Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92073Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林逸彬 | zh_TW |
| dc.contributor.advisor | Yi-Pin Lin | en |
| dc.contributor.author | 卓儀秦 | zh_TW |
| dc.contributor.author | Yi-Chin Cho | en |
| dc.date.accessioned | 2024-03-04T16:23:31Z | - |
| dc.date.available | 2024-03-05 | - |
| dc.date.copyright | 2024-03-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-01 | - |
| dc.identifier.citation | Ahmad, M., Teel, A. L. and Watts, R. J. (2013) Mechanism of persulfate activation by phenols. Environ. Sci. Technol. 47(11), 5864-5871.
Ali, J., Jiang, W., Shahzad, A., Ifthikar, J., Yang, X., Wu, B., Oyekunle, D. T., Jia, W., Chen, Z., Zheng, L. and Chen, Z. (2021) Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides. Chem. Eng. J. 425, 130679. Anipsitakis, G.P. and Dionysiou, D.D. (2003) Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 37, 4790-4797. Anipsitakis, G.P. and Dionysiou, D.D. (2004) Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38(13), 3705-3712. Anipsitakis, G.P., Dionysiou, D.D. and Gozalez, M.A. (2006) Cobalt mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. Technol. 40(3), 1000-1007. APHA, AWWA, WEF (2012) Standard methods for the examination of water and wastewater, 22nd edition. ASTM (2006) Standard test methods for specific gravity of soil solids by water pycnometer. ASTM international. Avetta, P., Pensato, A., Minella, M., Malandrino, M., Maurino, V., Minero, C., Hanna, K. and Vione, D. (2015) Activation of persulfate by irradiated magnetite: implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions. Environ. Sci. Technol. 49(2), 1043-1050. Awtrey, A.D. and Connick, R.E. (1951) The absorption spectra of I2, I3-, I-, IO3-, S4O6= and S2O3=. Heat of the reaction I3- = I2 + I-. J. Am. Chem. Soc. 73(4), 1842–1843. Barták, P. and Čáp, L. (1997) Determination of phenols by solid-phase microextraction. J. Chromatogr. A. 76(1), 171-175. Bekele, D.N., Du, J., de Freitas, L.G., Mallavarapu, M., Chadalavada, S and Naidu, R. (2019) Actively facilitated permeable reactive barrier for remediation of TCE from a low permeability aquifer: Field application. J. Hydrol. 572, 592-602. Buxton, G.V. and Elliot, A.J. (1986) Rate constant for reaction of hydroxyl radicals with bicarbonate ions. Radiat. Phys. Chem. 27, 241-243. Cai, C., Liu, J., Zhang, Z., Zheng, Y. and Zhang, H. (2016) Visible light enhanced heterogeneous photo-degradation of Orange II by zinc ferrite (ZnFe2O4) catalyst with the assistance of persulfate. Sep. Purif. Technol. 165, 42-52. Chen, H., Zhang, Z., Feng, M., Liu, W., Wang, W., Yang, Q. and Hu, Y. (2017) Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite). Chem. Eng. J. 313, 498-507. Chen, L., Ding, D., Liu, C., Cai, H., Qu, Y., Yang, S., Gao, Y. and Cai, T. (2018a) Degradation of norfloxacin by CoFe2O4 -GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration. Chem. Eng. J. 334, 273-284. Chen, N., Lee, D., Kang, H., Cha, D., Lee, J. and Lee, C. (2022) Catalytic persulfate activation for oxidation of organic pollutants: A critical review on mechanisms and controversies. J. Environ. Chem. Eng. 10(3), 107654. Chen, S., Ma, L., Du, Y., Zhan, W., Zhang, T.C. and Du, D. (2021) Highly efficient degradation of rhodamine B by carbon nanotubes-activated persulfate. Sep. Purif. Technol. 256, 117788. Chen, X., Oh, W.D. and Lim, T.T. (2018b) Graphene- and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms. Chem. Eng. J. 354, 941-976. Cheng, X., Guo, H., Li, W., Yang, B., Wang, J., Zhang, Y. and Du, E. (2020) Metal-free carbocatalysis for persulfate activation toward nonradical oxidation: Enhanced singlet oxygen generation based on active sites and electronic property. Chem. Eng. J. 396, 125107. Cheng, X., Guo, H., Zhang, Y., Korshin, G.V. and Yang, B. (2019) Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: Activation performance and structure-function relationship. Water Res. 157, 406-414. Cheng, X., Guo, H., Zhang, Y., Liu, Y., Liu, H. and Yang, Y. (2016) Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes. J. Colloid Interface Sci. 469, 277-286. Chiesa, M., Giamello, E. and Che, M (2010) EPR Characterization and Reactivity of Surface-Localized Inorganic Radicals and Radical Ions. Chem. Rev. 110, 1320-1347. Cui, C., Jin, L., Jiang, L., Han, Q., Lin, K., Lu, S., Zhang, D. and Cao, G. (2016) Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate. Sci. Total Environ. 