Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92046
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor程子翔zh_TW
dc.contributor.advisorTze-Hsiang Chenen
dc.contributor.author李旻陽zh_TW
dc.contributor.authorMin-Yang Leeen
dc.date.accessioned2024-03-04T16:16:01Z-
dc.date.available2024-03-05-
dc.date.copyright2024-03-04-
dc.date.issued2024-
dc.date.submitted2024-02-07-
dc.identifier.citation[1] K. Lameka, M. D. Farwell, and M. Ichise, "Positron Emission Tomography," Handb. Clin. Neurol., vol. 135, pp. 209-227, 2016, doi: 10.1016/b978-0-444-53485-9.00011-8.
[2] J. M. Hooker and R. E. Carson, "Human Positron Emission Tomography Neuroimaging," Annu. Rev. Biomed. Eng., vol. 21, pp. 551-581, Jun 4 2019, doi: 10.1146/annurev-bioeng-062117-121056.
[3] K. Heurling et al., "Quantitative positron emission tomography in brain research," Brain Res., vol. 1670, pp. 220-234, Sep 1 2017, doi: 10.1016/j.brainres.2017.06.022.
[4] S. L. Risacher and L. G. Apostolova, "Neuroimaging in Dementia," Continuum (Minneap Minn), vol. 29, no. 1, pp. 219-254, Feb 1 2023, doi: 10.1212/con.0000000000001248.
[5] A. J. Stoessl, "Developments in neuroimaging: positron emission tomography," Parkinsonism Relat. Disord., vol. 20 Suppl 1, pp. S180-3, Jan 2014, doi: 10.1016/s1353-8020(13)70042-7.
[6] H. Wilson and M. Politis, "Molecular Imaging in Huntington''s Disease," Int. Rev. Neurobiol., vol. 142, pp. 289-333, 2018, doi: 10.1016/bs.irn.2018.08.007.
[7] J. G. Burneo, R. Poon, S. Kellett, and O. C. Snead, "The Utility of Positron Emission Tomography in Epilepsy," Can. J. Neurol. Sci., vol. 42, no. 6, pp. 360-71, Nov 2015, doi: 10.1017/cjn.2015.279.
[8] S. Saeed, J. M. Saad, A. I. Ahmed, Y. Han, and M. H. Al-Mallah, "The utility of positron emission tomography in cardiac amyloidosis," Heart Fail. Rev., vol. 27, no. 5, pp. 1531-1541, Sep 2022, doi: 10.1007/s10741-021-10183-w.
[9] R. Fonti, M. Conson, and S. Del Vecchio, "PET/CT in radiation oncology," Semin. Oncol., vol. 46, no. 3, pp. 202-209, Jun 2019, doi: 10.1053/j.seminoncol.2019.07.001.
[10] K. A. Wood, P. J. Hoskin, and M. I. Saunders, "Positron emission tomography in oncology: a review," Clin. Oncol. (R. Coll. Radiol.), vol. 19, no. 4, pp. 237-55, May 2007, doi: 10.1016/j.clon.2007.02.001.
[11] C. Slough, S. C. Masters, R. A. Hurley, and K. H. Taber, "Clinical Positron Emission Tomography (PET) Neuroimaging: Advantages and Limitations as a Diagnostic Tool," J. Neuropsychiatry Clin. Neurosci., vol. 28, no. 2, pp. A4, 67-71, Spring 2016, doi: 10.1176/appi.neuropsych.16030044.
[12] L. W. Goldman, "Principles of CT and CT technology," J. Nucl. Med. Technol., vol. 35, no. 3, pp. 115-28; quiz 129-30, Sep 2007, doi: 10.2967/jnmt.107.042978.
[13] M. J. Sands and A. Levitin, "Basics of magnetic resonance imaging," Semin. Vasc. Surg., vol. 17, no. 2, pp. 66-82, Jun 2004, doi: 10.1053/j.semvascsurg.2004.03.011.
[14] A. S. Minhas and R. Oliver, "Magnetic Resonance Imaging Basics," Adv Exp Med Biol, vol. 1380, pp. 47-82, 2022, doi: 10.1007/978-3-031-03873-0_3.
[15] T. Yousaf, G. Dervenoulas, and M. Politis, "Advances in MRI Methodology," Int. Rev. Neurobiol., vol. 141, pp. 31-76, 2018, doi: 10.1016/bs.irn.2018.08.008.
[16] S. Basu, S. Hess, P. E. Nielsen Braad, B. B. Olsen, S. Inglev, and P. F. Høilund-Carlsen, "The Basic Principles of FDG-PET/CT Imaging," PET Clin, vol. 9, no. 4, pp. 355-70, v, Oct 2014, doi: 10.1016/j.cpet.2014.07.006.
[17] M. Kirsch, S. Wannez, A. Thibaut, S. Laureys, J. F. Brichant, and V. Bonhomme, "Positron Emission Tomography: Basic Principles, New Applications, and Studies Under Anesthesia," Int. Anesthesiol. Clin., vol. 54, no. 1, pp. 109-28, Winter 2016, doi: 10.1097/aia.0000000000000090.
[18] J. J. Vaquero and P. Kinahan, "Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems," Annu. Rev. Biomed. Eng., vol. 17, pp. 385-414, 2015, doi: 10.1146/annurev-bioeng-071114-040723.
[19] W. E. Klunk et al., "Imaging brain amyloid in Alzheimer''s disease with Pittsburgh Compound-B," Ann. Neurol., vol. 55, no. 3, pp. 306-19, Mar 2004, doi: 10.1002/ana.20009.
[20] J. Jia et al., "Positron emission tomography with Pittsburgh compound B in diagnosis of early stage Alzheimer''s disease," Cell Biochem. Biophys., vol. 59, no. 1, pp. 57-62, Jan 2011, doi: 10.1007/s12013-010-9111-2.
[21] V. Valotassiou et al., "SPECT and PET imaging in Alzheimer''s disease," Ann. Nucl. Med., vol. 32, no. 9, pp. 583-593, Nov 2018, doi: 10.1007/s12149-018-1292-6.
[22] H. Barthel, J. Seibyl, and O. Sabri, "The role of positron emission tomography imaging in understanding Alzheimer''s disease," Expert Rev. Neurother., vol. 15, no. 4, pp. 395-406, Apr 2015, doi: 10.1586/14737175.2015.1023296.
[23] S. M. Tripathi and A. D. Murray, "Alzheimer''s Dementia: The Emerging Role of Positron Emission Tomography," Neuroscientist, vol. 28, no. 5, pp. 507-519, Oct 2022, doi: 10.1177/1073858421997035.
[24] A. D. Cohen, G. D. Rabinovici, C. A. Mathis, W. J. Jagust, W. E. Klunk, and M. D. Ikonomovic, "Using Pittsburgh Compound B for in vivo PET imaging of fibrillar amyloid-beta," Adv. Pharmacol., vol. 64, pp. 27-81, 2012, doi: 10.1016/b978-0-12-394816-8.00002-7.
[25] G. Yamin and D. B. Teplow, "Pittsburgh Compound-B (PiB) binds amyloid β-protein protofibrils," J. Neurochem., vol. 140, no. 2, pp. 210-215, Jan 2017, doi: 10.1111/jnc.13887.
[26] B. J. Lopresti et al., "Simplified quantification of Pittsburgh Compound B amyloid imaging PET studies: a comparative analysis," J. Nucl. Med., vol. 46, no. 12, pp. 1959-72, Dec 2005.
[27] P. T. Meyer et al., "Dual-biomarker imaging of regional cerebral amyloid load and neuronal activity in dementia with PET and 11C-labeled Pittsburgh compound B," J. Nucl. Med., vol. 52, no. 3, pp. 393-400, Mar 2011, doi: 10.2967/jnumed.110.083683.
[28] M. Degerman Gunnarsson et al., "Re-evaluation of clinical dementia diagnoses with pittsburgh compound B positron emission tomography," Dement. Geriatr. Cogn. Dis. Extra, vol. 3, no. 1, pp. 472-81, Jan 2013, doi: 10.1159/000356273.
[29] H. G. Pemberton et al., "Quantification of amyloid PET for future clinical use: a state-of-the-art review," Eur. J. Nucl. Med. Mol. Imaging, vol. 49, no. 10, pp. 3508-3528, Aug 2022, doi: 10.1007/s00259-022-05784-y.
[30] R. Ismail et al., "Abnormal Amyloid Load in Mild Cognitive Impairment: The Effect of Reducing the PiB-PET Threshold," J. Neuroimaging, vol. 29, no. 4, pp. 499-505, 2019, doi: https://doi.org/10.1111/jon.12629.
[31] T. Yamane et al., "Inter-rater variability of visual interpretation and comparison with quantitative evaluation of (11)C-PiB PET amyloid images of the Japanese Alzheimer''s Disease Neuroimaging Initiative (J-ADNI) multicenter study," Eur. J. Nucl. Med. Mol. Imaging, vol. 44, no. 5, pp. 850-857, May 2017, doi: 10.1007/s00259-016-3591-2.
[32] G. D. Femminella et al., "Imaging and Molecular Mechanisms of Alzheimer''s Disease: A Review," Int. J. Mol. Sci., vol. 19, no. 12, Nov 22 2018, doi: 10.3390/ijms19123702.
[33] J. A. Tanner et al., "Amyloid, tau and metabolic PET correlates of cognition in early and late-onset Alzheimer''s disease," Brain, vol. 145, no. 12, pp. 4489-4505, Dec 19 2022, doi: 10.1093/brain/awac229.
[34] M. Yamada, "Cerebral amyloid angiopathy: emerging concepts," J Stroke, vol. 17, no. 1, pp. 17-30, Jan 2015, doi: 10.5853/jos.2015.17.1.17.
[35] K. