Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志zh_TW
dc.contributor.advisorShinn-Chih Wuen
dc.contributor.author張又方zh_TW
dc.contributor.authorYou-Fang Changen
dc.date.accessioned2024-03-04T16:20:32Z-
dc.date.available2024-03-05-
dc.date.copyright2024-03-04-
dc.date.issued2024-
dc.date.submitted2024-02-06-
dc.identifier.citationAbe, Y., D. Ochiai, M. Taguchi, S. Kanzaki, S. Ikenoue, Y. Kasuga, M. Tanaka. 2022. Human Amniotic Fluid Stem Cells Ameliorate Thioglycollate-Induced Peritonitis by Increasing Tregs in Mice. Int. J. Mol. Sci. 23(12):6433.
Akre, S., K. Sharma, S. Chakole, M. B. Wanjari. 2022. Recent Advances in the Management of Polycystic Ovary Syndrome: A Review Article. Cureus. 14(8):e27689.
Alessio, N., C. Pipino, D. Mandatori, P. D. Tomo., A. Ferone, M. Marchiso, M. A. B. Melone, G. Peluso, A. Pandolfi, and U. Galderisi. 2018. Mesenchymal stromal cells from amniotic fluid are less prone to senescence compared to those obtained from bone marrow: An in vitro study. J. Cell. Physiol. 233:8996-9006.
Alhilali, M. J., A. Parham, A. Attaranzadeh, M. Amirian, and M. Azizzadeh. 2022. Polycystic Ovary Syndrome Develops the Complications of Assisted Reproductive Technologies. Arch. Razi. Inst. 77(4):1459-1464.
Amoura, M., Z. H. Lotfy, E. R. Neveen, and A. Khloud. 2015. Potential effects of Mentha piperita (peppermint) on Letrozole-induced polycystic ovarian syndrome in female albino rat. Int. J. Adv. Res. 3 (10):211-226.
Azziz, R. 2018. Polycystic Ovary Syndrom. Obstet. Gynecol. 132(2):321-36.
Badawy, A., and A. Elnashar. 2011. Treatment options for polycystic ovary syndrome. Int. J. Womens Health 3:25-35.
Baghaban Eslaminejad, M., S. Jahangir, and N. Aghdami. 2011. Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Arch. Iran. Med. 14(2):96-103.
Benjamin, J. J., K. MaheshKumar, T. Koshy, K. N. Maruthy, and R. Padmavathi. 2021. DHEA and polycystic ovarian syndrome: Meta-analysis of case-control studies. PLoS One 16:e0261552.
Bertin, E., M. Piccoli, C. Franzin, G. Spiro, S. Donà, A. Dedja, F. Schiavi, E. Taschin, P. Bonaldo, P. Braghetta, P. De Coppi, and M. Pozzobon. First steps to define murine amniotic fluid stem cell microenvironment. Sci. Rep. 2016 6:37080.
Bhatti, G., R. Romero, N. Gomez-Lopez, T. Chaiworapongsa, E. Jung, F. Gotsch, R. Pique-Regi, P. Pacora, C. D. Hsu, M. Kavdia, and A. L. Tarca. 2022. The amniotic fluid proteome changes with gestational age in normal pregnancy: a cross-sectional study. Sci. Rep. 12(1):601.
Blay, S. L., J. V. Aguiar, and I. C. Passos. 2016. Polycystic ovary syndrome and mental disorders: a systematic review and exploratory meta-analysis. Neuropsychiatr. Dis. Treat. 12:2895-2903.
Bordewijk, E. M., K. Y. B. Ng, L. Rakic, B. W. J. Mol, J. Brown, T. J. Crawford, and M. van Wely. 2020. Laparoscopic ovarian drilling for ovulation induction in women with anovulatory polycystic ovary syndrome. Cochrane Database Syst. Rev. 2(2):CD001122.
Caceres, S., B. Monsalve, A. Alonso-Diez, B. Crespo, M. J. Illera, P. J. de Andres, G. Silvan, and J. C. Illera. 2021. Blocking Estrogen Synthesis Leads to Different Hormonal Responses in Canine and Human Triple Negative Inflammatory Breast Cancer. Cancers 13(19):4967.
Caldwell, A. S. L., L. J. Middleton, M. Jimenez, R. Desai, A. C. McMahon, C. M. Allan, D. J. Handelsman, and K. A. Walters. 2014. Characterization of Reproductive, Metabolic, and Endocrine Features of Polycystic Ovary Syndrome in Female Hyperandrogenic Mouse Models. Endocrinology 155(8):3146–3159.
Cao, M., Y. Zhao, T. Chen, Z. Zhao, B. Zhang, C. Yuan, X. Wang, L. Chen, N. Wang, C. Li, and X. Zhou. 2022. Adipose mesenchymal stem cell-derived exosomal microRNAs ameliorate polycystic ovary syndrome by protecting against metabolic disturbances. Biomaterials 288:121739.
Carraro, G., L. Perin, S. Sedrakyan, S. Giuliani, C. Tiozzo, J. Lee, G. Turcatel, S. P. De Langhe, B. Driscoll, S. Bellusci, P. Minoo, A. Atala, R. E. De Filippo, and D. Warburton. 2008. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 26(11):2902-11.
Centurione, L., M. A. Centurione, I. Antonucci, S. Sancilio, G. Stati, L. Stuppia and R. D. Pietro. 2021. Human amniotic fluid stem cells are able to form embryoid body-like aggregates which performs specific functions: morphological evidences. Histochem. Cell Biol. 155(3):381-390.
Che, Y., J. Yu, Y. S. Li, Y. C. Zhu, and T. Tao. 2023. Polycystic Ovary Syndrome: Challenges and Possible Solutions. J. Clin. Med. 12(4):1500.
Chen, W., Q. Yang, L. Hu, M. Wang, Z. Yang, X. Zeng, and Y. Sun. 2023. Shared diagnostic genes and potential mechanism between PCOS and recurrent implantation failure revealed by integrated transcriptomic analysis and machine learning. Front. Immunol. 14:1175384.
Collée, J., M. Mawet, L. Tebache, M. Nisolle, and G. Brichant. 2021. Polycystic ovarian syndrome and infertility: overview and insights of the putative treatments. Gynecol. Endocrinol. 37(10):869-874.
Corrie, L., A. Awasthi, J. Kaur, S. Vishwas, M. Gulati, I. P. Kaur, G. Gupta, N. Kommineni, K, Dua, and S. K. Singh. 2023. Interplay of Gut Microbiota in Polycystic Ovarian Syndrome: Role of Gut Microbiota, Mechanistic Pathways and Potential Treatment Strategies. Pharmaceuticals 16(2):197.
Corrie, L., M. Gulati, S. K. Singh, B. Kapoor, R. Khursheed, A. Awasthi, S. Vishwas, D. K. Chellappan, G. Gupta, N. K. Jha, K. Anand, and K. Dua. 2021. Recent updates on animal models for understanding the etiopathogenesis of polycystic ovarian syndrome. Life Sci. 280:119753.
Daniilidis, A., and K. Dinas. 2009. Long term health consequences of polycystic ovarian syndrome: a review analysis. Hippokratia 13(2):90-92.
de Melo, G. B., J. F. Soares, T. C. L. Costa, R. O. A. Benevides, C. C. Vale, A. M. A. Paes and R. S. Gaspar. 2021. Early Exposure to High-Sucrose Diet Leads to Deteriorated Ovarian Health. Front. Endocrinol. 12:656831.
De Rosa, A., V. Tirino, F. Paino, A. Tartaglione, T. Mitsiadis, A. Feki, R. d''Aquino, L. Laino, N. Colacurci, and G. Papaccio. 2011. Amniotic fluid-derived mesenchymal stem cells lead to bone differentiation when cocultured with dental pulp stem cells. Tissue Eng. Part A. 17(5-6):645-53.
Di Pietro, M., F. Parborell, G. Irusta, N. Pascuali, D. Bas, M. S. Bianchi, M. Tesone, and D. Abramovich. 2015. Metformin regulates ovarian angiogenesis and follicular development in a female polycystic ovary syndrome rat model. Endocrinology 156(4):1453-1463.
Ditadi, A., P. de Coppi, O. Picone, L. Gautreau, R. Smati, E. Six, D. Bonhomme, S. Ezine, R. Frydman, M. Cavazzana-Calvo, and I. André-Schmutz. 2009. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 113(17):3953-60.
Divyashree, S., P. Janhavi, P. V. Ravindra, and S. P. Muthukumar. 2019. Experimental models of polycystic ovary syndrome: An update. Life Sci. 237:116911.
El Leithy, A. A., A. A. Al-Karmalawy, O. M. Youssif, Y. A. Ebrahim, A. S. Khalifa, E. B. Elkaeed, and F. S. Abo-Zeid. 2022. Spirulina therapeutic potentiality in polycystic ovarian syndrome management using DHEA-induced rat model. Eur. Rev. Med. Pharmacol. Sci. 26(8):2740-2754.
Elasam, A. N., M. A. Ahmed, A. B. A. Ahmed, M. E. Sharif, A. Abusham, B. Hassan, and I. Adam. 2022. The prevalence and phenotypic manifestations of polycystic ovary syndrome (PCOS) among infertile Sudanese women: a cross-sectional study. BMC Womens Health 22(1):165.
Escobar-Morreale, H. 2018. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 14:270-284.
Esfandyari, S., R. M. Chugh, H.S. Park, E. Hobeika, M. Ulin, and A. H. Ayman. 2020. Mesenchymal stem cells as a bio organ for treatment of female infertility. Cells 9:2253.
Eslaminejad, M. B., S. Jahangir, and N. Aghdami. 2011. Mesenchymal stem cells from murine amniotic fluid as a model for preclinical investigation. Arch. Iran. Med. 14(2):96-103.
