Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92063
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳凱儀zh_TW
dc.contributor.advisorKai-Yi Chenen
dc.contributor.author蘇育賢zh_TW
dc.contributor.authorYu-Hsien Suen
dc.date.accessioned2024-03-04T16:20:50Z-
dc.date.available2024-03-05-
dc.date.copyright2024-03-04-
dc.date.issued2024-
dc.date.submitted2024-02-04-
dc.identifier.citation方昱富. (2018). 高溫下番茄花粉數量及花粉活性之數量性狀基因座定位以及轉錄體分析. 臺灣大學農藝學研究所碩士學位論文.
行政院農業部. (2022). 農業統計資料. https://agrstat.moa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx
李牧忱. (2023). 番茄品種 Siberia 在熱逆境下維持花粉數目及花粉活性之遺傳因子的研究. 臺灣大學農藝學研究所碩士學位論文.
林晏丞. (2019). 以番茄重組自交系進行數量性狀基因座定位及 RNA定序資料分析探討耐熱性的候選基因. 臺灣大學農藝學研究所碩士學位論文.
楊雅涵. (2023). 高溫逆境下維持花粉活性的番茄數量性狀基因座PV03之精細定位. 臺灣大學農藝學研究所碩士學位論文.
Abbott, S., & Fairbanks, D. J. (2016). Experiments on Plant Hybrids by Gregor Mendel. Genetics, 204(2), 407-422.
Ali, O. A., O’Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G., Jeffres, C., & Miller, M. R. (2015). RAD Capture (Rapture): Flexible and Efficient Sequence-Based Genotyping. Genetics, 202(2), 389-400.
Andrews, S. (2010). A quality control tool for high throughput sequence data. Retrieved October 30, 2023 from https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Battisti, D. S., & Naylor, R. L. (2009). Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science, 323(5911), 240-244.
Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol, 141(1), 15-25.
Broman, K. W., Wu, H., Sen, S., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. Bioinformatics, 19(7), 889-890.
Bünger-Kibler, S., & Bangerth, F. (1982). Relationship between cell number, cell size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill.), and those induced parthenocarpically by the application of plant growth regulators. Plant Growth Regulation, 1(3), 143-154.
Camejo, D., Jiménez, A., Alarcón, J. J., Torres, W., Gómez, J. M., & Sevilla, F. (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Funct Plant Biol, 33(2), 177-187.
Chu, Y. H., Jang, J. C., Huang, Z., & van der Knaap, E. (2019). Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct, 3(7), e00142.
Churchill, G. A., & Doerge, R. W. (1994). Empirical threshold values for quantitative trait mapping. Genetics, 138(3), 963-971.
Cockshull, K. E., Graves, C. J., & Cave, C. R. J. (1992). The influence of shading on yield of glasshouse tomatoes. Journal of Horticultural Science, 67(1), 11-24.
De Jong, M., Mariani, C., & Vriezen, W. H. (2009). The role of auxin and gibberellin in tomato fruit set. Journal of Experimental Botany, 60(5), 1523-1532.
DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet, 43(5), 491-498.
Driedonks, N., Wolters-Arts, M., Huber, H., de Boer, G.-J., Vriezen, W., Mariani, C., & Rieu, I. (2018). Exploring the natural variation for reproductive thermotolerance in wild tomato species. Euphytica, 214(4), 67.
Edwards, M. D., Stuber, C. W., & Wendel, J. F. (1987). Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics, 116(1), 113-125.
El Ahmadi, A. B., & Stevens, M. A. (1979). Reproductive Responses of Heat-tolerant Tomatoes to High Temperatures1. Journal of the American Society for Horticultural Science, 104(5), 686-691.
El-Gizawy, A., Gomaa, H., El-Habbasha, K., & Mohamed, S. (1992). Effect of different shading levels on tomato plants 1. Growth, flowering and chemical composition. Symposium on Soil and Soilless Media under Protected Cultivation in Mild Winter Climates 323,
Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6(5), e19379.
FAO. (2021). FAOSTAT. https://www.fao.org/faostat/en/#data/QCL
Fenn, M. A., & Giovannoni, J. J. (2021). Phytohormones in fruit development and maturation. Plant J, 105(2), 446-458.
Frank, G., Pressman, E., Ophir, R., Althan, L., Shaked, R., Freedman, M., Shen, S., & Firon, N. (2009). Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Journal of Experimental Botany, 60(13), 3891-3908.
Fulton, T. M., Chunwongse, J., & Tanksley, S. D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter, 13(3), 207-209.
García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813.
Gillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: a developmental perspective. The Plant Cell, 5(10), 1439.
Guo, X., Chen, G., Cui, B., Gao, Q., Guo, J.-E., Li, A., Zhang, L., & Hu, Z. (2016). Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SlMBP11, confers salt stress tolerance. Molecular Breeding, 36(9), 125.