572, 244-251. Dhaka, S., Kumar, R., Khan, M.A., Paeng, K.J., Kurade, M.B., Kim, S.J. and Jeon, B.H. (2017) Aqueous phase degradation of methyl paraben using UV-activated persulfate method. Chem. Eng. J. 321, 11-19. Di Natale, F., Di Natale, M., Greco, R., Lancia, A., Laudante, C. and Musmarra, D. (2008) Groundwater protection from cadmium contamination by permeable reactive barriers. J. Hazard. Mater. 160(2-3), 428-434. Ding, Y., Pan, C., Peng, X., Mao, Q., Xiao, Y., Fu, L. and Huang, J. (2020) Deep mineralization of bisphenol A by catalytic peroxymonosulfate activation with nano CuO/Fe3O4 with strong Cu-Fe interaction. Chem. Eng. J. 384, 123378. Du, X.D., Zhang, Y.Q., Hussain, I., Huang, S.B. and Huang, W.L. (2017) Insight into reactive oxygen species in persulfate activation with copper oxide: Activated persulfate and trace radicals. Chem. Eng. J. 313, 1023-1032. Dua, X., Zhanga, Y., Si, F., Yao, C., Du, M., Hussain, I., Kim, H., Huang, S., Lin, Z. and Hayat, W. (2019) Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent. Chem. Eng. J. 356 178-189. Duan, X., Ao, Z., Sun, H., Zhou, L., Wang, G. and Wang, S. (2015) Insights into N-doping in single-walled carbon nanotubes for enhanced activation of superoxides: a mechanistic study. Chem Commun 51(83), 15249-15252. Duan, X., Ao, Z., Zhou, L., Sun, H., Wang, G. and Wang, S. (2016a) Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation. Appl. Catal. B: Environ. 188, 98-105. Duan, X., Su, C., Miao, J., Zhong, Y., Shao, Z., Wang, S. and Sun, H. (2018a) Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Appl. Catal. B: Environ. 220, 626-634. Duan, X., Sun, H., Shao, Z. and Wang, S. (2018b) Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Appl. Catal. B: Environ. 224, 973-982. Duan, X., Sun, H., Tade, M. and Wang, S. (2018c) Metal-free activation of persulfate by cubic mesoporous carbons for catalytic oxidation via radical and nonradical processes. Catal. Today 307, 140-146. Duan, X.G., Su, C., Zhou, Li, Sun, H.Q., Suvorova, A., Odedairo, T., Zhu, Z.H., Shao, Z.P. and Wang, S.B. (2016b) Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Appl. Catal. B: Environ. 194, 7-15. Eberle, D., Ball, R. and Boving, T.B. (2017) Impact of ISCO treatment on PFAA co-contaminants at a former fire training area. Environ. Sci. Technol. 51(9), 5127-5136. Echeverría, J. C., Zarranz, I., Estella, J. and Garrido, J. J. (2005) Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite. Appl. Clay Sci. 30(2), 103-115. Fallgren, P.H., Bensch, J.C., Li, S.P., Huang, Z.X., Urynowicz, M.A. and Jin, S. (2016) Dosing of ozone in oxidation of methyl tert -butyl ether while minimizing hexavalent chromium formation in groundwater. J. Environ. Chem. Eng. 4(4), 4466-4471. Fang, G.D., Dionysiou, D.D., Al-Abed, S.R. and Zhou, D.M. (2013) Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs. Appl. Catal. B: Environ. 129, 325-332. Fang, Z., Chelme-Ayala, P., Shi, Q., Xu, C. and Gamal El-Din, M. (2018) Degradation of naphthenic acid model compounds in aqueous solution by UV activated persulfate: Influencing factors, kinetics and reaction mechanisms. Chemosphere 211, 271-277. Fiol, N. and Villaescusa, I. (2008) Determination of sorbent point zero charge: usefulness in sorption studies. Environ. Chem. Lett. 7(1), 79-84. Furman, O.S. , Teel, A.L. and Watts, R.J. (2010) Mechanism of base activation of persulfate. Environ. Sci. Technol. 44(16), 6423-6428. Gao, H.P., Chen, J.B., Zhang, Y. and Zhou, X.F. (2016) Sulfate radicals induced degradation of triclosan in thermally activated persulfate system. Chem. Eng. J. 306, 522-530. Gao, P., Tian, X., Nie, Y., Yang, C., Zhou, Z. and Wang, Y. (2019) Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration. Chem. Eng. J. 359, 828-839. Gavaskar, A.R. (1999) Design and construction techniques for permeable reactive barriers. J. Hazard. Mater. 68, 41-71. Grau-Martínez, A., Torrentó, C., Carrey, R., Soler, A. and Otero, N. (2019) Isotopic evidence of nitrate degradation by a zero-valent iron permeable reactive barrier: Batch experiments and a field scale study. J. Hydrol. 570, 69-79. Gu, D., Guo, C., Hou, S., Lv, J., Zhang, Y., Feng, Q., Zhang, Y. and Xu, J. (2019) Kinetic and mechanistic investigation on the decomposition of ketamine by UV-254 nm activated persulfate. Chem. Eng. J. 370, 19-26. Guan, Y.H., Ma, J., Li, X.C., Fang, J.Y. and Chen, L.W. (2011) Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol. 45(21), 9308-9314. Huang, J., Dai, Y., Singewald, K., Liu, C.C., Saxena, S. and Zhang, H. (2019) Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chem. Eng. J. 370, 906-915. Huang, K. C., Couttenye, R. A. and Hoag, G. E. (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49, 413-420. Ismail, L., Ferronato, C., Fine, L., Jaber, F. and Chovelon, J. M. (2017) Elimination of sulfaclozine from water with SO4 •- radicals: Evaluation of different persulfate activation methods. Appl. Catal. B: Environ. 201, 573-581. Ji, Y., Ferronato, C., Salvador, A., Yang, X. and Chovelon, J.M. (2014) Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 472, 800-808. Jian, S., Sun, S. , Zeng, Y., Liu, Z., Liu, Y., Yang, Q. and Ma, G. (2020) Highly efficient persulfate oxidation process activated with NiO nanosheets with dominantly exposed {1 1 0} reactive facets for degradation of RhB. Appl. Surf. Sci. 505, 144318. Johnson, R. L., Tratnyek, P. G. and Johnson, R. O. (2008) Persulfate persistence under thermal activation conditions. Environ. Sci. Technol. 42(24), 9350-9356. Kambhu, A., Comfort, S., Chokejaroenrat, C. and Sakulthaew, C. (2012) Developing slow-release persulfate candles to treat BTEX contaminated groundwater. Chemosphere 89(6), 656-664. Kim, C., Ahn, J.Y., Kim, T.Y., Shin, W.S. and Hwang, I. (2018) Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI. Environ. Sci. Technol. 52(6), 3625-3633. Lawrence, A., Jones, C.M., Wardman, P. and Burkitt, M.J. (2003) Evidence for the role of a peroxidase compound I-type intermediate in the oxidation of glutathione, NADH, ascorbate, and dichlorofluorescin by cytochrome c/H2O2. Implications for oxidative stress during apoptosis. J. Biol. Chem. 278(32), 29410-29419. Lawrinenko, M., Wang, Z., Horton, R., Mendivelso-Perez, D., Smith, E.A., Webster, T.E., Laird, D.A. and van Leeuwen, J.H. (2017) Macroporous carbon supported zerovalent iron for remediation of trichloroethylene. ACS Sustain. Chem. Eng. 5(2), 1586-1593. Lee, H., Kim, H.I., Weon, S., Choi, W., Hwang, Y.S., Seo, J., Lee, C. and Kim, J.H. (2016) Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environ. Sci. Technol. 50(18), 10134-10142. Lee, H., Lee, H.J, Jeong, J., Lee, J., Park, N.B. and Lee, C. (2015) Activation of persulfates by carbon nanotubes: Oxidation of organic compounds by nonradical mechanism. Chem. Eng. J. 266, 28-33. Lee, J., von Gunten, U. and Kim, J. H. (2020) Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 54(6), 3064-3081. Lei, Y., Chen, C.S., Tu, Y. J., Huang, Y.H. and Zhang, H. (2015) Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: Mechanism, stability, and effects of pH and bicarbonate ions. Environ. Sci. Technol. 49(11), 6838-6845. Li, B.Z. and Zhu, J. (2014) Removal of p-chloronitrobenzene from groundwater: Effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process. Chem. Eng. J. 255, 225-232. Li, C., Wu, J., Peng, W., Fang, Z. and Liu, J. (2019) Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions. Chem. Eng. J. 356, 904-914. Li, R., Kong, J., Liu, H., Chen, P., Liu, G., Li, F. and Lv, W. (2017a) A sulfate radical based ferrous–peroxydisulfate oxidative system for indomethacin degradation in aqueous solutions. RSC Adv. 7(37), 22802-22809. Li, W., Orozco, R., Camargos, N. and Liu, H. (2017b) Mechanisms on the impacts of alkalinity, pH, and chloride on persulfate-based groundwater remediation. Environ. Sci. Technol. 51(7), 3948-3959. Li, X., Ma, J., Yang, L., He, G., Zhang, C., Zhang, R. and He, H. (2018) Oxygen vacancies induced by transition metal doping in gamma-MnO2 for highly efficient ozone decomposition. Environ. Sci, Technol. 