Gholizadeh-Ghalehaziz, S., R. Farahzadi, E. Fathi, and M. Pashaiasl. 2015. A Mini Overview of Isolation, Characterization and Application of Amniotic Fluid Stem Cells. Int. J. Stem Cells 8(2):115-20.
Gibson, E., and H. Mahdy. 2021. Anatomy, abdomen and pelvis, ovary. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA.
Glueck, C. J., nd N. Goldenberg. 2019. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metabolism 92:108-120.
Guo, W. J., Y. C. Wang, Y. D. Ma, Z. H. Cui, L. X. Zhang, L. Nie, X. Q. Zhang, M. J. Wang, J. H. Zhang, D. Z. Yuan, and L. M. Yue. 2021. Contribution of high-fat diet-induced PCSK9 upregulation to a mouse model of PCOS is mediated partly by SREBP2. Reproduction 162(6):397-410.
Hamid, A. A., M. K. Joharry, H. Mun-Fun, S. N. Hamzah, Z. Rejali, M. N. Yazid, K. Thilakavathy, and N. Nordin. 2017. Highly potent stem cells from full-term amniotic fluid: A realistic perspective. Reprod. Biol. 17(1):9-18.
Huang, B., C. Ding, Q. Zou, J. Lu, W. Wang, and H. Li. 2020. Human Amniotic Fluid Mesenchymal Stem Cells Improve Ovarian Function During Physiological Aging by Resisting DNA Damage. Front. Pharmacol. 11:272.
Jadhav, M., S. Menon, and S. Shailajan. 2013. Anti-androgenic effect of Symplocos racemosa Roxb. against letrozole induced polycystic ovary using rat model. J. Coast. Life Med. 1(4):309-314.
Jafarzadeh, H., H. Nazarian, M. G. Novin, Z. S. Mofarahe, F. Eini, and A. Piryaei. 2018. Improvement of oocyte in vitro maturation from mice with polycystic ovary syndrome by human mesenchymal stromal cell–conditioned media. J. Cell. Biochem. 119(12):10365-10375.
Jang, M., M. J. Lee, J. M. Lee, C. S. Bae, S. H. Kim, J. H. Ryu, and I. H. Cho. 2014. Oriental medicine Kyung-Ok-Ko prevents and alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats. PLoS One 9(2):e87623.
Jansen, E., J. S. Laven, H. B. Dommerholt, J. Polman, C. Rijt, C. Hurk, J. Westland, S. Mosselman, and B. J. Fauser. 2004. Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients. Mol. Endocrinol. 18:3050-3063.
Kalhori, Z., M. Azadbakht, M. S. Mehranjani, and M. A. Shariatzadeh. 2018. Improvement of the folliculogenesis by transplantation of bone marrow mesenchymal stromal cells in mice with induced polycystic ovary syndrome. Cytotherapy 20(12):1445–1458.
Kamal, D. A. M., S. F. Ibrahim, A. Ugusman, S. S. M. Zaid, and M. H. Mokhtar. 2022. Kelulut Honey Improves Folliculogenesis, Steroidogenic, and Aromatase Enzyme Profiles and Ovarian Histomorphology in Letrozole-Induced Polycystic Ovary Syndrome Rats. Nutrients 14(20):4364.
Kanbour, S. A., and A. S. Dobs. 2022. Hyperandrogenism in Women with Polycystic Ovarian Syndrome: Pathophysiology and Controversies. Androgens: Clinical Research and Therapeutics 3(1)22-30.
Katifelis, H., E. Filidou, A. Psaraki, F. Yakoub, M. G. Roubelakis, G. Tarapatzi, S. Vradelis, G. Bamias, G. Kolios, M. Gazouli. 2022. Amniotic Fluid-Derived Mesenchymal Stem/Stromal Cell-Derived Secretome and Exosomes Improve Inflammation in Human Intestinal Subepithelial Myofibroblasts. Biomedicines 10(10):2357.
Kim, E. J., M. Jang, J. H. Choi, K. S. Park, and I. H. Cho. 2018. An Improved Dehydroepiandrosterone-Induced Rat Model of Polycystic Ovary Syndrome (PCOS): Post-pubertal Improve PCOS''s Features. Front. Endocrinol. 9:735.
Leal, C. R. V., K. Zanolla, P. M. Spritzer, F. M. Reis. 2023. Assisted Reproductive Technology in the Presence of Polycystic Ovary Syndrome: Current Evidence and Knowledge Gaps. Endocr. Pract. 13:S1530-891X(23)00558-X.
Lebbi, I., R. Ben Temime, A. Fadhlaoui, A. Feki. 2015. Ovarian Drilling in PCOS: Is it Really Useful? Front. Surg. 2:30.
Li, A., L. Zhang, J. Jiang, N. Yang, Y. Liu, L. Cai, Y. Cui, F. Diao, X. Han, J. Liu, and Y. Sun. 2017. Follicular hyperandrogenism and insulin resistance in polycystic ovary syndrome patients with normal circulating testosterone levels. J. Biomed. Res. 32(3):208-14.
Li, Y., Q. Zheng, D. Sun, X. Cui, S. Chen, A. Bulbul, S. Liu, and Q. Yan. 2019. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J. Cell Physiol. 234(5):7435-7447.
Liu, H., D. Q. Liu, B. W. Li, L. D. Guan, Z. F. Yan, Y. L. Li, X. T. Pei, W. Yue, M. Wang, Y. P. Lu, H. M. Peng, and T. Lv. 2011. Human amniotic fluid-derived stem cells can differentiate into hepatocyte-like cells in vitro and in vivo. In vitro cell. Dev. Biol. 47(9):601-8.
Liu, H., M. Tu, Z. Yin, D. Zhang, J. Ma, and F. He. 2023. Unraveling the complexity of polycystic ovary syndrome with animal models. J. Genet. Genomics 28:S1673-8527(23)00206-0.
Liu, X., and Z. R. Craig. 2019. Environmentally relevant exposure to dibutyl phthalate disrupts DNA damage repair gene expression in the mouse ovary. Biol. Reprod. 101(4):854-867.
Liu, X., J. Li, W. Wang, X. Ren, and J. F. Hu. 2023. Therapeutic restoration of female reproductive and endocrine dysfunction using stem cells. Life Sci. 322:121658.
Loukogeorgakis, S. P., and P. De Coppi. 2016. Stem cells from amniotic fluid--Potential for regenerative medicine. Best. Pract. Res. Clin. Obstet. Gynaecol. 31:45-57.
Loukogeorgakis, S. P., and P. De Coppi. 2017. Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells 35(7):1663-1673.
Mercorio, A., L. Della Corte, M. C. De Angelis, C. Buonfantino, C. Ronsini, G. Bifulco, and P. Giampaolino. Ovarian Drilling: Back to the Future. Medicina (Kaunas). 58(8):1002.
Mezzasoma, L., I. Bellezza, P. Orvietani, G. Manni, M. Gargaro, K. Sagini, A. Llorente, P. Scarpelli, L. Pascucci, B. Cellini, V. N. Talesa, F. Fallarino, R. Romani. 2022. Amniotic fluid stem cell-derived extracellular vesicles are independent metabolic units capable of modulating inflammasome activation in THP-1 cells. FASEB J. 36(4):e22218.
Minocha, E., C. P. Chaturvedi, and S. Nityanand. 2019. Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells. In Vitro Cell Dev. Biol. Anim. 55(2):138-147.
Moreira, M. V., E. Vale-Fernandes, I. C. Albergaria, M. G. Alves, and M. P. Monteiro. 2023. Follicular fluid composition and reproductive outcomes of women with polycystic ovary syndrome undergoing in vitro fertilization: A systematic review. Rev. Endocr. Metab. Disord. 24(6):1045-1073.
Mullan, A., and J. Walters. 2023. Stem Cells—Biological Research Model Series. Oxford Instruments. Available from: https://andor.oxinst.com/learning/view/article/stem-cells-biological-research-model-series
Naeem, A., N. Gupta, U. Naeem, M. A. Elrayess, and C. Albanese. 2022. Amniotic stem cells as a source of regenerative medicine to treat female infertility. Hum. Cell 36(1):15-25.
Nautiyal, H., S. S. Imam, S. Alshehri, M. M. Ghoneim, M. Afzal, S. I. Alzarea, E. Güven,F. A. Al-Abbasi, I. Kazmi. 2022. Polycystic Ovarian Syndrome: A Complex Disease with a Genetics Approach. Biomedicines 10(3):540.
Noroozzadeh, M., S. Behboudi-Gandevani, A. Zadeh-Vakili, and F. Ramezani Tehrani. 2017. Hormone-induced rat model of polycystic ovary syndrome: A systematic review. Life Sci. 191:259-272.
Orisaka, M., Y. Miyazaki, A. Shirafuji, C. Tamamura, H. Tsuyoshi, B. K. Tsang, and Y. Yoshida. 2021. The role of pituitary gonadotropins and intraovarian regulators in follicle development: A mini-review. Reprod. Med. Biol. 20:169-175.
Orsi, N. M., N. E. Baskind, and M. Cummings. 2014. Anatomy, Development, Histology, and Normal Function of the Ovary. Springer. London. p. 1-32.
Park, H. S., E. Cetin, H. Siblini, J. Seok, H. Alkelani, S. Alkhrait, A. F. Liakath Ali, M. Mousaei Ghasroldasht, A. Beckman and A. Al-Hendy. 2023. Therapeutic Potential of Mesenchymal Stem Cell-Derived Extracellular Vesicles to Treat PCOS. Int. J. Mol. Sci. 24(13):11151.
Pasquali, R., L. Zanotti, F. Fanelli, M. Mezzullo, A. Fazzini, A. M. Morselli Labate, A. Repaci, D. Ribichini, and A. Gambineri. 2016. Defining Hyperandrogenism in Women With Polycystic Ovary Syndrome: A Challenging Perspective. J. Clin. Endocrinol. Metab. 101(5):2013-22.
Priya, K., M. Setty, U. V. Babu, and K. S. R. Pai. 2021. Implications of environmental toxicants on ovarian follicles: how it can adversely affect the female fertility? Environ. Sci. Pollut. Res. Int. 28(48):67925-67939.
Rakic, D., J. J. Joksimovic, V. Jakovljevic, V. Zivkovic, M. Nikolic, J. Sretenovic, M. Nikolic, N. Jovic, I. M. Bicanin, P. Arsenijevic, A. Dimitrijevic, T. Vulovic, N. Ristic, K. Bulatovic, S. Bolevich, L. Stijak, and S. Pantovic. 2023. High Fat Diet Exaggerate Metabolic and Reproductive PCOS Features by Promoting Oxidative Stress: An Improved EV Model in Rats. Medicina 59(6):1104.
Rashid, R., S. A. Mir, O. Kareem, T. Ali, R. Ara, A. Malik, F. Amin, and G. N. Bader. 2022. Polycystic ovarian syndrome-current pharmacotherapy and clinical implications. Taiwan J. Obstet. Gynecol. 61(1):40-50.
Roberts, J. S., R. A. Perets, K. S. Sarfert, J. J. Bowman, P. A. Ozark, G. B. Whitworth, S. N. Blythe, and N. Toporikova. 2017. High-fat high-sugar diet induces polycystic ovary syndrome in a rodent model, Biol. Reprod. 96(3):551–562.
Saha, P., S. Kumar, K. Datta, and R. K. Tyagi. 2021. Upsurge in autophagy, associated with mifepristone-treated polycystic ovarian condition, is reversed upon thymoquinone treatment. J. Steroid Biochem. Mol. Biol. 208:105823.
Salehi, R., H. L. Mazier, A. L. Nivet, A. A. Reunov, P. Lima, Q. Wang, A. Fiocco, C. Isidoro, and B. K. Tsang. 2020. Ovarian mitochondrial dynamics and cell fate regulation in an androgen-induced rat model of polycystic ovarian syndrome. Sci. Rep. 10(1):1021.
Salley, K. E. S., E. P. Wickham, K. I. Cheang, P. A. Essah, N. W. Karjane, and J. E. Nestler. 2007. POSITION STATEMENT: Glucose Intolerance in Polycystic Ovary Syndrome—A Position Statement of the Androgen Excess Society. J. Clin. Endocrinol. Metab. 92(12):4546–4556.
Senger, P. L. 2003. Pathways to Pregnancy and Parturition. Page 24-26. 2nd edition Pullman, WA, USA.
Shahriyari, L., and N. L. Komarova. 2013. Symmetric vs. asymmetric stem cell divisions: an adaptation against cancer? PLoS One 8(10):e76195.
Sharma, K., S. Chakole, and M. B. Wanjari. 2022. Recent Advances in the Management of Polycystic Ovary Syndrome: A Review Article. Cureus. 14(8):e27689.
Shi, N. and H. B. Ma. 2022. Global trends in polycystic ovary syndrome research: A 10-year bibliometric analysis. Front Endocrinol (Lausanne). Front. Endocrinol. 13:1027945.
Singh, S., N. Pal, S. Shubham, D. K. Sarma, V. Verma, F. Marotta, and M. Kumar. 2023. Polycystic Ovary Syndrome: Etiology, Current Management, and Future Therapeutics. J. Clin. Med. 12(4):1454.
Sisakhtnezhad, S., and T. Merati. 2023. Amniotic Fluid-Derived Stem Cells: A Promising Resource for Cardiomyogenesis. Eurasian J. Med. Oncol. 7(2):103-119.
Srivastava, M., N. Ahlawat, and A. Srivastava. 2018. Amniotic Fluid Stem Cells: A New Era in Regenerative Medicine. J. Obstet. Gynaecol. India. 68(1):15-19.
Stener-Victorin, E. 2022. Update on Animal Models of Polycystic Ovary Syndrome. Endocrinology 163(12):bqac164.
Sun, Q., F. Li, H. Li, R. H. Chen, Y. Z. Gu, Y. Chen, H. S. Liang, X. R. You, S. S. Ding, L. Gao, Y. L. Wang, M. D. Qin, amd X. G. Zhang. 2015. Amniotic fluid stem cells provide considerable advantages in epidermal regeneration: B7H4 creates a moderate inflammation microenvironment to promote wound repair. Sci. Rep. 5:11560.
Tan, M., Y. Cheng, X. Zhong, D. Yang, S. Jiang, Y. Ye, M. Ding, G. Guan, D. Yang, and X. Zhao. 2021. LNK promotes granulosa cell apoptosis in PCOS via negatively regulating insulin-stimulated AKT-FOXO3 pathway. Aging 13(3):4617-4633.
Tang, K., L. Wu, Y. Luo, and B. Gong. 2021. In vitro fertilization outcomes in women with polycystic ovary syndrome: A meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 259:146-152.
Thakor, A. P., and A. J. Patel. 2014. Normalizing of estrous cycle in polycystic ovary syndrome (PCOS) induced rats with Tephrosia purpurea (Linn.) Pers. J. Appl. Nat. Sci. 6:197-201.
Tremellen, K., and K. Pearce. 2012. Dysbiosis of Gut Microbiota (DOGMA)--a novel theory for the development of Polycystic Ovarian Syndrome. Med. Hypotheses 79(1):104-12.
Tsai, Y. R., Y. N. Liao, and H. Y. Kang. 2023. Current Advances in Cellular Approaches for Pathophysiology and Treatment of Polycystic Ovary Syndrome. Cells 12(17):2189.
van Houten, E. L., and J. A. Visser. 2014. Mouse models to study polycystic ovary syndrome: a possible link between metabolism and ovarian function? Reprod. Biol. 14(1):32-43.
Villani, V., A. Milanesi, S. Sedrakyan, S. Da Sacco, S. Angelow, M. T. Conconi, R. Di Liddo, R. De Filippo, and L. Perin. 2014. Amniotic fluid stem cells prevent β-cell injury. Cytotherapy 16(1):41-55.
Walentowicz, P., P. Sadlecki, M. Walentowicz-Sadlecka, A. Bajek, M. Grabiec, and T. Drewa. 2022. Human amniotic fluid as a source of stem cells. Open Med. (Wars.) 17(1):648-660.
Wang, D., Y. Weng, Y. Zhang, R. Wang, T. Wang, J. Zhou, S. Shen, H. Wang, and Y. Wang. 2020. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice. Sci. Total Environ. 745:141049.
Wu, H., B. Zhao, Q. Yao, and J. Kang. 2023. Dehydroepiandrosterone-induced polycystic ovary syndrome mouse model requires continous treatments to maintain reproductive phenotypes. J. Ovarian Res. 16(1):207.
Xiang, Y., H. Wang, H. Ding, T. Xu, X. Liu, Z. Huang, H. Wu, and H. Ge. 2023. Hyperandrogenism drives ovarian inflammation and pyroptosis: A possible pathogenesis of PCOS follicular dysplasia. Int. Immunopharmacol. 125:111141.
Xiao, G. Y., I. H. Liu, C. C. Cheng, C. C. Chang, Y. H. Lee, W. T. Cheng, and S. C. Wu. 2014. Amniotic fluid stem cells prevent follicle atresia and rescue fertility of mice with premature ovarian failure induced by chemotherapy. PLoS One 9(9):e106538.
Xie, Q., X. Xiong, N. Xiao, K. He, M. Chen, J. Peng, X. Su, H. Mei, Y. Dai, D. Wei, G. Lin, and L. Cheng. 2019. Mesenchymal stem cells alleviate dhea-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice. Stem Cells Int. 2019:9782373.
Yang, Q., Y. Zhao, X. Qiu, C. Zhang, R. Li, and J. Qiao. 2015. Association of serum levels of typical organic pollutants with polycystic ovary syndrome (PCOS): a case-control study. Hum. Reprod. 30(8):1964-73.
Yu, F., Y. Xue, Y. Zhao, L. Zhang, X, He, and Z. Liu. 2023. Isorhamnetin inhibits inflammatory response to alleviate DHEA-induced polycystic ovary syndrome in rats. Gynecol. Endocrinol. 39(1):2183045.
Zhai, J., S. Li, M. Hu, F. Di, J. Liu, and Y. Du. 2020. Decreased brain and muscle ARNT-like protein 1 expression mediated the contribution of hyperandrogenism to insulin resistance in polycystic ovary syndrome. Reprod. Biol. Endocrinol. 18(1):32.
Zhang, B., J. Wang, S. Shen, J. Liu, J. Sun, T. Gu, X. Ye, D. Zhu, and Y. Bi. 2018. Association of Androgen Excess with Glucose Intolerance in Women with Polycystic Ovary Syndrome. Biomed. Res. Int. 2018:6869705.
Zhang, C. Y., Y. M. Wei, W. J. Sun and H. X. Yang. 2019. The Area under the Curve (AUC) of Oral Glucose Tolerance Test (OGTT) Could Be a Measure Method of Hyperglycemia in All Pregnant Women. J. Obstet. Gynecol. 9:186-195.
Zhang, Y., and L. Xu. 2022. Comparative study of DHEA and letrozole induced polycystic ovary syndrome in post-pubertal rats. Gynecol. Endocrinol. 38(5):425-431.
Zhao, H., X. Song, L. Zhang, Y. Xu, and X. Wang. 2018. Comparison of Androgen Levels, Endocrine and Metabolic Indices, and Clinical Findings in Women with Polycystic Ovary Syndrome in Uygur and Han Ethnic Groups from Xinjiang Province in China. Med. Sci. Monit. 24:6774-6780.
Zhao, Y., S. Pan, Y. Li, and X. Wu. 2022. Exosomal miR-143-3p derived from follicular fluid promotes granulosa cell apoptosis by targeting BMPR1A in polycystic ovary syndrome. Sci. Rep. 12(1):4359.
Zheng, Y. B., X. H. Zhang, Z. L. Huang, C. S. Lin, J. Lai, Y. R. Gu, B. L. Lin, D. Y. Xie, S. B. Xie, L. Peng, and Z. L. Gao. 2012. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One 7(7):e41392.
Zheng, Y. L. 2016. Some Ethical Concerns About Human Induced Pluripotent Stem Cells. Sci. Eng. Ethics. 22:1277-1284.
Zhuang, S., C. Jing, L. Yu, L. Ji, W. Liu, and X. Hu. 2022. The relationship between polycystic ovary syndrome and infertility: a bibliometric analysis. Ann. Transl. Med. 10(6):318.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92062-
dc.description.abstract多囊性卵巢症候群 (polycystic ovarian syndrome, PCOS) 為女性不孕的主要原因之一,全球患病率約8~13%,目前多以藥物或是外科手術作為治療方式,以緩解症狀或幫助懷孕,但仍有卵巢過度刺激症及妊娠併發症之問題,因此發展新的治療方式有其必要性。先前動物模式相關報告初步證實幹細胞可以減輕炎症,改善多囊性卵巢引起之生殖障礙。此外,在多種體幹細胞中,羊水幹細胞(amniotic fluid stem cells, AFSCs)具有免疫特權、更好的增殖能力及分化潛能等優勢,在臨床醫學領域被認為是極具潛力之細胞來源。預期 AFSCs 可能對 PCOS 具有較佳之治療效果,然而,目前少有文獻探討 AFSCs 治療多囊性卵巢症候群之潛力,因此本研究擬探討 AFSCs 治療脫氫異雄固酮 (dehydroepiandrosterone, DHEA) 誘導之多囊性卵巢大鼠之潛能。
本研究主要分為三個試驗,試驗一為大鼠 AFSCs 之分離培養:自E12.5~E13.5之胚胎中羊水分離出AFSCs,其外型呈現似纖維母細胞之紡錘狀;以流式細胞儀分析細胞表面抗原之結果顯示 AFSCs會表現CD29、CD90 及MHC class I,但不表現 CD45、CD11b 及 MHC class II;AFSCs於體外誘導之試驗結果顯示可分化為脂肪和成骨細胞,以上結果顯示本試驗成功建立大鼠之AFSCs。試驗二為建立多囊性卵巢大鼠模型:透過皮下注射21天6 mg/100 g BW之DHEA 建立PCOS之動物模式;本試驗將大鼠分成正常組 (normal group) 、溶劑組 (vehicle group) 、DHEA注射結束後之第1天組 (DHEA-D1 group) 、第7天組 (DHEA-D7 group) 以及第14天組 (DHEA-D14 group) ,共5組;陰道抹片之結果顯示DHEA誘導之PCOS大鼠發情週期停滯或紊亂;Hematoxylin and eosin (H&E) staining 結果顯示DHEA注射結束後第7天,卵巢內有腔濾泡之濾泡膜細胞厚度顯著增加,顆粒細胞厚度顯著減少,並顯著增加囊腫性濾泡數目,且黃體數顯著下降,而誘導後第7天至第14天並沒有顯著差異;血清睪固酮濃度之結果顯示注射結束後1天之睪固酮顯著增加,然而於7天即恢復正常水準;以上結果顯示本試驗成功建立大鼠多囊性卵巢模型,並確定DHEA注射結束後第7天為PCOS形成之時間點。試驗三為同種異體AFSCs對多囊性卵巢大鼠之治療潛力:將大鼠分為正常組 (normal group)、DPBS注射組 (DHEA+DPBS) 和AFSCs移植組 (DHEA+AFSCs),共三組;於DHEA誘導結束後第7天經由尾靜脈注射D-PBS或AFSCs,於兩週後檢測治療之效果。透過AFSCs治療後,可恢復PCOS大鼠之發情週期;H&E staining 結果顯示 AFSCs 治療組雖無法恢復至正常卵巢狀態,但與DPBS注射組相比仍顯著減少囊腫性濾泡並增加黃體數,此外,AFSCs亦可改善PCOS大鼠葡萄糖耐受性不良之問題。
綜上所述,本研究之結果有助於了解 AFSCs 治療多囊性卵巢之潛能。未來可再進一步探討AFSCs之治療路徑和修復機制,期望能供人類PCOS患者羊水幹細胞治療之參考。
zh_TW
dc.description.abstractPolycystic ovarian syndrome (PCOS) is one of the main causes of female infertility, with a global prevalence of approximately 8-13%. However, there are problems of ovarian hyperstimulation syndrome and pregnancy complications remain to be solved, so it is necessary to develop new treatments. Previous studies from animal models have provided initial evidence that stem cells can mitigate inflammation and improve reproductive dysfunction caused by PCOS. In addition, among various types of stem cells, amniotic fluid stem cells (AFSCs) have the advantages of immune privilege, better proliferative capacity, and differentiation potential. In the field of clinical medicine, AFSCs are considered to be a promising cell source. So, it is expected that AFSCs may have a better therapeutic effect on PCOS. However, there is currently limited literature exploring the potential of AFSCs in the treatment of PCOS. Therefore, this study aims to investigate the potential of AFSCs in treating dehydroepiandrosterone (DHEA)-induced PCOS in rats.
This study is mainly divided into three trials. The first trial is to isolate and culture rat AFSCs: AFSCs were isolated from the amniotic fluid of embryos at E12.5 to E13.5. The morphology of AFSCs resembled fibroblast cells. Flow cytometry analysis of cell surface antigens revealed that AFSCs expressed CD29, CD90, and MHC class I but did not express CD45, CD11b, and MHC class II. Furthermore, AFSCs could differentiate into adipocytes and osteocytes in vitro. The above results show the successful establishment of rat AFSCs. The second trial aimed to establish the PCOS rat model through subcutaneous injection of 6mg/100g body weight of DHEA for 21 days. The rats were divided into five groups: the normal group, vehicle group, DHEA-D1 group (1st day after termination of DHEA injection), DHEA-D7 group (7th day after termination of DHEA injection), and DHEA-D14 group (14th day after termination of DHEA injection). The vaginal smears revealed that DHEA-induced PCOS rats experienced estrous cycle stagnation or disruption. The results of Hematoxylin and Eosin (H&E) staining revealed a significant increase in the thickness of theca cells and a significant decrease in the thickness of granulosa cells within antral follicles in the ovaries of the DHEA-D7 group. Moreover, there was a significant increase in the number of cystic follicles and a significant reduction in the number of corpora lutea. However, no significant differences were observed from the 7th day to the 14th day after termination of DHEA induction. The results of serum testosterone concentration indicated a significant increase 1st day after injection cessation, but levels returned to normal by the 7th day. These findings suggest the successful establishment of a rat model for polycystic ovarian syndrome in this experiment, confirming that the 7th day after the end of DHEA injection is a crucial time point for PCOS formation. The third trial aimed to explore the therapeutic potential of allogeneic AFSCs in PCOS rats. The rats were divided into three groups: the normal group, DPBS injection group (DHEA+DPBS group), and AFSCs transplantation group (DHEA+AFSCs). On the 7th day after the termination of DHEA induction, the rats received intravenous injections of either D-PBS or AFSCs, and the therapeutic effects were assessed two weeks later. After the transplantation of AFSCs, the estrous cycle of PCOS rats was restored. H&E staining results indicated that, although the AFSCs treatment group did not fully restore normal ovarian morphology, it significantly reduced cystic follicles and increased the number of corpora lutea compared to the DPBS injection group. Additionally, AFSCs improved glucose intolerance in PCOS rats.
In summary, the results of this study contribute to understanding the potential of AFSCs in treating PCOS. Further investigations into the therapeutic pathways and repair mechanisms of AFSCs are recommended for future research. These findings hold promise as a reference for utilizing amniotic fluid stem cell therapy in human patients with PCOS.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:20:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-04T16:20:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
ABSTRACT IV
目次 VII
圖次 IX
表次 X
第一章 文獻探討 1
1.1卵巢生理結構 1
1.2 多囊性卵巢症候群 3
1.2.1 簡介 3
1.2.2 成因 6
1.2.3 致病機轉 8
1.2.4 治療策略 10
1.2.5多囊性卵巢之動物模式 12
1.3幹細胞 14
1.3.1幹細胞介紹 14
1.3.2羊水幹細胞 17
1.4應用細胞移植治療多囊性卵巢模式動物之研究 20
第二章 試驗研究 22
2.1 羊水幹細胞之分離與培養 22
2.1.1 前言 22
2.1.2 材料與方法 22
2.1.3結果與討論 27
2.2 多囊性卵巢大鼠模式之建立 31
2.2.1 前言 31
2.2.2 材料方法 32
2.2.3結果與討論 36
2.3 同種移植羊水幹細胞治療多囊性卵巢大鼠之潛能 43
2.3.1 前言 43
2.3.2 材料方法 44
2.3.3結果與討論 47
第三章 綜合討論 55
第四章 結論與未來展望 57
參考文獻 58
-
dc.language.isozh_TW-
dc.title探討同種移植羊水幹細胞治療多囊性卵巢大鼠之潛能zh_TW
dc.titleTo explore the therapeutic potential of allogeneic transplantation of amniotic fluid stem cells in rats with induced polycystic ovary syndromeen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳銘正;張薰文zh_TW
dc.contributor.oralexamcommitteeMing-Cheng Chen;Hsuen-Wen Changen
dc.subject.keyword多囊性卵巢症候群,羊水幹細胞,脫氫異雄固酮,同種移植,幹細胞治療,zh_TW
dc.subject.keywordpolycystic ovary syndrome,amniotic fluid stem cells,dehydroepiandrosterone,allogeneic transplantation,stem cell therapy,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202400565-
dc.rights.note未授權-
dc.date.accepted2024-02-16-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept動物科學技術學系-
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved