請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92068
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳希立 | zh_TW |
dc.contributor.advisor | Sih-Li Chen | en |
dc.contributor.author | 郭至恆 | zh_TW |
dc.contributor.author | Chih-Heng Kuo | en |
dc.date.accessioned | 2024-03-04T16:22:10Z | - |
dc.date.available | 2024-03-05 | - |
dc.date.copyright | 2024-03-04 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2024-02-15 | - |
dc.identifier.citation | [1] 經濟部能源局:能源統計110能源消費概況
[2] 經濟部能源局「2021年非生產性質行業能源查核年報」 [3] AE Kabeel, Khalil A, Elsayed SS, Alatyar AM. Theoretical investigation on energy storage characteristic of a solar liquid desiccant air conditioning system in Egypt. Energy 2018;158:164-180. [4] Gómez-Castro FM, Schneider D, Päßler T, Eicker U. Review of indirect and direct solar thermal regeneration for liquid desiccant systems. Renewable and Sustainable Energy Reviews 2018;82:545-575. [5] Sandip K. Singh, Anthony W. Savoy, Ionic liquids synthesis and applications: An overview, Journal of Molecular Liquids,2020;vol297:112038 [6] C.F. Poole, IONIC LIQUIDS, Encyclopedia of Separation Science,2007,Pages 1-8, [7] R.M Lazzarin, A Gasparella, G.A Longo, Chemical dehumidification by liquid desiccants: theory and experiment, International Journal of Refrigeration, 1999, Volume 22, Issue 4, Pages 334-347, [8] S.A. Abdul-Wahab, Y.H. Zurigat, M.K. Abu-Arabi, Predictions of moisture removal rate and dehumidification effectiveness for structured liquid desiccant air dehumidifier, Energy, Volume 29, Issue 1, 2004, Pages 19-34. [9] Manuel R. Conde, Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design, International Journal of Thermal Sciences, Volume 43, Issue 4, 2004, Pages 367-382. [10] Tao Wen, Yimo Luo, Meng Wang, Xiaohui She, Comparative study on the liquid desiccant dehumidification performance of lithium chloride and potassium formate, Renewable Energy, Volume 167, 2021, Pages 841-852, [11] Ming Qu, Omar Abdelaziz, Xiao-Guang Sun, Hongxi Yin, Aqueous solution of [EMIM][OAc]: Property formulations for use in air conditioning equipment design, Applied Thermal Engineering, Volume 124, 2017, Pages 271-278 [12] S.A. Nada, Air cooling-dehumidification/desiccant regeneration processes by a falling liquid desiccant film on finned-tubes for different flow arrangements, International Journal of Thermal Sciences, Volume 113, 2017, Pages 10-19, [13] Zhang X , Fei X , Shi M ,et al.Study on the dehumidifier of the energy storage liquid desiccant cooling systems[J].Journal of Southeast University (Natural ence Edition), 2003, 33(1):72-75. [14] J. Emhofer, B. Beladi, P. Dudzinski, T. Fleckl, H.C. Kuhlmann, Analysis of a cross-flow liquid-desiccant falling-film, Applied Thermal Engineering, Volume 124, 2017, Pages 91-102, [15] X.H. Liu, Y. Jiang, K.Y. Qu, Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator, Energy Conversion and Management,2007, Pages 546-554, [16] Guangkai Zhang, Jingchao Xie, Boyao Du, Honggang Liu, Jianping Wang, Jiaping Liu, Study on the optimal circulation structure of liquid desiccant dehumidification system based on composite model, Journal of Building Engineering, Volume 75, 2023, 106903 [17] K.T. Lin"Performance Analysis of Dehumidification using Calcium Chloride in Make-up Air System.," National Taiwan University Master Thesis, 2011 [18] C.H Huang” Theoretical Analysis on Heat and Mass Transfer Characteristics of an Air Dehumidifier Using Ionic Liquid Desiccant” National Taiwan University Master Thesis, 2022 [19] ASHRAE, "ASHRAE 2017 Fundamentals Handbook," 2017. [20] H.Y. Ho, Performance analysis of outdoor air-conditioning system using ionic liquid desiccant, National Taiwan University Master Thesis,2022 [21] Bowen Guan, Zhiyao Ma, Xinke Wang, Xiaohua Liu, Tao Zhang, A novel air-conditioning system with cascading desiccant wheel and liquid desiccant dehumidifier for low-humidity industrial environments, Energy and Buildings, Volume 274, 2022 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92068 | - |
dc.description.abstract | 本研究利用離子溶液搭配冷凝除濕系統相較傳統冷凝系統能有效減少能耗,能減少傳統冷凝需再熱至供風需求等熱矛盾問題,除此之外利用吸收端的平行流以及交叉流理論模型來分析熱質傳效應,以方便之後設計系統時的依據。
實驗系統利用液態除濕再生端將空氣預先加濕,使空氣經過冷凝除濕端時能以更少的冷卻負載達到相變化,此外冷凝除濕後的空氣經過溶液吸收除濕端有加熱除濕效果相比傳統冷凝可減少再熱的多餘能耗。 研究變因為混風比、冰水入口溫度、溶液流量、同濕度比下外氣溫度以及外氣模擬氣候等,實驗結果顯示混風比由100%降至25%時除濕比增幅16%,於25%時有最低濕度比11.55g/kg,並且節電效率增加12%;冷凝熱交換器冰水入口溫度越低除濕量以及節電效果越好從16°C至10°C增加70%的除濕比且節電效率增加11%,;溶液流量由1.6LPM上升至2.2LPM除濕比增加37%,而節電效率則是2.0LPM時最佳為32.11%較1.6LPM成長約8%;同樣濕度比下外氣溫度24°C上升至30°C,除濕比降低12%,相反的節電效率增加8%;模擬氣候下春秋季節有最佳的出口濕度比11.46g/kg,夏季時則有更好的節電效率27.07%。 實驗系統吸收端採平行流,模擬結果與交叉流相比熱質傳系數趨勢相近,其中質傳系數平行流均略低於交叉流4%不等,將理論模型中質傳系數與傳統冷凝除濕再熱的節能量進行擬合,可用於預測及設計系統出入口參數以達到節能需求。 | zh_TW |
dc.description.abstract | This study combines ionic solution with a condensation dehumidification system to effectively reduce energy consumption compared to traditional condensation systems. This approach mitigates the heat conflicts associated with traditional condensation systems that require reheating to meet the air supply demand. Additionally, a parallel flow and counter flow theoretical model is employed to analyze the heat and mass transfer effects, providing a basis for the future design of systems.
In the experimental system, the air is pre-humidified at the liquid dehumidification regeneration end, allowing the air to undergo phase change with less cooling load when passing through the condensation dehumidification end. Moreover, the air after condensation dehumidification undergoes heating dehumidification when passing through the solution absorption dehumidification end, reducing the unnecessary energy consumption associated with reheating in traditional condensation systems. Various parameters were studied, including the mixing air ratio, chilled water inlet temperature, solution flow rate, outdoor air temperature at the same humidity ratio, and simulated climate conditions. The experimental results showed that reducing the mixing air ratio from 100% to 25% increased the dehumidification ratio by 16%, reaching the lowest humidity ratio of 11.55 g/kg at 25%, with a 12% increase in energy-saving efficiency. Lowering the chilled water inlet temperature of the condensation heat exchanger resulted in better dehumidification and energy-saving effects. For instance, decreasing the temperature from 16°C to 10°C increased the dehumidification ratio by 70% and the energy-saving efficiency by 11%. Increasing the solution flow rate from 1.6 LPM to 2.2 LPM led to a 37% increase in the dehumidification ratio, with the optimal rate at 2.0 LPM showing a growth of about 8% in energy-saving efficiency. Similarly, raising the outdoor air temperature from 24°C to 30°C under the same humidity ratio reduced the dehumidification ratio by 12%, but conversely increased the energy-saving efficiency by 8%. Simulating climatic conditions, the system showed the optimal exit humidity ratio of 11.46 g/kg in spring and autumn, while in summer, it exhibited better energy-saving efficiency at 27.07%. The experimental system adopts parallel flow at the absorption end. Comparative analysis between the simulation results and counter flow reveals a similar trend in heat and mass transfer coefficients, with the parallel flow coefficients slightly lower than counter flow by varying percentages, generally around 4%. The theoretical model''s coefficients and the energy-saving capacity of traditional condensation dehumidification and reheating are fitted, providing a predictive tool for designing systems to meet energy-saving requirements. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:22:10Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-03-04T16:22:10Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目次 V 圖次 VIII 表次 XI 符號說明 XIII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 8 第2章 基礎理論 9 2.1 濕空氣學與液態除濕溶液理論 9 2.1.1 大氣壓力 9 2.1.2 空氣之飽和蒸氣壓 10 2.1.3 相對濕度 10 2.1.4 絕對濕度 10 2.1.5 濕空氣焓值 12 2.1.6 溶液焓值 13 2.1.7 空氣線圖 14 2.2 液態化學除濕熱質傳理論 16 2.3 平行流理論模型 19 2.3.1 網格化計算流程及邊界條件 19 2.3.2 網格數誤差分析 21 2.4 交叉流理論模型 23 2.4.1 網格化計算流程及邊界條件 25 2.4.2 網格數誤差分析 26 第3章 實驗設備及研究方法 29 3.1 實驗系統簡介 29 3.2 實驗設備與量測儀器 32 3.3 實驗流程及步驟 44 3.4 實驗操作變因及其變動參數設計 45 第4章 實驗結果與討論 46 4.1 混風比實驗分析 46 4.1.1 混風比於系統加濕除濕之影響 46 4.1.2 混風比質傳系數與熱對流系數之影響 50 4.2 冰水溫度實驗分析 52 4.2.1 冰水溫度於系統加濕除濕之影響 53 4.2.2 冰水溫度質傳系數與熱對流系數之影響 56 4.3 溶液流量實驗分析 59 4.3.1 溶液流量於系統加濕除濕之影響 59 4.3.2 溶液流量質傳系數與熱對流系數之影響 64 4.4 外氣乾球溫度實驗分析 66 4.4.1 外氣乾球溫度於系統加濕除濕之影響 66 4.4.2 外氣乾球溫度質傳系數與熱對流系數之影響 69 4.5 外氣氣候模擬實驗分析 72 4.5.1 外氣氣候於系統加濕除濕之影響 72 4.5.2 外氣氣候模擬於質傳系數與熱對流系數之影響 76 4.6 再生加濕後冷凝與傳統冷凝之能耗分析 78 4.6.1 混風比實驗能耗分析 80 4.6.2 冰水溫度實驗能耗分析 82 4.6.3 溶液流量實驗能耗分析 84 4.6.4 外氣乾球溫度實驗能耗分析 86 4.6.5 外氣氣候模擬實驗能耗分析 88 4.6.6 模擬質傳系數與傳統冷凝再熱能耗分析 91 第5章 結論與建議 92 5.1 結論 92 5.2 未來展望與建議 94 參考文獻 95 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用離子溶液吸收與冷凝除濕之熱質傳理論與實驗研究 | zh_TW |
dc.title | Theoretical and Experimental Investigations of Heat and Mass Transfer Using Ionic Liquid Dehumidification and Condensation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 江沅晉;陳志豪;梁俊德 | zh_TW |
dc.contributor.oralexamcommittee | Yuan-Jin Jian;Chih-Hao Chen;Jyun-De Liang | en |
dc.subject.keyword | 離子溶液,液態除濕,冷凝除濕,熱質傳系數,能耗分析, | zh_TW |
dc.subject.keyword | Ionic solution,liquid desiccant dehumidification,condensation dehumidification,heat and mass transfer coefficients,energy consumption analysis, | en |
dc.relation.page | 97 | - |
dc.identifier.doi | 10.6342/NTU202400081 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-02-16 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。