52(21), 12685-12696. Lia, Y. , Liub, L. D. , Liua, L. , Liua, Y., Zhanga, H. W. and Han, X. (2016 ) Efficient oxidation of phenol by persulfate using manganite as a catalyst. Journal of Molecular Catalysis A: Chemical 411, 264-271. Liang, C., Huang, C. F., Mohanty, N. and Kurakalva, R. M. (2008) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73(9), 1540-1543. Liang, C. J. and Chen, C. Y. (2017) Characterization of a sodium persulfate sustained release rod for in situ chemical oxidation groundwater remediation. Ind. Eng. Chem. Res. 56(18), 5271-5276. Liang, C. J. and Su, H. W. (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 48, 5558–5562. Liang, C., Wang, Z. S. and Mohanty, N. (2006) Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C. Sci. Total Environ. 370(2-3), 271-277. Liang, H. Y., Zhang, Y. Q., Huang, S. B. and Hussain, I. (2013) Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate. Chem. Eng. J. 218, 384-391. Liang, S. H., Chen, K. F., Wu, C. S., Lin, Y. H. and Kao, C. M. (2014) Development of KMnO4-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater. Water Res. 54, 149-158. Lim, J., Yang, Y. and Hoffmann, M. R. (2019) Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environ. Sci. Technol. 53(12), 6972-6980. Lin, Y. T., Liang, C. and Chen, J. H. (2011) Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82(8), 1168-1172. Liu, C. S., Shih, K., Sun, C. X. and Wang, F. (2012) Oxidative degradation of propachlor by ferrous and copper ion activated persulfate. Sci. Total Environ. 416, 507-512. Liu, J., Zhao, Z., Shao, P. and Cui, F. (2015) Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation. Chem. Eng. J. 262, 854-861. Liu, L., Liu, Q., Wang, Y., Huang, J., Wang, W., Duan, L., Yang, X., Yu, X., Han, X. and Liu, N. (2019) Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B: Environ. 254, 166-173. Liu, Y., Zhao, Y. and Wang, J. (2021) Activation of peroxydisulfate by a novel Cu0-Cu2O@CNTs composite for 2, 4-dichlorophenol degradation. Sci. Total Environ. 754, 141883. Lutze, H. V., Kerlin, N. and Schmidt, T. C. (2015) Sulfate radical-based water treatment in presence of chloride: Formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water Res. 72, 349-360. Ma, Q., Zhang, H., Zhang, X., Li, B., Guo, R., Cheng, Q. and Cheng, X. (2019) Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate. Chem. Eng. J. 360, 848-860. Makino, K., Hagi, A., Ide, H., Murakami, A. and Nishi, M. (1992) Mechanistic studies on the formation of aminoxyl radicals from 5,S-dimethyl-lpyrroline-N-oxide in Fenton systems. Characterization of key precursors giving rise to background ESR signals. Can. J. Chem. 70, 2818-2827. Miao, J., Sunarso, J., Duan, X., Zhou, W., Wang, S. and Shao, Z. (2018) Nanostructured Co-Mn containing perovskites for degradation of pollutants: Insight into the activity and stability. J. Hazard. Mater. 349, 177-185. Neta, P., Huie, R. E. and Ross, A. B. (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 17(3), 1027-1284. Obiri-Nyarko, F., Grajales-Mesa, S. J. and Malina, G. (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111, 243-259. Oh, W. D., Lua, S. K., Dong, Z. and Lim, T. T. (2015) A novel three-dimensional spherical CuBi2O4 consisting of nanocolumn arrays with persulfate and peroxymonosulfate activation functionalities for 1H-benzotriazole removal. Nanoscale 7(17), 8149-8158. Oh, W. D., Wong, Z., Chen, X., Lin, K. Y. A., Veksha, A., Lisak, G., He, C. and Lim, T. T. (2020) Enhanced activation of peroxydisulfate by CuO decorated on hexagonal boron nitride for bisphenol A removal. Chem. Eng. J. 393, 124714. Pang, X., Guo, Y., Zhang, Y., Xu, B. and Qi, F. (2016) LaCoO 3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: Effect of synthetic method and the reaction mechanism. Chem. Eng. J. 304, 897-907. Park, C. M., Heo, J., Wang, D., Su, C. and Yoon, Y. (2018) Heterogeneous activation of persulfate by reduced graphene oxide–elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water. Appl. Catal. B: Environ. 225, 91-99. Phillips, D. H., Van Nooten, T., Bastiaens, L., Russell, M. I., Dickson, K., Plant, S., Ahad, J. M. E., Newton, T., Elliot, T. and Kalin, R. M. (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ. Sci. Technol. 44, 3861-3869. Qian, Y., Zhou, X., Zhang, Y., Sun, P., Zhang, W., Chen, J., Guo, X. and Zhang, X. (2015) Performance of α-methylnaphthalene degradation by dual oxidant of persulfate/calcium peroxide: Implication for ISCO. Chem. Eng. J. 279, 538-546. Qin, W., Fang, G., Wang, Y. and Zhou, D. (2018) Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. Chem. Eng. J. 348, 526-534. Rayaroth, M. P., Oh, D., Lee, C. S., Kang, Y. G. and Chang, Y. S. (2020) In situ chemical oxidation of contaminated groundwater using a sulfidized nanoscale zerovalent iron-persulfate system: Insights from a box-type study. Chemosphere 257, 127117. Ren, W., Cheng, C., Shao, P., Luo, X., Zhang, H., Wang, S. and Duan, X. (2022) Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environ. Sci. Technol. 56(1), 78-97. Ren, W., Nie, G., Zhou, P., Zhang, H., Duan, X. and Wang, S. (2020) The intrinsic nature of persulfate activation and N-doping in carbocatalysis. Environ. Sci. Technol. 54(10), 6438-6447. Rodríguez-Chueca, J., Laski, E., García-Cañibano, C., Martín de Vidales, M. J., Encinas, Á., Kuch, B. and Marugán, J. (2018) Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes. Sci. Total Environ. 630, 1216-1225. Santos, A., Fernandez, J., Rodriguez, S., Dominguez, C. M., Lominchar, M. A., Lorenzo, D. and Romero, A. (2018) Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Sci. Total Environ. 615, 1070-1077. Statham, T. M., Stark, S. C., Snape, I., Stevens, G. W. and Mumford, K. A. (2016) A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: A field assessment at Casey Station, Antarctica. Chemosphere 147, 368-375. Sun, C., Chen, T., Huang, Q., Zhan, M., Li, X. and Yan, J. (2020) Activation of persulfate by CO2-activated biochar for improved phenolic pollutant degradation: Performance and mechanism. Chem. Eng. J. 380, 122519. Sun, C., Zhou, R., E, J., Sun, J. and Ren, H. (2015) Magnetic CuO@Fe3O4 nanocomposite as a highly active heterogeneous catalyst of persulfate for 2,4-dichlorophenol degradation in aqueous solution. RSC Adv. 5(70), 57058-57066. Tang, L., Liu, Y., Wang, J., Zeng, G., Deng, Y., Dong, H., Feng, H., Wang, J. and Peng, B. (2018) Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: Electron transfer mechanism. Appl. Catal. B: Environ. 231, 1-10. Thiruvenkatachari, R., Vigneswaran, S. and Naidu, R. (2008) Permeable reactive barrier for groundwater remediation. J. Ind. Eng. Chem. 14(2), 145-156. Tratnyek, P.G. and Hoigne, J. (1991) Oxidation of substituted phenols in the environment: a QSAR analysis of rate constants for reaction with singlet oxygen Environ. Sci. Technol. 25, 1596-1604. Truex, M. J., Macbeth, T. W., Vermeul, V. R., Fritz, B. G., Mendoza, D. P., Mackley, R. D., Wietsma, T. W., Sandberg, G., Powell, T., Powers, J., Pitre, E., Michalsen, M., Ballock-Dixon, S. J., Zhong, L. and Oostrom, M. (2011) Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation. Environ. Sci. Technol. 45(12), 5346-5351. Vignola, R., Bagatin, R., De Folly D’Auris, A., Flego, C., Nalli, M., Ghisletti, D., Millini, R. and Sisto, R. (2011) Zeolites in a permeable reactive barrier (PRB): One year of field experience in a refinery groundwater—Part 1: The performances. Chem. Eng. J. 178, 204-209. Walger, E., Marlin, N., Mortha, G., Molton, F. and Duboc, C. (2021) Hydroxyl radical generation by the H2O2/CuII/Phenanthroline system under both neutral and alkaline conditions: An EPR/spin-trapping investigation. Appl. Sci. 11(2), 687. Wang, B., Li, Y. N. and Wang, L. (2019) Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: Activation factors and degradation mechanism. Chemosphere 237, 124454. Wang, G., Ge, L., Liu, Z., Zhu, X., Yang, S., Wu, K., Jin, P., Zeng, X. and Zhang, X. (2022) Activation of peroxydisulfate by defect-rich CuO nanoparticles supported on layered MgO for organic pollutants degradation: An electron transfer mechanism. Chem. Eng. J. 431, 134026. Wang, Q., Wang, B., Ma, Y. and Xing, S. (2018) Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide. Chem. Eng. J. 354, 473-480. Wang, Y., Indrawirawan, S., Duan, X., Sun, H., Ang, H. M., Tadé, M. O. and Wang, S. (2015) New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures. Chem. Eng. J. 266, 12-20. Watts, R. J. and Teel, A. L. (2006) Treatment of contaminated soils and groundwater using ISCO. Pract. Period. Hazard. Toxic Radioact. Waste Manage. 10(1), 2-9. Wei, X., Gao, N., Li, C., Deng, Y., Zhou, S. and Li, L. (2016) Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. Chem. Eng. J. 285, 660-670. Weng, C. H., Ding, F., Lin, Y. T. and Liu, N. (2015) Effective decolorization of polyazo direct dye Sirius Red F3B using persulfate activated with Fe0 aggregate. Sep. Purif. Technol. 147, 147-155. Wilkin, R. T., Lee, T. R., Sexton, M. R., Acree, S. D., Puls, R. W., Blowes, D. W., Kalinowski, C., Tilton, J. M. and Woods, L. L. (2019) Geochemical and isotope study of trichloroethene degradation in a zero-valent iron permeable reactive barrier: A twenty-two-year performance evaluation. Environ. Sci. Technol. 53(1), 296-306. Wu, L., Zhang, Q., Hong, J., Dong, Z. and Wang, J. (2019) Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4-x. Chemosphere 221, 412-422. Xiao, R., Luo, Z., Wei, Z., Luo, S., Spinney, R., Yang, W. and Dionysiou, D. D. (2018) Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 19, 51-58. Xu, L., Zheng, T., Yang, S., Zhang, L., Wang, J., Liu, W., Chen, L., Diwu, J., Chai, Z. and Wang, S. (2016) Uptake mechanisms of Eu(III) on hydroxyapatite: A potential permeable reactive barrier backfill material for trapping trivalent minor actinides. Environ. Sci. Technol. 50(7), 3852-3859. Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W. and Shan, L. (2009) A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. J. Environ. Sci. 21(9), 1175-1180. Yang, X., Cai, J., Wang, X., Li, Y., Wu, Z., Wu, W. D., Chen, X. D., Sun, J., Sun, S. P. and Wang, Z. (2020) A bimetallic Fe-Mn oxide-activated oxone for in situ chemical oxidation (ISCO) of trichloroethylene in groundwater: Efficiency, sustained activity, and mechanism investigation. Environ. Sci. Technol. 54(6), 3714-3724. Yang, Z., Dai, D., Yao, Y., Chen, L., Liu, Q. and Luo, L. (2017) Extremely enhanced generation of reactive oxygen species for oxidation of pollutants from peroxymonosulfate induced by a supported copper oxide catalyst. Chem. Eng. J. 322, 546-555. Yao, C., Zhang, Y., Du, M., Du, X. D. and Huang, S. (2019) Insights into the mechanism of non-radical activation of persulfate via activated carbon for the degradation of p-chloroaniline. Chem. Eng. J. 362, 262-268. Yeh, C. H., Lin, C. W. and Wu, C. H. (2010) A permeable reactive barrier for the bioremediation of BTEX-contaminated groundwater: Microbial community distribution and removal efficiencies. J. Hazard. Mater. 178(1-3), 74-80. Yin, R., Guo, W., Wang, H., Du, J., Wu, Q., Chang, J. S. and Ren, N. (2019) Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism. Chem. Eng. J. 357, 589-599. Yu, J., Feng, H., Tang, L., Pang, Y., Zeng, G., Lu, Y., Dong, H., Wang, J., Liu, Y., Feng, C., Wang, J., Peng, B. and Ye, S. (2020) Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Prog. Mater. Sci. 111, 100654. Yun, E. T., Lee, J. H., Kim, J., Park, H. D. and Lee, J. (2018) Identifying the nonradical mechanism in the peroxymonosulfate activation process: Singlet oxygenation versus mediated electron transfer. Environ. Sci. Technol. 52(12), 7032-7042. Zhang, J., Chen, M. and Zhu, L. (2016) Activation of persulfate by Co3O4 nanoparticles for orange G degradation. RSC Adv. 6, 758-768. Zhang, T., Chen, Y., Wang, Y., Le Roux, J., Yang, Y. and Croue, J. P. (2014a) Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ. Sci. Technol. 48(10), 5868-5875. Zhang, T., Chen, Y., Wang, Y., Roux, J. L., Yang, Y. and Croue, J. P. (2014b) Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ. Sci. Technol. 48(10), 5868-5875. Zhang, T., Zhu, H. and Croue, J. P. (2013) Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism. Environ. Sci. Technol. 47(6), 2784-2791. Zhou, D., Li, Y., Zhang, Y., Zhang, C., Li, X., Chen, Z., Huang, J., Li, X., Flores, G. and Kamon, M. (2014) Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates. J. Contam. Hydrol. 168, 1-16. Zhou, P., Zhang, J., Zhang, Y., Zhang, G., Li, W., Wei, C., Liang, J., Liu, Y. and Shu, S. (2018) Degradation of 2,4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. J. Hazard. Mater. 344, 1209-1219. Zhou, X., Jawad, A., Luo, M., Luo, C., Zhang, T., Wang, H., Wang, J., Wang, S., Chen, Z. and Chen, Z. (2021) Regulating activation pathway of Cu/persulfate through the incorporation of unreducible metal oxides: Pivotal role of surface oxygen vacancies. Appl. Catal. B: Environ. 286, 119914. Zhou, Y., Jiang, J., Gao, Y., Ma, J., Pang, S. Y., Li, J., Lu, X. T. and Yuan, L. P. (2015) Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process. Environ. Sci. Technol. 49(21), 12941-12950. Zhu, K., Wang, X., Chen, D., Ren, W., Lin, H. and Zhang, H. (2019a) Wood-based biochar as an excellent activator of peroxydisulfate for Acid Orange 7 decolorization. Chemosphere 231, 32-40. Zhu, S., Li, X., Kang, J., Duan, X. and Wang, S. (2019b) Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol. 53(1), 307-315. Zuo, Z. , Cai, Z., Katsumura, Y. , Chitose, N. and Muroya, Y. (1999) Reinvestigation of the acid±base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants. Radiat. Phys. Chem. 55, 15-23. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92073 | - |
| dc.description.abstract | 過硫酸鹽包括過單硫酸鹽(PMS)和過二硫酸鹽(PDS),為水處理程序及現地化學氧化法用於整治受污染地下水體時常用的氧化劑。過硫酸鹽因在水中穩定,需加以活化產生自由基或其他反應活性物質以用於降解有機污染物。近年來,人們致力於開發由金屬氧化物活化過硫酸鹽的異相過硫酸鹽活化方法,此活化方法具有低能耗且高降解效率的特性。然而,此類型之活化方法其反應機制仍不明確,且未建立完整的反應動力式。本研究首先使用氧化銅(CuO)、氧化鎳(NiO)、氧化鈷(Co3O4)、氧化鐵(Fe2O3)和二氧化錳(MnO2)做為活化劑活化過硫酸鹽用以去除水中之2,4-二氯酚污染物。研究結果發現金屬氧化物之表面羥基氧、氧空缺和零電荷點pH(pHpzc)之協同效應可同時影響金屬氧化物與過硫酸鹽間的表面相互作用關係,從而影響硫酸鹽被活化能力。由控制實驗、自由基捕捉試驗、電子自旋共振分析和離子強度效應的結果顯示,被吸附的過二硫酸鹽生成表面結合氫氧自由基(surface-bound OH•)是氧化銅活化過二硫酸鹽系統中,造成2,4-二氯酚降解的主要反應物質。經由反應機制,本研究考慮了幾項重要反應步驟建立反應動力學模型,包含(1)過二硫酸鹽吸附到氧化銅表面形成內層表面錯合物,(2)過二硫酸鹽錯合物經活化後形成表面結合硫酸根自由基(surface-bound SO4•−)與表面結合氫氧自由基,(3)2,4-二氯酚再與表面結合氫氧自由基反應從而被降解。開發的動力學模型可做為其他以表面結合自由基為主之過硫酸鹽氧化系統的主要反應框架,以更好地解釋過硫酸鹽活化系統之反應動力學。
本研究接續以過二硫酸鹽為氧化劑、氧化銅為材料,整合現地化學氧化法和透水性反應概念,建立氧化銅透水性反應牆模組,以去除地下水中之2,4-二氯酚、2,4,6-三氯酚及五氯酚。使用合成水樣評估在不同氯酚濃度(10-150 µM)和流速(1.8-14.4 mL/min)下對系統性能的影響,可發現當[PDS]/[氯酚]>1與足夠停留時間下,氯酚類有機污染物的去除率皆大於90%。使用實際地下水做為實驗水樣時,2,4-二氯酚及2,4,6-三氯酚的去除率些微下降,而五氯酚之去除效果僅剩20%。研究發現,地下水中之碳酸氫根濃度為影響氧化銅透水性反應牆模組去除地下水中五氯酚污染物之關鍵參數,五氯酚之去除率降低可能是由於主要參與反應之自由基與碳酸氫根反應生成反應性較弱的自由基、碳酸氫根離子會競爭氧化銅表面上過二硫酸鹽的活性點位或由五氯酚本身的空間位阻所造成。 | zh_TW |
| dc.description.abstract | Persulfates including peroxymonosulfate (PMS) and peroxydisulfate (PDS) are promising oxidants for water treatment and for in-situ chemical oxidation to remediate contaminated groundwater. They require activation to generate radicals or other reactive species to degrade organic pollutants. Recently, efforts were devoted to developing heterogeneous persulfate activation systems by metal oxides due to the lower energy consumption and high degradation efficiency. However, the mechanism was still ambiguous and the kinetics was either not quantitative or empirical in nature. In this research, the removal of 2,4-dichlorophenol (2,4-DCP) using persulfate activated by CuO, NiO Co3O4, Fe2O3 and MnO2 were first examined. The results showed that the synergistic effects of hydroxyl oxygen, oxygen vacancy and pHpzc collectively influence the interaction between metal oxides and persulfates, thereby determining the driving force for persulfate activation. Controlled experiments, radical scavenging experiments, electron paramagnetic resonance (EPR) studies and ionic strength effects showed that surface-bound OH• generated from the adsorbed PDS was the main reactive species responsible for the degradation of 2,4-DCP in the 2,4-DCP/CuO/PDS system. A kinetic model considering the important reaction steps, which includes the adsorption of PDS onto CuO to form inner-sphere surface complex, activation of adsorbed PDS complex to form surface-bound SO4•− and then surface-bound OH•, and degradation of 2,4-DCP by surface-bound OH•, was developed to better elucidate the reaction kinetics. The developed kinetic model could serve as a framework to characterize other persulfate oxidation systems relying on surface-bound radicals.
A novel system integrating ISCO and permeable reactive barrier (PRB) using PDS as the oxidant and CuO as the reactive barrier material was developed for the removal of chlorophenols (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP)). The influences of chlorophenol concentration (10-150 M) and flow rate (1.8-14.4 mL/min) on the system performance were evaluated using synthetic solutions. The removal efficiencies of target chlorophenols were greater than 90% when sufficient PDS was supplied ([PDS]/[chlorophenol]>1). When groundwaters were employed, the removal efficiencies of 2,4-DCP and 2,4,6-TCP reduced to 90% and 85%, while that of PCP dropped to 20%. The level of [HCO3−] in the groundwater played a key role in manipulating the performance of Cu-PRB module for PCP removal. The reduced removal efficiency could be due to the formation of weaker radicals, the stronger competition between bicarbonate ions and PDS for the activation sites on the CuO surfaces and the steric hindrance of PCP. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:23:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-04T16:23:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xiii List of Abbreviations and Symbols xiv Chapter 1 Introduction 1 1.1 Persulfate-based advanced oxidation processes 1 Chapter 2 Theories and Hypothesis 3 2.1 Activation of persulfates 3 2.2 Degradation mechanisms of organic compounds by activated persulfates 6 2.2.1 Radical processes 7 2.2.2 Non-radical processes 12 2.3 Influence of water matrix 15 2.4 Permeable reactive barrier (PRB) 18 2.5 Hypothesis 19 2.6 Objectives 19 Chapter 3 Material and Method 21 3.1 Research flowchart 21 3.2 Chemicals and reagents 23 3.3 Preparation of metal oxides 24 3.4 Batch degradation experiments 25 3.5 Removal of chlorophenols by CuO-PRB module system 26 3.6 Analytical methods 28 Chapter 4 Results and Discussion 32 4.1 Characterization of metal oxides 32 4.2 Removal of 2,4-DCP by metal oxide-activated persulfate systems 43 4.3 Identification of the reactive species for 2,4-DCP removal by CuO-activated PDS 52 4.3.1 Dual-compound control experiments 52 4.3.2 Identification of reactive oxygen species 54 4.4 Kinetics and modeling of 2,4-DCP removal in the CuO/PDS system 61 4.4.1 Influences of CuO solid loading, initial PDS dose, and initial 2,4-DCP concentration and pH 61 4.4.2 Modeling of 2,4-DCP degradation kinetics 70 4.5 Integration of ISCO and PRB for the removal of chlorophenols by CuO activated PDS 76 4.5.1 Flow characteristics of the CuO-PRB module 76 4.5.2 Removal of chlorophenols by PDS activated by the CuO-PRB module 79 4.5.3 Influences of chlorophenol concentration and flow rate 84 4.5.4 Removal of mixed chlorophenols in real groundwater 92 4.5.5 Influences of groundwater matrix 96 Chapter 5 Conclusions and Recommendation 102 5.1 Conclusions 102 5.2 Recommendation 104 Chapter 6 References 105 | - |
| dc.language.iso | en | - |
| dc.subject | 氧化銅 | zh_TW |
| dc.subject | 過硫酸鹽 | zh_TW |
| dc.subject | 反應動力模型 | zh_TW |
| dc.subject | 表面結合自由基 | zh_TW |
| dc.subject | 透水性反應牆 | zh_TW |
| dc.subject | surface-bound radical | en |
| dc.subject | copper oxide | en |
| dc.subject | persulfate | en |
| dc.subject | permeable reactive barrier | en |
| dc.subject | reaction kinetic model | en |
| dc.title | 利用金屬氧化物活化過硫酸鹽降解有機污染物: 反應動力、反應機制及反應牆模組應用之研究 | zh_TW |
| dc.title | Degradation of organic pollutants by persulfates activated by metal oxides: Reaction kinetics, mechanisms and permeable reactive barrier application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 駱尚廉;席行正;梁振儒;蔣本基;吳先琪 | zh_TW |
| dc.contributor.oralexamcommittee | Shang-Ling Lo;Hsing-Cheng Hsi;Chenju Liang;Pen-Chi Chiang;Shian-Chee Wu | en |
| dc.subject.keyword | 過硫酸鹽,氧化銅,表面結合自由基,反應動力模型,透水性反應牆, | zh_TW |
| dc.subject.keyword | persulfate,copper oxide,surface-bound radical,reaction kinetic model,permeable reactive barrier, | en |
| dc.relation.page | 116 | - |
| dc.identifier.doi | 10.6342/NTU202400407 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-04 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 環境工程學研究所 | - |
| Appears in Collections: | 環境工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-1.pdf Restricted Access | 5.42 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
