請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林甫容 | zh_TW |
| dc.contributor.advisor | Fu-Jung Lin | en |
| dc.contributor.author | 詹雅婷 | zh_TW |
| dc.contributor.author | Ya-Ting Chan | en |
| dc.date.accessioned | 2024-03-04T16:16:34Z | - |
| dc.date.available | 2024-03-05 | - |
| dc.date.copyright | 2024-03-04 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-06 | - |
| dc.identifier.citation | 1. Soriguer, F., et al., Changes in the serum composition of free-fatty acids during an intravenous glucose tolerance test. Obesity (Silver Spring), 2009. 17(1): p. 10-5.
2. Lu, Z., et al., Cooperative stimulation of atherogenesis by lipopolysaccharide and palmitic acid-rich high fat diet in low-density lipoprotein receptor-deficient mice. Atherosclerosis, 2017. 265: p. 231-241. 3. Ridker, P.M., et al., Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med, 2017. 377(12): p. 1119-1131. 4. Wen, H., et al., Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol, 2011. 12(5): p. 408-15. 5. 莊爵維, 棕櫚酸促進鉀離子外流和脂筏聚集因而增加 THP-1 巨噬細胞在陰電性低密度脂蛋白或脂多醣刺激下的 IL-1β 產生, in 生物化學暨分子生物學研究所. 2021, 國立臺灣大學: 台北市. p. 98. 6. Chang, P.Y., et al., Synergistic effects of electronegative-LDL- and palmitic-acid-triggered IL-1β production in macrophages via LOX-1- and voltage-gated-potassium-channel-dependent pathways. J Nutr Biochem, 2021. 97: p. 108767. 7. Calle, E.E., et al., Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med, 1999. 341(15): p. 1097-105. 8. Folsom, A.R., et al., Body mass index, waist/hip ratio, and coronary heart disease incidence in African Americans and whites. Atherosclerosis Risk in Communities Study Investigators. Am J Epidemiol, 1998. 148(12): p. 1187-94. 9. Hubert, H.B., et al., Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation, 1983. 67(5): p. 968-77. 10. Manson, J.E., et al., Body weight and mortality among women. N Engl J Med, 1995. 333(11): p. 677-85. 11. Bays, H., L. Mandarino, and R.A. DeFronzo, Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab, 2004. 89(2): p. 463-78. 12. Poirier, P., et al., Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 2006. 113(6): p. 898-918. 13. Poynten, A.M., et al., Circulating fatty acids, non-high density lipoprotein cholesterol, and insulin-infused fat oxidation acutely influence whole body insulin sensitivity in nondiabetic men. J Clin Endocrinol Metab, 2005. 90(2): p. 1035-40. 14. Stich, V. and M. Berlan, Physiological regulation of NEFA availability: lipolysis pathway. Proc Nutr Soc, 2004. 63(2): p. 369-74. 15. Pirro, M., et al., Plasma free fatty acid levels and the risk of ischemic heart disease in men: prospective results from the Québec Cardiovascular Study. Atherosclerosis, 2002. 160(2): p. 377-84. 16. Kurien, V.A. and M.F. Oliver, Serum-free-fatty-acids after acute myocardial infarction and cerebral vascular occlusion. Lancet, 1966. 2(7455): p. 122-7. 17. Roy, V.K., et al., Plasma free Fatty Acid concentrations as a marker for acute myocardial infarction. J Clin Diagn Res, 2013. 7(11): p. 2432-4. 18. Erkkilä, A., et al., Dietary fatty acids and cardiovascular disease: an epidemiological approach. Prog Lipid Res, 2008. 47(3): p. 172-87. 19. Simon, J.A., et al., Serum fatty acids and the risk of coronary heart disease. Am J Epidemiol, 1995. 142(5): p. 469-76. 20. Carta, G., et al., Dietary triacylglycerols with palmitic acid in the sn-2 position modulate levels of N-acylethanolamides in rat tissues. PLoS One, 2015. 10(3): p. e0120424. 21. Carta, G., et al., Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol, 2017. 8: p. 902. 22. Chei, C.L., et al., Serum Fatty Acid and Risk of Coronary Artery Disease - Circulatory Risk in Communities Study (CIRCS). Circ J, 2018. 82(12): p. 3013-3020. 23. Kleber, M.E., et al., Saturated fatty acids and mortality in patients referred for coronary angiography-The Ludwigshafen Risk and Cardiovascular Health study. J Clin Lipidol, 2018. 12(2): p. 455-463.e3. 24. 張庭瑜, 棕櫚酸促進陰電性低密度脂蛋白在巨噬細胞中引起 IL-1β 產生透過增加鉀離子流出, in 生物化學暨分子生物學研究所. 2018, 國立臺灣大學: 台北市. p. 74. 25. He, Q., et al., Cellular Uptake, Metabolism and Sensing of Long-Chain Fatty Acids. Front Biosci (Landmark Ed), 2023. 28(1): p. 10. 26. Ding, Z., et al., PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res, 2018. 114(8): p. 1145-1153. 27. Yang, X., et al., CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nature Reviews Nephrology, 2017. 13(12): p. 769-781. 28. Bionaz, M., E. Vargas-Bello-Pérez, and S. Busato, Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. Journal of Animal Science and Biotechnology, 2020. 11(1): p. 110. 29. Wang, T.Y., et al., New insights into the molecular mechanism of intestinal fatty acid absorption. Eur J Clin Invest, 2013. 43(11): p. 1203-23. 30. Clarke, D.C., et al., Overexpression of membrane-associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiol Genomics, 2004. 17(1): p. 31-7. 31. Isola, L.M., et al., 3T3 fibroblasts transfected with a cDNA for mitochondrial aspartate aminotransferase express plasma membrane fatty acid-binding protein and saturable fatty acid uptake. Proc Natl Acad Sci U S A, 1995. 92(21): p. 9866-70. 32. Dourlen, P., et al., Fatty acid transport proteins in disease: New insights from invertebrate models. Prog Lipid Res, 2015. 60: p. 30-40. 33. Stremmel, W., et al., Role of FATP in parenchymal cell fatty acid uptake, in Advances in Molecular and Cell Biology. 2003, Elsevier. p. 81-87. 34. Hirsch, D., A. Stahl, and H.F. Lodish, A family of fatty acid transporters conserved from mycobacterium to man. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8625-9. 35. Schaffer, J.E. and H.F. Lodish, Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. Cell, 1994. 79(3): p. 427-36. 36. Huang, J., R. Zhu, and D. Shi, The role of FATP1 in lipid accumulation: a review. Molecular and Cellular Biochemistry, 2021. 476(4): p. 1897-1903. 37. Zhan, T., et al., Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS One, 2012. 7(9): p. e45087. 38. Pohl, J., A. Ring, and W. Stremmel, Uptake of long-chain fatty acids in HepG2 cells involves caveolae: analysis of a novel pathway. J Lipid Res, 2002. 43(9): p. 1390-9. 39. Ring, A., et al., Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim Biophys Acta, 2006. 1761(4): p. 416-23. 40. Drab, M., et al., Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 2001. 293(5539): p. 2449-52. 41. Otis, J.P., et al., Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech, 2017. 10(3): p. 283-295. 42. Meshulam, T., et al., Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry, 2006. 45(9): p. 2882-93. 43. Trigatti, B.L., R.G. Anderson, and G.E. Gerber, Identification of caveolin-1 as a fatty acid binding protein. Biochem Biophys Res Commun, 1999. 255(1): p. 34-9. 44. Pohl, J., et al., New concepts of cellular fatty acid uptake: role of fatty acid transport proteins and of caveolae. Proc Nutr Soc, 2004. 63(2): p. 259-62. 45. Kamp, F. and J.A. Hamilton, How fatty acids of different chain length enter and leave cells by free diffusion. Prostaglandins Leukot Essent Fatty Acids, 2006. 75(3): p. 149-59. 46. Kleinfeld, A.M., Lipid phase fatty acid flip-flop, is it fast enough for cellular transport? J Membr Biol, 2000. 175(2): p. 79-86. 47. Wei, C. and A. Pohorille, Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism. J Phys Chem B, 2014. 118(45): p. 12919-26. 48. Kamp, F., et al., Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. J Biol Chem, 2003. 278(10): p. 7988-95. 49. Hamilton, J.A., et al., Changes in internal pH caused by movement of fatty acids into and out of clonal pancreatic beta-cells (HIT). J Biol Chem, 1994. 269(33): p. 20852-6. 50. Cheng, V., D.R. Kimball, and D.J.C. Conboy, Determination of the Rate-Limiting Step in Fatty Acid Transport. The Journal of Physical Chemistry B, 2019. 123(33): p. 7157-7168. 51. Contreras, F.X., et al., Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett, 2010. 584(9): p. 1779-86. 52. Ikeda, M., A. Kihara, and Y. Igarashi, Lipid asymmetry of the eukaryotic plasma membrane: functions and related enzymes. Biol Pharm Bull, 2006. 29(8): p. 1542-6. 53. Timcenko, M., et al., Structure and autoregulation of a P4-ATPase lipid flippase. Nature, 2019. 571(7765): p. 366-370. 54. Tarling, E.J., T.Q. de Aguiar Vallim, and P.A. Edwards, Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab, 2013. 24(7): p. 342-50. 55. Brunner, J.D., et al., X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature, 2014. 516(7530): p. 207-12. 56. Gregor, M.F. and G.S. Hotamisligil, Inflammatory mechanisms in obesity. Annu Rev Immunol, 2011. 29: p. 415-45. 57. Klop, B., et al., Understanding postprandial inflammation and its relationship to lifestyle behaviour and metabolic diseases. Int J Vasc Med, 2012. 2012: p. 947417. 58. Dostert, C., et al., Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 2008. 320(5876): p. 674-7. 59. Davis, B.K., H. Wen, and J.P. Ting, The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol, 2011. 29: p. 707-35. 60. Pavillard, L.E., et al., Cardiovascular diseases, NLRP3 inflammasome, and western dietary patterns. Pharmacol Res, 2018. 131: p. 44-50. 61. Hu, F.B., Globalization of food patterns and cardiovascular disease risk. Circulation, 2008. 118(19): p. 1913-4. 62. Ellulu, M.S., et al., Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci, 2017. 13(4): p. 851-863. 63. Dumas, J.A., et al., Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metabolism, 2016. 65(10): p. 1582-8. 64. Szekely, Y. and Y. Arbel, A Review of Interleukin-1 in Heart Disease: Where Do We Stand Today? Cardiol Ther, 2018. 7(1): p. 25-44. 65. Parisi, V., et al., Imbalance Between Interleukin-1β and Interleukin-1 Receptor Antagonist in Epicardial Adipose Tissue Is Associated With Non ST-Segment Elevation Acute Coronary Syndrome. Front Physiol, 2020. 11: p. 42. 66. Galea, J., et al., Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol, 1996. 16(8): p. 1000-6. 67. Kirii, H., et al., Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol, 2003. 23(4): p. 656-60. 68. Ridker, P.M., et al., Effects of interleukin-1β inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation, 2012. 126(23): p. 2739-48. 69. Ridker, P.M., et al., Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet, 2018. 391(10118): p. 319-328. 70. Cavelti-Weder, C., et al., Development of an Interleukin-1β Vaccine in Patients with Type 2 Diabetes. Mol Ther, 2016. 24(5): p. 1003-12. 71. Duewell, P., et al., NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010. 464(7293): p. 1357-61. 72. Legrand-Poels, S., et al., Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol, 2014. 92(1): p. 131-41. 73. Lopez-Castejon, G. and D. Brough, Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev, 2011. 22(4): p. 189-95. 74. Swanson, K.V., M. Deng, and J.P.Y. Ting, The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 2019. 19(8): p. 477-489. 75. Bauernfeind, F.G., et al., Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol, 2009. 183(2): p. 787-91. 76. Franchi, L., T. Eigenbrod, and G. Núñez, Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol, 2009. 183(2): p. 792-6. 77. Xing, Y., et al., Cutting Edge: TRAF6 Mediates TLR/IL-1R Signaling-Induced Nontranscriptional Priming of the NLRP3 Inflammasome. J Immunol, 2017. 199(5): p. 1561-1566. 78. Hafner-Bratkovič, I., et al., NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nature Communications, 2018. 9(1): p. 5182. 79. Kelley, N., et al., The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci, 2019. 20(13). 80. Evavold, C.L., et al., The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity, 2018. 48(1): p. 35-44.e6. 81. Swanson, K.V., M. Deng, and J.P. Ting, The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol, 2019. 19(8): p. 477-489. 82. Suganami, T., et al., Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol, 2007. 27(1): p. 84-91. 83. Huang, S., et al., Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res, 2012. 53(9): p. 2002-13. 84. Estruch, M., et al., Electronegative LDL induces priming and inflammasome activation leading to IL-1β release in human monocytes and macrophages. Biochim Biophys Acta, 2015. 1851(11): p. 1442-9. 85. Weber, K. and J.D. Schilling, Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J Biol Chem, 2014. 289(13): p. 9158-71. 86. Korbecki, J. and K. Bajdak-Rusinek, The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res, 2019. 68(11): p. 915-932. 87. Gianfrancesco, M.A., et al., Saturated fatty acids induce NLRP3 activation in human macrophages through K(+) efflux resulting from phospholipid saturation and Na, K-ATPase disruption. Biochim Biophys Acta Mol Cell Biol Lipids, 2019. 1864(7): p. 1017-1030. 88. Zacchia, M., et al., Potassium: From Physiology to Clinical Implications. Kidney Dis (Basel), 2016. 2(2): p. 72-9. 89. Xu, Z., et al., Distinct Molecular Mechanisms Underlying Potassium Efflux for NLRP3 Inflammasome Activation. Front Immunol, 2020. 11: p. 609441. 90. Muñoz-Planillo, R., et al., K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013. 38(6): p. 1142-53. 91. Pétrilli, V., et al., Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ, 2007. 14(9): p. 1583-9. 92. Gong, T., et al., Orchestration of NLRP3 Inflammasome Activation by Ion Fluxes. Trends Immunol, 2018. 39(5): p. 393-406. 93. Hafner-Bratkovič, I. and P. Pelegrín, Ion homeostasis and ion channels in NLRP3 inflammasome activation and regulation. Curr Opin Immunol, 2018. 52: p. 8-17. 94. Pang, Z.D., et al., K(Ca)3.1 channel mediates inflammatory signaling of pancreatic β cells and progression of type 2 diabetes mellitus. Faseb j, 2019. 33(12): p. 14760-14771. 95. Arkett, S.A., et al., Mammalian osteoclasts express a transient potassium channel with properties of Kv1.3. Recept Channels, 1994. 2(4): p. 281-93. 96. Man, Q., Z. Gao, and K. Chen, Functional Potassium Channels in Macrophages. J Membr Biol, 2023. 256(2): p. 175-187. 97. Lei, X.J., et al., Inhibitory effects of blocking voltage-dependent potassium channel 1.3 on human monocyte-derived macrophage differentiation into foam cells. Beijing Da Xue Xue Bao Yi Xue Ban, 2006. 38(3): p. 257-61. 98. Lei, X.J., et al., [Inhibition of human macrophage-derived foam cell differentiation by blocking Kv1.3 and Kir2.1 channels]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2006. 31(4): p. 493-8. 99. Lei, X., et al., Diclofenac inhibits Kv1.3 and Kir2.1 expressions in human macrophages and affects the membrane potential and foam cell formation. Nan Fang Yi Ke Da Xue Xue Bao, 2012. 32(8): p. 1067-73. 100. Yang, Y., et al., Specific Kv1.3 blockade modulates key cholesterol-metabolism-associated molecules in human macrophages exposed to ox-LDL. J Lipid Res, 2013. 54(1): p. 34-43. 101. Olivencia, M.A., et al., K(V) 1.3 channels are novel determinants of macrophage-dependent endothelial dysfunction in angiotensin II-induced hypertension in mice. Br J Pharmacol, 2021. 178(8): p. 1836-1854. 102. Di Lucente, J., et al., The voltage-gated potassium channel Kv1.3 is required for microglial pro-inflammatory activation in vivo. Glia, 2018. 66(9): p. 1881-1895. 103. Rangaraju, S., et al., Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer''s disease. Mol Neurodegener, 2018. 13(1): p. 24. 104. Zhang, X., et al., Pharmacological inhibition of K(v)1.3 channel impairs TLR3/4 activation and type I IFN response and confers protection against Listeria monocytogenes infection. Pharmacol Res, 2022. 177: p. 106112. 105. Rangaraju, S., et al., A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. J Neuroinflammation, 2017. 14(1): p. 128. 106. Zhang, Q., et al., Kv1.3 Channel Is Involved In Ox-LDL-induced Macrophage Inflammation Via ERK/NF-κB signaling pathway. Arch Biochem Biophys, 2022. 730: p. 109394. 107. Mei, Y., et al., PAP-1 ameliorates DSS-induced colitis with involvement of NLRP3 inflammasome pathway. Int Immunopharmacol, 2019. 75: p. 105776. 108. Yuan, X., et al., Spinal voltage-gated potassium channel Kv1.3 contributes to neuropathic pain via the promotion of microglial M1 polarization and activation of the NLRP3 inflammasome. Eur J Pain, 2023. 27(2): p. 289-302. 109. Ma, D.C., et al., Kv1.3 channel blockade alleviates cerebral ischemia/reperfusion injury by reshaping M1/M2 phenotypes and compromising the activation of NLRP3 inflammasome in microglia. Exp Neurol, 2020. 332: p. 113399. 110. Vicente, R., et al., Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J Biol Chem, 2003. 278(47): p. 46307-20. 111. Park, S.A., et al., hKv1.5 channels play a pivotal role in the functions of human alveolar macrophages. Biochem Biophys Res Commun, 2006. 346(2): p. 567-71. 112. Li, P., et al., Kv1.5 channel mediates monosodium urate-induced activation of NLRP3 inflammasome in macrophages and arrhythmogenic effects of urate on cardiomyocytes. Mol Biol Rep, 2022. 49(7): p. 5939-5952. 113. Vicente, R., et al., Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem, 2006. 281(49): p. 37675-85. 114. Villalonga, N., et al., Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem Biophys Res Commun, 2007. 352(4): p. 913-8. 115. Bozic, I., et al., The Potassium Channel Kv1.5 Expression Alters During Experimental Autoimmune Encephalomyelitis. Neurochem Res, 2019. 44(12): p. 2733-2745. 116. Hunter, C., et al., Selective inhibitors of Kv11.1 regulate IL-6 expression by macrophages in response to TLR/IL-1R ligands. ScientificWorldJournal, 2010. 10: p. 1580-96. 117. Poling, J.S., et al., Docosahexaenoic acid block of neuronal voltage-gated K+ channels: subunit selective antagonism by zinc. Neuropharmacology, 1996. 35(7): p. 969-82. 118. Visentin, S. and G. Levi, Arachidonic acid-induced inhibition of microglial outward-rectifying K+ current. Glia, 1998. 22(1): p. 1-10. 119. Danthi, S., J.A. Enyeart, and J.J. Enyeart, Modulation of native TREK-1 and Kv1.4 K+ channels by polyunsaturated fatty acids and lysophospholipids. J Membr Biol, 2003. 195(3): p. 147-64. 120. Guizy, M., et al., Modulation of the atrial specific Kv1.5 channel by the n-3 polyunsaturated fatty acid, alpha-linolenic acid. J Mol Cell Cardiol, 2008. 44(2): p. 323-35. 121. Honoré, E., et al., External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci U S A, 1994. 91(5): p. 1937-41. 122. Singleton, C.B., et al., Blockade by N-3 polyunsaturated fatty acid of the Kv4.3 current stably expressed in Chinese hamster ovary cells. Br J Pharmacol, 1999. 127(4): p. 941-8. 123. Gubitosi-Klug, R.A. and R.W. Gross, Fatty acid ethyl esters, nonoxidative metabolites of ethanol, accelerate the kinetics of activation of the human brain delayed rectifier K+ channel, Kv1.1. J Biol Chem, 1996. 271(51): p. 32519-22. 124. McKay, M.C. and J.F. Worley, 3rd, Linoleic acid both enhances activation and blocks Kv1.5 and Kv2.1 channels by two separate mechanisms. Am J Physiol Cell Physiol, 2001. 281(4): p. C1277-84. 125. Elinder, F. and S.I. Liin, Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels. Front Physiol, 2017. 8: p. 43. 126. Larsson, J.E., D.J.A. Frampton, and S.I. Liin, Polyunsaturated Fatty Acids as Modulators of K(V)7 Channels. Front Physiol, 2020. 11: p. 641. 127. Doolan, G.K., et al., Fatty acid augmentation of the cardiac slowly activating delayed rectifier current (IKs) is conferred by hminK. Faseb j, 2002. 16(12): p. 1662-4. 128. Liin, S.I., et al., Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel. Proc Natl Acad Sci U S A, 2015. 112(18): p. 5714-9. 129. Moreno, C., et al., Marine n-3 PUFAs modulate IKs gating, channel expression, and location in membrane microdomains. Cardiovasc Res, 2015. 105(2): p. 223-32. 130. Liin, S.I., et al., Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes. Acta Physiol (Oxf), 2016. 218(1): p. 28-37. 131. Frampton, D.J.A., et al., Subtype-specific responses of hKv7.4 and hKv7.5 channels to polyunsaturated fatty acids reveal an unconventional modulatory site and mechanism. Elife, 2022. 11. 132. Gavrilova-Ruch, O., R. Schönherr, and S.H. Heinemann, Activation of hEAG1 potassium channels by arachidonic acid. Pflugers Arch, 2007. 453(6): p. 891-903. 133. Guizy, M., et al., {Omega}-3 and {omega}-6 polyunsaturated fatty acids block HERG channels. Am J Physiol Cell Physiol, 2005. 289(5): p. C1251-60. 134. Haim, T.E., et al., Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents. J Mol Cell Cardiol, 2010. 48(2): p. 395-405. 135. Wang, N., et al., Palmitic Acid Methyl Ester and Its Relation to Control of Tone of Human Visceral Arteries and Rat Aortas by Perivascular Adipose Tissue. Front Physiol, 2018. 9: p. 583. 136. Zhao, Y., et al., Acetate regulates milk fat synthesis through the mammalian target of rapamycin/eukaryotic initiation factor 4E signaling pathway in bovine mammary epithelial cells. Journal of Dairy Science, 2021. 104(1): p. 337-345. 137. He, A., et al., Acetyl-CoA Derived from Hepatic Peroxisomal β-Oxidation Inhibits Autophagy and Promotes Steatosis via mTORC1 Activation. Mol Cell, 2020. 79(1): p. 30-42.e4. 138. Cheng, J., et al., Sodium butyrate promotes milk fat synthesis in bovine mammary epithelial cells via GPR41 and its downstream signalling pathways. Life Sci, 2020. 259: p. 118375. 139. Xu, H.F., et al., Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. Journal of Dairy Science, 2016. 99(1): p. 783-795. 140. Mielenz, M., Invited review: nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals. Animal, 2017. 11(6): p. 1008-1016. 141. Den Hartogh, D.J., et al., Attenuation of Free Fatty Acid (FFA)-Induced Skeletal Muscle Cell Insulin Resistance by Resveratrol is Linked to Activation of AMPK and Inhibition of mTOR and p70 S6K. Int J Mol Sci, 2020. 21(14). 142. Dickson, E.J., B.H. Falkenburger, and B. Hille, Quantitative properties and receptor reserve of the IP(3) and calcium branch of G(q)-coupled receptor signaling. J Gen Physiol, 2013. 141(5): p. 521-35. 143. Hidalgo, M.A., M.D. Carretta, and R.A. Burgos, Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol, 2021. 12: p. 668330. 144. Kim, J.Y., et al., Palmitic Acid-BSA enhances Amyloid-β production through GPR40-mediated dual pathways in neuronal cells: Involvement of the Akt/mTOR/HIF-1α and Akt/NF-κB pathways. Scientific Reports, 2017. 7(1): p. 4335. 145. Yasuda, M., et al., Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta, 2014. 1842(7): p. 1097-108. 146. Spirig, R., J. Tsui, and S. Shaw, The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease. Cardiol Res Pract, 2012. 2012: p. 181394. 147. Hanzelmann, D., et al., Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants. Nat Commun, 2016. 7: p. 12304. 148. Oliveira-Nascimento, L., P. Massari, and L.M. Wetzler, The Role of TLR2 in Infection and Immunity. Front Immunol, 2012. 3: p. 79. 149. Kang, J.Y., et al., Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity, 2009. 31(6): p. 873-84. 150. Falck-Hansen, M., C. Kassiteridi, and C. Monaco, Toll-like receptors in atherosclerosis. Int J Mol Sci, 2013. 14(7): p. 14008-23. 151. Xu, X.H., et al., Toll-like receptor-4 is expressed by macrophages in murine and human lipid-rich atherosclerotic plaques and upregulated by oxidized LDL. Circulation, 2001. 104(25): p. 3103-8. 152. Michelsen, K.S., et al., Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc Natl Acad Sci U S A, 2004. 101(29): p. 10679-84. 153. Bomfim, G.F., et al., Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond), 2012. 122(11): p. 535-43. 154. Higashimori, M., et al., Role of toll-like receptor 4 in intimal foam cell accumulation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2011. 31(1): p. 50-7. 155. Mullick, A.E., et al., Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events. J Exp Med, 2008. 205(2): p. 373-83. 156. Seimon, T.A., et al., Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell Metab, 2010. 12(5): p. 467-82. 157. Mullick, A.E., P.S. Tobias, and L.K. Curtiss, Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest, 2005. 115(11): p. 3149-56. 158. Madan, M. and S. Amar, Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PLoS One, 2008. 3(9): p. e3204. 159. Wang, L., et al., Inhibition of Toll-like receptor 2 reduces cardiac fibrosis by attenuating macrophage-mediated inflammation. Cardiovasc Res, 2014. 101(3): p. 383-92. 160. Arslan, F., et al., Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation, 2010. 121(1): p. 80-90. 161. Beutler, B., X. Du, and A. Poltorak, Identification of Toll-like receptor 4 (Tlr4) as the sole conduit for LPS signal transduction: genetic and evolutionary studies. J Endotoxin Res, 2001. 7(4): p. 277-80. 162. Hambleton, J., et al., Activation of c-Jun N-terminal kinase in bacterial lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci U S A, 1996. 93(7): p. 2774-8. 163. Lyte, J.M., N.K. Gabler, and J.H. Hollis, Postprandial serum endotoxin in healthy humans is modulated by dietary fat in a randomized, controlled, cross-over study. Lipids Health Dis, 2016. 15(1): p. 186. 164. Ghanim, H., et al., Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: implications for insulin resistance. Diabetes Care, 2009. 32(12): p. 2281-7. 165. Lancaster, G.I., et al., Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metab, 2018. 27(5): p. 1096-1110.e5. 166. Erridge, C. and N.J. Samani, Saturated fatty acids do not directly stimulate Toll-like receptor signaling. Arterioscler Thromb Vasc Biol, 2009. 29(11): p. 1944-9. 167. Manolakis, A.C., et al., TLR4 gene polymorphisms: evidence for protection against type 2 diabetes but not for diabetes-associated ischaemic heart disease. Eur J Endocrinol, 2011. 165(2): p. 261-7. 168. Shi, H., et al., TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest, 2006. 116(11): p. 3015-25. 169. Rivera, C.A., et al., Western diet enhances hepatic inflammation in mice exposed to cecal ligation and puncture. BMC Physiol, 2010. 10: p. 20. 170. Ciesielska, A. and K. Kwiatkowska, Modification of pro-inflammatory signaling by dietary components: The plasma membrane as a target. Bioessays, 2015. 37(7): p. 789-801. 171. Sakr, Y., et al., Obesity is associated with increased morbidity but not mortality in critically ill patients. Intensive Care Med, 2008. 34(11): p. 1999-2009. 172. Dasu, M.R. and I. Jialal, Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab, 2011. 300(1): p. E145-54. 173. Lee, J.Y., et al., Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem, 2001. 276(20): p. 16683-9. 174. Senn, J.J., Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem, 2006. 281(37): p. 26865-75. 175. Jang, H.J., et al., Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin. Am J Physiol Endocrinol Metab, 2013. 304(10): p. E1077-88. 176. Pang, X., et al., Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther, 2023. 8(1): p. 1. 177. Samstad, E.O., et al., Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J Immunol, 2014. 192(6): p. 2837-45. 178. Yakubenko, V.P., et al., αMβ₂ integrin activation prevents alternative activation of human and murine macrophages and impedes foam cell formation. Circ Res, 2011. 108(5): p. 544-54. 179. Nageh, M.F., et al., Deficiency of inflammatory cell adhesion molecules protects against atherosclerosis in mice. Arterioscler Thromb Vasc Biol, 1997. 17(8): p. 1517-20. 180. Fazio, S., et al., Increased atherosclerosis in mice reconstituted with apolipoprotein E null macrophages. Proc Natl Acad Sci U S A, 1997. 94(9): p. 4647-52. 181. Merched, A., K. Tollefson, and L. Chan, Beta2 integrins modulate the initiation and progression of atherosclerosis in low-density lipoprotein receptor knockout mice. Cardiovasc Res, 2010. 85(4): p. 853-63. 182. Wu, H., et al., Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation, 2009. 119(20): p. 2708-17. 183. Kubo, N., et al., Leukocyte CD11b expression is not essential for the development of atherosclerosis in mice. J Lipid Res, 2000. 41(7): p. 1060-6. 184. Wang, B., et al., Macrophage β2-Integrins Regulate IL-22 by ILC3s and Protect from Lethal Citrobacter rodentium-Induced Colitis. Cell Rep, 2019. 26(6): p. 1614-1626.e5. 185. Gianfrancesco, M.A., et al., Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochem Pharmacol, 2018. 153: p. 168-183. 186. Lund, E.K., et al., Effects of dietary fish oil supplementation on the phospholipid composition and fluidity of cell membranes from human volunteers. Ann Nutr Metab, 1999. 43(5): p. 290-300. 187. Kaiser, H.J., et al., Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A, 2009. 106(39): p. 16645-50. 188. Pilon, M., Revisiting the membrane-centric view of diabetes. Lipids Health Dis, 2016. 15(1): p. 167. 189. Weijers, R.N., Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev, 2012. 8(5): p. 390-400. 190. Elmendorf, J.S., Fluidity of insulin action. Mol Biotechnol, 2004. 27(2): p. 127-38. 191. Ginsberg, B.H., et al., Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes, 1981. 30(9): p. 773-80. 192. Brown, D.A. and E. London, Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol, 1998. 14: p. 111-36. 193. Hanada, K., et al., Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem, 1995. 270(11): p. 6254-60. 194. Schroeder, R., E. London, and D. Brown, Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A, 1994. 91(25): p. 12130-4. 195. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000. 1(1): p. 31-9. 196. Płóciennikowska, A., et al., Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 2015. 72(3): p. 557-581. 197. Medina, F.A., et al., Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infect Immun, 2006. 74(12): p. 6665-74. 198. Tsai, T.H., et al., Impaired Cd14 and Cd36 expression, bacterial clearance, and Toll-like receptor 4-Myd88 signaling in caveolin-1-deleted macrophages and mice. Shock, 2011. 35(1): p. 92-9. 199. Lei, M.G. and D.C. Morrison, Differential expression of caveolin-1 in lipopolysaccharide-activated murine macrophages. Infect Immun, 2000. 68(9): p. 5084-9. 200. Andersen, C.J., Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease. Nutrients, 2018. 10(6). 201. Tall, A.R. and L. Yvan-Charvet, Cholesterol, inflammation and innate immunity. Nat Rev Immunol, 2015. 15(2): p. 104-16. 202. Zhu, X., et al., Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages. J Biol Chem, 2008. 283(34): p. 22930-41. 203. Balajthy, A., et al., Sterol Regulation of Voltage-Gated K(+) Channels. Curr Top Membr, 2017. 80: p. 255-292. 204. Martens, J.R., et al., Isoform-specific localization of voltage-gated K+ channels to distinct lipid raft populations. Targeting of Kv1.5 to caveolae. J Biol Chem, 2001. 276(11): p. 8409-14. 205. Martens, J.R., et al., Differential targeting of Shaker-like potassium channels to lipid rafts. J Biol Chem, 2000. 275(11): p. 7443-6. 206. Felipe, A., C. Soler, and N. Comes, Kv1.5 in the immune system: the good, the bad, or the ugly? Front Physiol, 2010. 1: p. 152. 207. Rudakova, E., et al., Localization of Kv4.2 and KChIP2 in lipid rafts and modulation of outward K+ currents by membrane cholesterol content in rat left ventricular myocytes. Pflugers Arch, 2015. 467(2): p. 299-309. 208. Xia, F., et al., Targeting of Voltage-Gated K+ and Ca2+ Channels and Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Proteins to Cholesterol-Rich Lipid Rafts in Pancreatic α-Cells: Effects on Glucagon Stimulus-Secretion Coupling. Endocrinology, 2007. 148(5): p. 2157-2167. 209. Xia, F., et al., Disruption of pancreatic beta-cell lipid rafts modifies Kv2.1 channel gating and insulin exocytosis. J Biol Chem, 2004. 279(23): p. 24685-91. 210. Jiménez-Garduño, A.M., et al., KV10.1 K(+)-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. Biochim Biophys Acta, 2014. 1838(3): p. 921-31. 211. Balijepalli, R.C., et al., Kv11.1 (ERG1) K+ channels localize in cholesterol and sphingolipid enriched membranes and are modulated by membrane cholesterol. Channels (Austin), 2007. 1(4): p. 263-72. 212. Pottosin, II, et al., Methyl-beta-cyclodextrin reversibly alters the gating of lipid rafts-associated Kv1.3 channels in Jurkat T lymphocytes. Pflugers Arch, 2007. 454(2): p. 235-44. 213. Hajdú, P., et al., Cholesterol modifies the gating of Kv1.3 in human T lymphocytes. Pflugers Arch, 2003. 445(6): p. 674-82. 214. Bock, J., et al., Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun, 2003. 305(4): p. 890-7. 215. O''Connell, K.M., J.D. Whitesell, and M.M. Tamkun, Localization and mobility of the delayed-rectifer K+ channel Kv2.1 in adult cardiomyocytes. Am J Physiol Heart Circ Physiol, 2008. 294(1): p. H229-37. 216. Panter, G. and R. Jerala, The ectodomain of the Toll-like receptor 4 prevents constitutive receptor activation. J Biol Chem, 2011. 286(26): p. 23334-44. 217. Park, S.-J. and H.-S. Youn, Suppression of homodimerization of toll-like receptor 4 by isoliquiritigenin. Phytochemistry, 2010. 71(14): p. 1736-1740. 218. Triantafilou, M., et al., Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci, 2002. 115(Pt 12): p. 2603-11. 219. Schoeniger, A., H. Fuhrmann, and J. Schumann, LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition. PeerJ, 2016. 4: p. e1663. 220. Wong, S.W., et al., Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem, 2009. 284(40): p. 27384-92. 221. Triantafilou, M., et al., Membrane sorting of toll-like receptor (TLR)-2/6 and TLR2/1 heterodimers at the cell surface determines heterotypic associations with CD36 and intracellular targeting. J Biol Chem, 2006. 281(41): p. 31002-11. 222. Nakahira, K., et al., Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med, 2006. 203(10): p. 2377-89. 223. Hellwing, C., et al., Lipid raft localization of TLR2 and its co-receptors is independent of membrane lipid composition. PeerJ, 2018. 6: p. e4212. 224. Jin, M.S., et al., Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 2007. 130(6): p. 1071-82. 225. Soong, G., et al., TLR2 is mobilized into an apical lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest, 2004. 113(10): p. 1482-9. 226. Shin, D.M., et al., Mycobacterium tuberculosis lipoprotein-induced association of TLR2 with protein kinase C zeta in lipid rafts contributes to reactive oxygen species-dependent inflammatory signalling in macrophages. Cell Microbiol, 2008. 10(9): p. 1893-905. 227. Triantafilou, M., et al., Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci, 2004. 117(Pt 17): p. 4007-14. 228. Koseki, M., et al., Increased lipid rafts and accelerated lipopolysaccharide-induced tumor necrosis factor-alpha secretion in Abca1-deficient macrophages. J Lipid Res, 2007. 48(2): p. 299-306. 229. Zhu, X., et al., Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res, 2010. 51(11): p. 3196-206. 230. Yvan-Charvet, L., et al., Increased inflammatory gene expression in ABC transporter-deficient macrophages: free cholesterol accumulation, increased signaling via toll-like receptors, and neutrophil infiltration of atherosclerotic lesions. Circulation, 2008. 118(18): p. 1837-47. 231. Gu, X., et al., Soyasaponin A1 inhibits the lipid raft recruitment and dimerization of TLR4, MyD88, and TRIF by maintaining cholesterol homeostasis in palmitic acid-stimulated inflammatory Raw264.7 macrophage cell line. Journal of Functional Foods, 2021. 87: p. 104789. 232. Snodgrass, R.G., et al., Inflammasome-mediated secretion of IL-1β in human monocytes through TLR2 activation; modulation by dietary fatty acids. J Immunol, 2013. 191(8): p. 4337-47. 233. Vetvicka, V., B.P. Thornton, and G.D. Ross, Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest, 1996. 98(1): p. 50-61. 234. Wright, S.D., et al., CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med, 1989. 169(1): p. 175-83. 235. Pfeiffer, A., et al., Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur J Immunol, 2001. 31(11): p. 3153-64. 236. Triantafilou, M., et al., Lipopolysaccharides from atherosclerosis-associated bacteria antagonize TLR4, induce formation of TLR2/1/CD36 complexes in lipid rafts and trigger TLR2-induced inflammatory responses in human vascular endothelial cells. Cell Microbiol, 2007. 9(8): p. 2030-9. 237. Kim, D.H. and T.R. Billiar, Hypoxia Activates Toll-like Receptor 4 Signaling in Primary Mouse Hepatocytes Through the Receptor Clustering within Lipid Rafts. jkss, 2011. 80(3): p. 194-203. 238. Scott, M.J. and T.R. Billiar, Beta2-integrin-induced p38 MAPK activation is a key mediator in the CD14/TLR4/MD2-dependent uptake of lipopolysaccharide by hepatocytes. J Biol Chem, 2008. 283(43): p. 29433-46. 239. Nakayama, H., et al., Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J Leukoc Biol, 2008. 83(3): p. 728-41. 240. Chen, M., et al., Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLoS One, 2012. 7(4): p. e28203. 241. Brennan, D., et al., A role for caveolin-1 in desmoglein binding and desmosome dynamics. Oncogene, 2012. 31(13): p. 1636-48. 242. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8. 243. Huang, Y., W. Xu, and R. Zhou, NLRP3 inflammasome activation and cell death. Cell Mol Immunol, 2021. 18(9): p. 2114-2127. 244. Alexander, S.P., et al., THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion channels. Br J Pharmacol, 2021. 178 Suppl 1: p. S157-s245. 245. Song, R., et al., IRF1 governs the differential interferon-stimulated gene responses in human monocytes and macrophages by regulating chromatin accessibility. Cell Rep, 2021. 34(12): p. 108891. 246. Bartok, A., et al., Margatoxin is a non-selective inhibitor of human Kv1.3 K+ channels. Toxicon, 2014. 87: p. 6-16. 247. Lagrutta, A., et al., Novel, potent inhibitors of human Kv1.5 K+ channels and ultrarapidly activating delayed rectifier potassium current. J Pharmacol Exp Ther, 2006. 317(3): p. 1054-63. 248. McGuinn, K.P. and M.G. Mahoney, Lipid rafts and detergent-resistant membranes in epithelial keratinocytes. Methods Mol Biol, 2014. 1195: p. 133-44. 249. Macdonald, J.L. and L.J. Pike, A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res, 2005. 46(5): p. 1061-7. 250. Dhungana, S., et al., Quantitative proteomics analysis of macrophage rafts reveals compartmentalized activation of the proteasome and of proteasome-mediated ERK activation in response to lipopolysaccharide. Mol Cell Proteomics, 2009. 8(1): p. 201-13. 251. Guha, M., et al., Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood, 2001. 98(5): p. 1429-39. 252. Kagan, J.C. and R. Medzhitov, Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell, 2006. 125(5): p. 943-55. 253. Perera, P.Y., et al., CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J Immunol, 2001. 166(1): p. 574-81. 254. Zhou, H., et al., CD11b/CD18 (Mac-1) is a novel surface receptor for extracellular double-stranded RNA to mediate cellular inflammatory responses. J Immunol, 2013. 190(1): p. 115-25. 255. Margraf, A., et al., The integrin-linked kinase is required for chemokine-triggered high-affinity conformation of the neutrophil β2-integrin LFA-1. Blood, 2020. 136(19): p. 2200-2205. 256. Stack, J., et al., TRAM is required for TLR2 endosomal signaling to type I IFN induction. J Immunol, 2014. 193(12): p. 6090-102. 257. Liu, Y., et al., TLR2 and TLR4 in Autoimmune Diseases: a Comprehensive Review. Clinical Reviews in Allergy & Immunology, 2014. 47(2): p. 136-147. 258. Glaser, K. and C.P. Speer, Toll-like receptor signaling in neonatal sepsis and inflammation: a matter of orchestration and conditioning. Expert Rev Clin Immunol, 2013. 9(12): p. 1239-52. 259. van Bergenhenegouwen, J., et al., TLR2 & Co: a critical analysis of the complex interactions between TLR2 and coreceptors. Journal of Leukocyte Biology, 2013. 94(5): p. 885-902. 260. Hwang, D.H., J.A. Kim, and J.Y. Lee, Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Eur J Pharmacol, 2016. 785: p. 24-35. 261. Rossol, M., et al., LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol, 2011. 31(5): p. 379-446. 262. Gaidt, M.M. and V. Hornung, Alternative inflammasome activation enables IL-1β release from living cells. Curr Opin Immunol, 2017. 44: p. 7-13. 263. Gaidt, M.M., et al., Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity, 2016. 44(4): p. 833-46. 264. He, Y., L. Franchi, and G. Núñez, TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol, 2013. 190(1): p. 334-9. 265. Pioli, P.A., et al., Lipopolysaccharide-induced IL-1 beta production by human uterine macrophages up-regulates uterine epithelial cell expression of human beta-defensin 2. J Immunol, 2006. 176(11): p. 6647-55. 266. Wewers, M.D. and D.J. Herzyk, Alveolar macrophages differ from blood monocytes in human IL-1 beta release. Quantitation by enzyme-linked immunoassay. J Immunol, 1989. 143(5): p. 1635-41. 267. Nguyen, M.T., et al., A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem, 2007. 282(48): p. 35279-92. 268. Carta, S., et al., The Rate of Interleukin-1β Secretion in Different Myeloid Cells Varies with the Extent of Redox Response to Toll-like Receptor Triggering*. Journal of Biological Chemistry, 2011. 286(31): p. 27069-27080. 269. Netea, M.G., et al., Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood, 2009. 113(10): p. 2324-35. 270. Awad, F., et al., Impact of human monocyte and macrophage polarization on NLR expression and NLRP3 inflammasome activation. PLoS One, 2017. 12(4): p. e0175336. 271. Wang, Y., et al., NLRP3 participates in the differentiation and apoptosis of PMA‑treated leukemia cells. Mol Med Rep, 2023. 28(2). 272. Gritsenko, A., et al., Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Front Immunol, 2020. 11: p. 565924. 273. Li, N., et al., Lipid raft proteomics: analysis of in-solution digest of sodium dodecyl sulfate-solubilized lipid raft proteins by liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry. Proteomics, 2004. 4(10): p. 3156-66. 274. Li, N., et al., Monocyte lipid rafts contain proteins implicated in vesicular trafficking and phagosome formation. Proteomics, 2003. 3(4): p. 536-48. 275. Olsson, S. and R. Sundler, The role of lipid rafts in LPS-induced signaling in a macrophage cell line. Mol Immunol, 2006. 43(6): p. 607-12. 276. Sun, M., et al., BIG1 mediates sepsis-induced lung injury by modulating lipid raft-dependent macrophage inflammatory responses. Acta Biochim Biophys Sin (Shanghai), 2021. 53(8): p. 1088-1097. 277. Liu, J., et al., MiR-6835 promoted LPS-induced inflammation of HUVECs associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. PLoS One, 2017. 12(11): p. e0188604. 278. He, Z., et al., CD14 Is a Co-Receptor for TLR4 in the S100A9-Induced Pro-Inflammatory Response in Monocytes. PLoS One, 2016. 11(5): p. e0156377. 279. Chowdhury, S.M., et al., Proteomic Analysis of ABCA1-Null Macrophages Reveals a Role for Stomatin-Like Protein-2 in Raft Composition and Toll-Like Receptor Signaling. Mol Cell Proteomics, 2015. 14(7): p. 1859-70. 280. Majdalawieh, A. and H.S. Ro, LPS-induced suppression of macrophage cholesterol efflux is mediated by adipocyte enhancer-binding protein 1. Int J Biochem Cell Biol, 2009. 41(7): p. 1518-25. 281. Varshney, P., V. Yadav, and N. Saini, Lipid rafts in immune signalling: current progress and future perspective. Immunology, 2016. 149(1): p. 13-24. 282. Kleveta, G., et al., LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J Cell Biochem, 2012. 113(1): p. 80-92. 283. Yu, W., et al., Kir2.1-mediated membrane potential promotes nutrient acquisition and inflammation through regulation of nutrient transporters. Nat Commun, 2022. 13(1): p. 3544. 284. Auron, P.E., et al., Nucleotide sequence of human monocyte interleukin 1 precursor cDNA. Proc Natl Acad Sci U S A, 1984. 81(24): p. 7907-11. 285. Rubartelli, A., et al., A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. Embo j, 1990. 9(5): p. 1503-10. 286. Shirasaki, Y., et al., Real-time single-cell imaging of protein secretion. Scientific Reports, 2014. 4(1): p. 4736. 287. Martín-Sánchez, F., et al., Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death & Differentiation, 2016. 23(7): p. 1219-1231. 288. Carta, S., R. Lavieri, and A. Rubartelli, Different Members of the IL-1 Family Come Out in Different Ways: DAMPs vs. Cytokines? Front Immunol, 2013. 4: p. 123. 289. Muesch, A., et al., A novel pathway for secretory proteins? Trends Biochem Sci, 1990. 15(3): p. 86-8. 290. van Niel, G., G. D''Angelo, and G. Raposo, Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 2018. 19(4): p. 213-228. 291. MacKenzie, A., et al., Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity, 2001. 15(5): p. 825-35. 292. Andrei, C., et al., Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc Natl Acad Sci U S A, 2004. 101(26): p. 9745-50. 293. Broz, P., Unconventional protein secretion by gasdermin pores. Seminars in Immunology, 2023. 69: p. 101811. 294. Xia, S., et al., Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature, 2021. 593(7860): p. 607-611. 295. Wolf, A.J., et al., Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell, 2016. 166(3): p. 624-636. 296. Conos, S.A., et al., Cell death is not essential for caspase-1-mediated interleukin-1β activation and secretion. Cell Death Differ, 2016. 23(11): p. 1827-1838. 297. Chen, K.W., et al., The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep, 2014. 8(2): p. 570-82. 298. Heilig, R., et al., The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice. Eur J Immunol, 2018. 48(4): p. 584-592. 299. Ramos-Junior, E.S. and A.C. Morandini, Gasdermin: A new player to the inflammasome game. Biomed J, 2017. 40(6): p. 313-316. 300. Karmakar, M., et al., Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nature Communications, 2016. 7(1): p. 10555. 301. Pelegrin, P., P2X7 receptor and the NLRP3 inflammasome: Partners in crime. Biochem Pharmacol, 2021. 187: p. 114385. 302. Fernandes-Alnemri, T., et al., The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat Immunol, 2010. 11(5): p. 385-93. 303. Sheu, W.H., et al., Therapeutic Potential of Tpl2 (Tumor Progression Locus 2) Inhibition on Diabetic Vasculopathy Through the Blockage of the Inflammasome Complex. Arterioscler Thromb Vasc Biol, 2021. 41(1): p. e46-e62. 304. Huang, H.C., et al., BGN/TLR4/NF-B Mediates Epigenetic Silencing of Immunosuppressive Siglec Ligands in Colon Cancer Cells. Cells, 2020. 9(2). 305. Sittipo, P., et al., Toll-Like Receptor 2-Mediated Suppression of Colorectal Cancer Pathogenesis by Polysaccharide A From Bacteroides fragilis. Front Microbiol, 2018. 9: p. 1588. 306. Tsai, C.C., et al., Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells. Virulence, 2015. 6(8): p. 755-65. 307. Scheeren, F.A., et al., A cell-intrinsic role for TLR2–MYD88 in intestinal and breast epithelia and oncogenesis. Nature Cell Biology, 2014. 16(12): p. 1238-1248. 308. Sonnenburg, J.L. and F. Bäckhed, Diet–microbiota interactions as moderators of human metabolism. Nature, 2016. 535(7610): p. 56-64. 309. Cani, P.D., et al., Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 2007. 56(7): p. 1761-72. 310. Caesar, R., et al., Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab, 2015. 22(4): p. 658-68. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92048 | - |
| dc.description.abstract | 在肥胖患者血液中,棕櫚酸(Palmitic acid, PA)會活化發炎反應,並使血液中IL-1β 增加,最終導致心血管疾病(Cardiovascular disease, CVD)。先前的研究表明,巨噬細胞中脂多醣(Lipopolysaccharide, LPS)和棕櫚酸對 IL-1β 的產生具有協同作用,其涉及電壓門控鉀離子通道(Voltage-gated potassium channel,Kv channel)和脂筏(Lipid raft)的參與。然而,目前仍不清楚是哪種 Kv 離子通道或是脂筏上蛋白參與此過程。在本研究中,第一部分的實驗顯示, LPS 預處理並用 PA-BSA 活化會增加 Kv1.3 、 Kv3.3 和 Kv11.1 的表現,並排除了 Kv1.3 的影響。全細胞膜片鉗實驗表明,在LPS和PA-BSA處理後,部分細胞向外電流增加,顯示出有鉀離子外流的現象,但目前無法排除細胞膜破裂的可能性。第二部分的研究中,我們使用蔗糖濃度梯度分離出脂筏上蛋白,並進行蛋白質體學和生物路徑分析(Ingenuity Pathway Analysis, IPA)。結果發現在 LPS 預處理的巨噬細胞中, PA-BSA 會活化脂筏中的發炎反應路徑。儘管未觀察到脂筏中 TLR4 的增加,但有發現脂筏中發炎相關膜蛋白 integrin β2 和 TLR2 的增加。然而,通過RNA干擾(RNAi)確認這些蛋白的重要性後,發現PA-BSA 可能並非透過脂筏中 integrin β2 誘導 IL-1β 的產生。另外,由於我們尚未成功沉默 TLR2 基因,因此目前無法確定是否透過脂筏中 TLR2 誘導 IL-1β 產生,未來研究將繼續探討這個問題。總體而言,我們期望這些研究成果能有助於人類了解飽和脂肪酸(Saturated Fatty Acid,SFA)如何引起發炎反應,並為心血管疾病的治療靶點提供更多的資訊。 | zh_TW |
| dc.description.abstract | Palmitic acid (PA) activates inflammatory responses, leading to an increase in serum IL-1β levels, ultimately contributing to cardiovascular disease in obese individuals. Previous studies have indicated a synergistic effect of lipopolysaccharide (LPS) and palmitic acid on IL-1β production within macrophages. More importantly, voltage-gated potassium channels (Kv channels) and lipid rafts participate in this pathway. However, it remains unclear which specific Kv channels or lipid raft proteins are involved in this process. In this study, the first part of the experiments demonstrated that PA-BSA stimulation increases the expression of Kv1.3, Kv3.3, and Kv11.1 in LPS-primed macrophages. Subsequently, we excluded the influence of Kv1.3. Whole-cell patch clamp experiments indicated an increase in outward current in some cells following LPS and PA-BSA treatment, suggesting potassium efflux after activation, although the possibility of cell membrane rupture cannot be ruled out at present. In the second part of the experiments, we isolated lipid raft proteins using a sucrose density gradient, followed by proteomics and Ingenuity Pathway Analysis (IPA). Results revealed that PA-BSA activates inflammatory pathways within lipid rafts in LPS-primed macrophages. Although an increase in TLR4 within lipid rafts was not observed, an elevation of inflammatory-associated membrane proteins integrin β2 and TLR2 was detected. However, upon confirming the role of these proteins through RNA interference (RNAi), it was found that PA-BSA might not induce IL-1β production via integrin β2. Additionally, due to the unsuccessful gene silencing of TLR2, it remains inconclusive whether IL-1β production is induced through TLR2 within lipid rafts. Further experiments are needed to explore the roles of TLR2 in this pathway. Overall, we anticipate that these findings will contribute to a better understanding of how saturated fatty acids trigger inflammatory responses and provide additional insights into potential therapeutic targets for cardiovascular disease. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:16:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-03-04T16:16:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝辭 ii 中文摘要 iii Abstract iv 代號與縮寫對照表 vi 目次 x 圖次 xiv 表次 xvi 第一章 緒論 1 第一節 前言 1 第二節 文獻回顧 2 一、 肥胖會增加血液中棕櫚酸濃度並導致心血管疾病 2 二、 細胞攝取長鏈脂肪酸的方式 3 三、 棕櫚酸藉由發炎反應引起心血管疾病 5 四、 棕櫚酸介導的IL-1β產生機制的探討 7 五、 鉀離子外流在NLRP3發炎小體活化扮演的角色 10 六、 參與巨噬細胞活化的 Kv 離子通道 11 七、 受脂肪酸調控的 Kv 離子通道 12 八、 長鏈脂肪酸的受體 14 九、 TLR 訊號路徑在肥胖和棕櫚酸誘導心血管疾病中扮演重要角色 14 十、 Integrin β2在心血管疾病和NLRP3發炎小體活化中扮演重要角色 16 十一、 脂筏在免疫發炎中扮演重要角色 17 十二、 脂筏在 LPS 及 PA-BSA 誘發的免疫發炎中的角色 18 第二章 實驗設計與材料方法 22 第一節 研究動機 22 第二節 實驗設計 23 第三節 實驗材料和方法 24 一、 癌細胞株培養 24 二、 棕櫚酸牛血清蛋白複合物(PA-BSA)製備 26 三、 酵素免疫分析法(ELISA) 26 四、 細胞存活率測試(MTT assay) 28 五、 西方墨點法(Western blot assay) 28 六、 脂筏的分離 33 七、 RNA 抽取及反轉錄 cDNA 35 八、 即時定量反轉錄聚合酶連鎖反應(RT-qPCR) 37 九、 透析(dialysis) 39 十、 冷凍乾燥(freeze drying) 40 十一、 蛋白質體學分析 40 十二、 生物路徑分析(Ingenuity Pathway Analysis,IPA) 42 十三、 膜片鉗(Patch clamp) 44 十四、 核醣核酸干擾(shRNA knockdown) 45 十五、 鉀離子溶液製備 47 十六、 統計分析 47 第三章 實驗結果 48 第一節 棕櫚酸活化巨噬細胞發炎反應並產生 IL-1β 48 一、 LPS 和 PA-BSA 在巨噬細胞中對於 IL-1β 的產生具有協同作用 48 二、 LPS 預處理後 PA-BSA 能促使巨噬細胞產生更多 IL-1β 49 第二節 LPS 預處理下棕櫚酸對鉀離子通道的影響 50 三、 LPS 預處理後抑制 Kv channel可有效抑制 PA-BSA 誘導 IL-1β 50 四、 巨噬細胞 Kv 離子通道在 LPS 和 PA-BSA 活化下的變化 51 五、 巨噬細胞全細胞電流在 LPS 和 PA-BSA 共同活化下的變化 52 第三節 LPS 預處理下棕櫚酸對脂筏蛋白的影響 53 六、 LPS 預處理後破壞脂筏能夠抑制 PA-BSA 誘導的 IL-1β 產生 53 七、 LPS 預處理後加入 PA-BSA 無法觀察到脂筏中 TLR4 的增加 53 八、 LPS 預處理後PA-BSA 能誘導脂筏蛋白的發炎相關反應 54 九、 LPS 預處理後 PA-BSA 活化會使脂筏中 integrin β2 增加 56 十、 LPS 預處理後,integrin β2 knockdown 無法減少PA-BSA誘導的 IL-1β 產生 57 十一、 LPS 預處理後 PA-BSA 活化會使脂筏中 TLR2 增加 58 十二、 尚不知LPS 預處理後,TLR2 knockdown 能否影響 PA-BSA誘導的 IL-1β 產生 59 第四章 問題與討論 79 第一節 巨噬細胞單獨處理 LPS 便足以產生少量 IL-1β 79 第二節 巨噬細胞單獨處理 PA-BSA 不會誘導 IL-1β 產生 80 第三節 蛋白質體學結果和別人研究的差異 82 第四節 沒有觀察到 TLR4 出現在脂筏 89 第五節 Kv channel 的 mRNA 改變 90 第六節 IL-1β 分泌機制 91 第七節 PA-BSA 可能並非透過 integrin β2 誘導 IL-1β 93 第八節 基因沈默TLR2效果不如預期 94 第九節 內源性 LPS 的來源 95 第五章 結論 96 第六章 參考文獻 97 附錄 119 第一節 LPS priming + BSA和BSA組的IPA分析 119 一、 第一次蛋白質體學結果 119 二、 第二次蛋白質體學結果 124 第二節 LPS priming + PA-BSA和LPS priming + BSA組的IPA分析 130 一、 第一次蛋白質體學結果 130 二、 第二次蛋白質體學結果 135 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電壓門控鉀離子通道 | zh_TW |
| dc.subject | 脂筏 | zh_TW |
| dc.subject | integrin β2 | zh_TW |
| dc.subject | TLR2 | zh_TW |
| dc.subject | 棕櫚酸 | zh_TW |
| dc.subject | IL-1β | zh_TW |
| dc.subject | IL-1β | en |
| dc.subject | palmitic acid | en |
| dc.subject | TLR2 | en |
| dc.subject | integrin β2 | en |
| dc.subject | lipid raft | en |
| dc.subject | Kv channel | en |
| dc.title | 巨噬細胞中鉀離子通道與脂筏蛋白在脂多醣刺激下棕櫚酸誘導IL-1β 生成路徑的角色 | zh_TW |
| dc.title | The roles of potassium channels and lipid raft proteins in the palmitic acid-induced IL-1β production in LPS primed THP-1 derived macrophages | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃青真;蘇慧敏;林建達 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-jang Huang;Hui-Min Su;Jian-Da Lin | en |
| dc.subject.keyword | 棕櫚酸,IL-1β,電壓門控鉀離子通道,脂筏,integrin β2,TLR2, | zh_TW |
| dc.subject.keyword | palmitic acid,IL-1β,Kv channel,lipid raft,integrin β2,TLR2, | en |
| dc.relation.page | 136 | - |
| dc.identifier.doi | 10.6342/NTU202400476 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2029-02-01 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 3.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
