang, A. Zhang, and K. M. Lau, “Study of Interface Traps in AlGaN/GaN MISHEMTs Using LPCVD SiNx as Gate Dielectric,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 824–831, 2017. [48] D. C. Dumka, G. Cueva,H. Hier,O.A. Aina, and I. Adesida, “DCand RF characteristics of doped multichannel Al0.56As0.44Sb–In0.53Ga0.47As field effect transistors with variable gate-lengths,” IEEE Electron Device Lett., vol. 22, no. 1, pp. 5–7, Jan. 2001. [49] Chu, Rongming, et al. "AlGaN-GaN double-channel HEMTs." IEEE Transactions on electron devices 52.4 (2005): 438-446. [50] H. -S. Zhang et al., "Influence of Different Fin Configurations on Small-Signal Performance and Linearity for AlGaN/GaN Fin-HEMTs," in IEEE Transactions on Electron Devices, vol. 66, no. 8, pp. 3302-3309, Aug. 2019, doi: 10.1109/TED.2019.2921445. [51] Zhang, Meng et al. “Influence of Fin Configuration on the Characteristics of AlGaN/GaN Fin-HEMTs.” IEEE Transactions on Electron Devices 65 (2018): 1745-1752. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92087 | - |
dc.description.abstract | 由於氮化鎵擁有傑出的材料特性,在射頻元件與功率元件應用上迅速發展,預期於未來的市場上將佔有一席之地。以氮化鋁鎵/氮化鎵高電子遷移率電晶體作為高頻元件的發展主流,此種異質結構會於接面處生成二維電子氣,進而提高元件載子遷移率與電子濃度。然而,隨著電子濃度的提升,載子遷移率將會有所下降,使元件特性不如預期。因此雙層的氮化鋁鎵/氮化鎵異質結構被提出,此種結構可以形成兩層二維電子氣,以彌補載子濃度不足的問題,但此種磊晶結構會使元件閾值電壓有很大的負偏移,透過鰭式結構可以改善此現象,閘極環繞鰭式通道結構以增加閘極控制力,除了能使元件較易關閉之外,更預期能夠有效抑制因高頻元件微縮線寬而產生的短通道效應。
本論文分做四部分,第一部分介紹了氮化鎵的材料特性與操作原理,並說明本論文研究動機,為論文概述; 第二部分首先針對單通道氮化鎵做奈米閘極元件製程介紹與直流特性分析,接著介紹高頻量測架設與氮化鋁鎵/氮化鎵高電子遷移率小訊號模型,並對元件之最佳偏壓點進行高頻特性分析; 第三部分進行雙通道元件的磊晶結構介紹與鰭式通道的微米閘極製程開發並簡述其特性,後續針對不同的通道距離做平面電晶體與鰭式電晶體的直流特性分析; 最後第四部分將透過電子束微影對雙通道元件進行閘極線寬的微縮,同樣針對不同通道距離做平面電晶體與鰭式電晶體的直流特性分析。最後建立雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體與鰭式結構之小訊號模型,透過變偏壓的量測分析電晶體之本質參數,觀察其高頻特性。 | zh_TW |
dc.description.abstract | Due to the outstanding material properties of gallium nitride, there has been rapid development in its applications for RF and power devices, and it is expected to have a significant presence in the future market. The mainstream development of high-frequency devices relies on the use of AlGaN/GaN high-electron-mobility transistors, where a two-dimensional electron gas is formed at the interface, enhancing carrier mobility and electron concentration. However, as the electron concentration increases, the carrier mobility may decrease, affecting the device characteristics. Therefore, a double channel AlGaN/GaN heterostructure is proposed to address the issue of insufficient carrier concentration by creating two layers of two-dimensional electron gas. Nevertheless, this structure may lead to a substantial negative shift in the threshold voltage. The introduction of a fin structure is suggested to mitigate this phenomenon, employing a gate-surrounding fin-shaped channel to enhance gate control. This not only facilitates easier device turn-off but is also expected to effectively suppress short-channel effects resulting from the downscaling of high-frequency devices.
This thesis is divided into four parts. The first part introduces the material properties and operational principles of gallium nitride and outlines the research motivation, serving as an overview of the thesis. The second part begins with the nano gate device fabrication process and DC characteristics analysis for single channel GaN devices. It further covers the setup of high-frequency measurements, the AlGaN/GaN high-electron-mobility transistor (HEMT) small-signal model, and high-frequency characterization at the optimal bias point. The third part delves into the introduction of the double channel device''s epitaxial structure and the development of the fin-shaped channel for micrometer gate fabrication. It briefly describes the characteristics, followed by DC analysis for planar transistors and fin-shaped transistors with different channel distances. The fourth part involves electron beam lithography for gate width scaling of double-channel devices. Similar DC characteristic analyses are performed for planar and fin-shaped transistors with different channel distances. Finally, a small-signal model is established for the double channel AlGaN/GaN high-electron-mobility transistor and fin-shaped structure, and the intrinsic parameters are analyzed through bias-dependent measurements to observe their high-frequency characteristics. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-05T16:13:33Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-05T16:13:33Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 I
摘要 II Abstract III Table of Contents V List of Figures VIII List of Tables XIII Chapter 1. Introduction 1 1.1. Background 1 1.2. Properties of GaN Material 3 1.3. Literature Review 10 1.4. Motivation and Overview 14 Chapter 2. Fabrication and Characterization of Nano-Gate AlGaN/GaN High Electron Mobility Transistors 16 2.1. Design of Epitaxial Structure and Photomask 16 2.2. Device Fabrication Process 22 2.3. DC Characteristics Analysis of AlGaN/GaN HEMT 29 2.4. RF Measurement and Characteristics Analysis of AlGaN/GaN HEMT 33 2.5. Conclusion 51 Chapter 3. Fabrication and Characterization of Double Channel Micro Gate AlGaN/GaN High Electron Mobility Transistors with Fin Structure 52 3.1. Design of Epitaxial Structure and Photomask 52 3.2. Device Fabrication Process 56 3.3. DC Characteristics Analysis of Micro Gare Double Channel AlGaN/GaN HEMT 62 3.4. Conclusion 73 Chapter 4. Fabrication and Characterization of Double Channel Nano Gate AlGaN/GaN High Electron Mobility Transistors with Fin Structure 75 4.1. Device Fabrication Process 75 4.2. DC Characteristics Analysis of Nano Gate Double Channel AlGaN/GaN HEMT 79 4.3. RF Measurement and Characteristics Analysis of Double Channel AlGaN/GaN HEMT 90 4.4. Conclusion 108 Chapter 5. Conclusion and Future Work 110 Acronyms 113 References 117 Appendix 125 | - |
dc.language.iso | en | - |
dc.title | 鰭式結構之雙通道氮化鋁鎵/氮化鎵高電子遷移率電晶體射頻功率元件製作與分析 | zh_TW |
dc.title | Fabrication and Analysis of Radio Frequency Double Channel AlGaN/GaN HEMT with Fin Structure | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳育任;黃建璋;張子璿 | zh_TW |
dc.contributor.oralexamcommittee | Yuh-Renn Wu;Jian-Jang Huang;Tzu-Hsuan Chang | en |
dc.subject.keyword | 氮化鋁鎵/氮化鎵異質接面結構,高電子遷移率電晶體,二維電子氣,雙通道,射頻元件,鰭式通道結構,小訊號模型, | zh_TW |
dc.subject.keyword | AlGaN/GaN heterojunction structure,high-electron mobility transistor (HEMT),two-dimensional electron gas (2DEG),double channel,RF device,Fin channel structure,small-signal model, | en |
dc.relation.page | 126 | - |
dc.identifier.doi | 10.6342/NTU202400440 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-02-06 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 6.67 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。