Haldane, J. B. (1919). The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet, 8(29), 299-309.
Haley, C. S., & Knott, S. A. (1992). A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity, 69(4), 315-324.
Hosmani, P. S., Flores-Gonzalez, M., Geest, H. v. d., Maumus, F., Bakker, L. V., Schijlen, E., Haarst, J. v., Cordewener, J., Sanchez-Perez, G., Peters, S., Fei, Z., Giovannoni, J. J., Mueller, L. A., & Saha, S. (2019). An improved de novo assembly and annotation of the tomato reference genome using single-molecule sequencing, Hi-C proximity ligation and optical maps. bioRxiv, 767764.
Hu, Z., & Xu, S. (2008). A simple method for calculating the statistical power for detecting a QTL located in a marker interval. Heredity, 101(1), 48-52.
Huang, B., Hu, G., Wang, K., Frasse, P., Maza, E., Djari, A., Deng, W., Pirrello, J., Burlat, V., Pons, C., Granell, A., Li, Z., van der Rest, B., & Bouzayen, M. (2021). Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nature Communications, 12(1), 6892.
Jones Jr, J. B. (2007). Tomato plant culture: in the field, greenhouse, and home garden. CRC press.
Kao, C.-H., Zeng, Z.-B., & Teasdale, R. D. (1999). Multiple interval mapping for quantitative trait loci. Genetics, 152(3), 1203-1216.
Kao, C. H., & Zeng, M. H. (2010). An investigation of the power for separating closely linked QTL in experimental populations. Genet Res (Camb), 92(4), 283-294.
Khan, S. (2015). QTL mapping: a tool for improvement in crop plants. Res J Recent Sci, 2277, 2502.
Klap, C., Yeshayahou, E., Bolger, A. M., Arazi, T., Gupta, S. K., Shabtai, S., Usadel, B., Salts, Y., & Barg, R. (2017). Tomato facultative parthenocarpy results from Sl AGAMOUS‐LIKE 6 loss of function. Plant Biotechnology Journal, 15(5), 634-647.
Lai, Z., Markovets, A., Ahdesmaki, M., Chapman, B., Hofmann, O., McEwen, R., Johnson, J., Dougherty, B., Barrett, J. C., & Dry, J. R. (2016). VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res, 44(11), e108.
Lander, E. S., & Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 121(1), 185-199.
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods, 9(4), 357-359.
Li, F., Chen, X., Zhou, S., Xie, Q., Wang, Y., Xiang, X., Hu, Z., & Chen, G. (2020). Overexpression of SlMBP22 in tomato affects plant growth and enhances tolerance to drought stress. Plant Science, 301, 110672.
Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 27(21), 2987-2993.
Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997, 1–3.
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754-1760.
Liu, J., Shen, Q., & Bao, H. (2022). Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens. PLoS One, 17(1), e0262574.
Mahesh, U., Mamidala, P., Rapolu, S., Aragao, F. J. L., Souza, M. T., Rao, P. J. M., Kirti, P. B., & Nanna, R. S. (2013). Constitutive overexpression of small HSP24.4 gene in transgenic tomato conferring tolerance to high-temperature stress. Molecular Breeding, 32(3), 687-697.
Meco, V., Egea, I., Albaladejo, I., Campos, J. F., Morales, B., Ortíz‐Atienza, A., Capel, C., Angosto, T., Bolarín, M. C., & Flores, F. B. (2019). Identification and characterisation of the tomato parthenocarpic mutant high fruit set under stress (hfs) exhibiting high productivity under heat and salt stress. Annals of Applied Biology, 174(2), 166-178.
Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A., & Johnson, E. A. (2007). Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res, 17(2), 240-248.
Muños, S., Ranc, N., Botton, E., Bérard, A., Rolland, S., Duffé, P., Carretero, Y., Le Paslier, M. C., Delalande, C., Bouzayen, M., Brunel, D., & Causse, M. (2011). Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol, 156(4), 2244-2254.
Neta-Sharir, I., Isaacson, T., Lurie, S., & Weiss, D. (2005). Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. The Plant Cell, 17(6), 1829-1838.
Paupière, M. J., van Haperen, P., Rieu, I., Visser, R. G. F., Tikunov, Y. M., & Bovy, A. G. (2017). Screening for pollen tolerance to high temperatures in tomato. Euphytica, 213(6), 130.
Razifard, H., Ramos, A., Della Valle, A. L., Bodary, C., Goetz, E., Manser, E. J., Li, X., Zhang, L., Visa, S., Tieman, D., van der Knaap, E., & Caicedo, A. L. (2020). Genomic Evidence for Complex Domestication History of the Cultivated Tomato in Latin America. Mol Biol Evol, 37(4), 1118-1132.
Ribelles, C., García-Sogo, B., Yuste-Lisbona, F. J., Atarés, A., Castañeda, L., Capel, C., Lozano, R., Moreno, V., & Pineda, B. (2019). Alq mutation increases fruit set rate and allows the maintenance of fruit yield under moderate saline conditions. Journal of Experimental Botany, 70(20), 5731-5744.
Rochette, N. C., Rivera-Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology, 28(21), 4737-4754.
Sax, K. (1923). The Association of Size Differences with Seed-Coat Pattern and Pigmentation in PHASEOLUS VULGARIS. Genetics, 8(6), 552-560.
Scharf, K.-D., Berberich, T., Ebersberger, I., & Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2), 104-119.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.
Silva, R. S., Kumar, L., Shabani, F., & PicanÇO, M. C. (2017). Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3·0 global climate model. The Journal of Agricultural Science, 155(3), 407-420.
Soller, M., Brody, T., & Genizi, A. (1976). On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theoretical and Applied Genetics, 47(1), 35-39.
Tanksley, S. D., Medina-Filho, H., & Rick, C. M. (1982). Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity, 49(1), 11-25.
Tanksley, S. D., & Rick, C. M. (1980). Isozymic gene linkage map of the tomato: Applications in genetics and breeding. Theor Appl Genet, 58(2), 161-170.
Taylor, J., & Butler, D. (2017). R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis. Journal of Statistical Software, 79(6), 1 - 29.
Tran, L. T., Nguyen, A. T., Nguyen, M. H., Nguyen, L. T., Nguyen, M. T., Trinh, L. T., Tran, D.-T. T., Ta, S. V., Hoshikawa, K., & Sugimoto, K. (2021). Developing new parthenocarpic tomato breeding lines carrying iaa9-3 mutation. Euphytica, 217(7), 139.
Valdes, V., & Gray, D. (1998). The influence of stage of fruit maturation on seed quality in tomato (Lycopersicon lycopersicum (L.) Karsten). Seed science and technology, 26(2), 309-318.
Vision, T. J., Brown, D. G., Shmoys, D. B., Durrett, R. T., & Tanksley, S. D. (2000). Selective mapping: a strategy for optimizing the construction of high-density linkage maps. Genetics, 155(1), 407-420.
von Koskull-Döring, P., Scharf, K.-D., & Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends in plant science, 12(10), 452-457.
Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77-78.
Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199-223.
Wang, H., Jones, B., Li, Z., Frasse, P., Delalande, C., Regad, F., Chaabouni, S., Latche, A., Pech, J.-C., & Bouzayen, M. (2005). The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. The Plant Cell, 17(10), 2676-2692.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science, 9(5), 244-252.
Weir, B., & Cockerham, C. C. (1977). Two-locus theory in quantitative genetics. North Carolina State University. Institute of Statistics.
Wu, Y., Bhat, P. R., Close, T. J., & Lonardi, S. (2008). Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph. PLOS Genetics, 4(10), e1000212.
Xu, J., Driedonks, N., Rutten, M. J. M., Vriezen, W. H., de Boer, G.-J., & Rieu, I. (2017). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37(5), 58.
Xu, J., Wolters-Arts, M., Mariani, C., Huber, H., & Rieu, I. (2017). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 213(7), 156.
Yao, Z., You, F. M., N’Diaye, A., Knox, R. E., McCartney, C., Hiebert, C. W., Pozniak, C., & Xu, W. (2020). Evaluation of variant calling tools for large plant genome re-sequencing. BMC Bioinformatics, 21(1), 360.
Yeh, C.-H., Kaplinsky, N. J., Hu, C., & Charng, Y.-y. (2012). Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science, 195, 10-23.
Zeng, Z.-B. (1994). Precision mapping of quantitative trait loci. Genetics, 136(4), 1457-1468.
Zhang, J., Wang, Y., Naeem, M., Zhu, M., Li, J., Yu, X., Hu, Z., & Chen, G. (2018). An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. Journal of Experimental Botany, 70(3), 909-924.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang, Y., Huang, M., Yao, Y., Bassu, S., Ciais, P., Durand, J.-L., Elliott, J., Ewert, F., Janssens, I. A., Li, T., Lin, E., Liu, Q., Martre, P., Müller, C., . . . Asseng, S. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences, 114(35), 9326-9331.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92063-
dc.description.abstract隨著氣候變遷加劇,未來的溫度將會越來越高,而番茄的產量也會隨之受到 影響。目前常用的番茄耐熱性指標包括花粉活性、花粉數量和著果率。花粉活性 與花粉數量用於評估雄配子,而著果率則用於評估雌配子。種子數目或可作為組 合雌雄配子耐熱特性的新指標。本研究使用耐熱親本 Siberia 和不耐熱親本 Tstar 雜交所生產的 176 個重組自交系進行試驗,分別調查在常溫與長期和緩高溫之 下果實的種子數量。外表型資料顯示,在長期和緩高溫之下的種子數目會較在常 溫下的種子數目來得低。同時使用 RAD capture 技術取得遺傳定位族群個體的分 子標記基因型,用以建立連鎖圖譜。總共獲得 12,525 個在兩親本上有差異的單 核苷酸多型性標誌。經過篩選後,最終使用 1,336 個標誌進行連鎖圖譜建立,得 到總長度 1955.7 cM、16 個連鎖群的遺傳圖譜。將外表型資料與基因型資料相結 合,進行種子數與果實心室數目的數量性狀基因座定位分析。試驗結果顯示,僅 在 2023 年的春作試驗發現一個影響種子數目變異的數量性狀基因座,與位於第 二對染色體 45.2Mb 的分子標記緊密連鎖,此數量性狀基因座可解釋種子數目全 部外表型變異的 20.03%。而相同的分子標記亦是與果實心室數目數量性狀基因 座最為緊密連鎖的分子標記。綜合以上結果,種子數目在此遺傳定位族群中並非 一個合適評估番茄耐熱特性的指標。zh_TW
dc.description.abstractAs climate change intensifies, tomato production will be impacted by rising temperatures. Pollen viability, pollen number, and fruit set rate are three commonly used indicators to evaluate heat tolerance in tomatoes. Pollen viability and pollen number are used to assess male gametes, while fruit set rate is for female gametes. Seed number might be a new characteristic as a heat-tolerant indicator for combining male and female gametes. This study used 176 recombinant inbred lines produced by crossing the heat- tolerant parent Siberia and the heat-sensitive parent Tstar to conduct experiments investigating the number of seeds in fruits under ordinary temperatures and long-term moderate high temperature. Phenotypic data showed fewer seed number under long- term mild high temperature than those under ordinary temperatures. At the same time, the RAD-capture technique was used to acquire genotypes of molecular markers of individuals in the genetic mapping population, allowing for the construction of linkage maps. A total of 12,525 SNP markers that differed between the two parents were obtained. After the screening, 1,336 SNP markers were used to construct the linkage maps, resulting in a genetic map with a total length of 1955.7 cM and 16 linkage groups. The phenotypic and genotypic data were combined to conduct the quantitative trait locus (QTL) mapping analysis for seed numbers and fruit locule numbers. The results show that only one QTL for seed number was found in the spring trial 2023, which is closely linked to a molecular marker located at 45.2Mb of the second pair of chromosomes. This quantitative trait locus explained 20.03% percent of phenotypic variation. The same SNP marker is also the most closely linked marker to the fruit locule number QTL. Based on the above results, seed number is not a suitable indicator for evaluating tomato heat tolerance in this genetic mapping population.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:20:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-04T16:20:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ...I
致謝 ... II
摘要 ... III
ABSTRACT ...IV
目次 ...VI
圖次 ...VIII
表次 ... X
縮寫表 ...XI
第一章 前言 ... 1
第一節 番茄概要 ...1
第二節 番茄與高溫逆境 ...1
第三節 番茄與單偽結果 ...4
第四節 番茄耐熱特性的數量性狀基因座定位 ....5
第二章 研究目的 ... 7
第三章 材料方法 ... 8
第一節 植物材料 ...8
第二節 外表型調查 ...8
第三節 基因型分型之定序文庫製備....10
第四節 定序資料分析與數量性狀基因座定位....16
第四章 結果 ... 19
第一節 栽種環境與外表型資料...19
第二節 基因型資料 ...28
第三節 數量性狀基因座定位 ...41
第五章 討論 ... 47
第一節 番茄開花、著果與種子數....47
第二節 基因型資料 ...48
第三節 數量性狀基因座定位 ...50
第六章 結論 ... 53
參考資料 ... 54
附錄 ... 64
-
dc.language.isozh_TW-
dc.subject番茄zh_TW
dc.subject長期和緩高溫zh_TW
dc.subject種子數目zh_TW
dc.subject數量性狀基因座zh_TW
dc.subjectseed numberen
dc.subjectTomatoen
dc.subjectquantitative trait locusen
dc.subjectlong-term mild high temperatureen
dc.title以番茄重組自交族群 CLN4220 評估種子數目作為耐熱指標zh_TW
dc.titleEvaluation Seed Number as a Heat Tolerant Indicator in the tomato Recombinant inbred population CLN4220en
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊雯如;蔡育彰zh_TW
dc.contributor.oralexamcommitteeWen-Ju Yang;Yu-Chang Tsaien
dc.subject.keyword番茄,長期和緩高溫,種子數目,數量性狀基因座,zh_TW
dc.subject.keywordTomato,long-term mild high temperature,seed number,quantitative trait locus,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202400396-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-06-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農藝學系-
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved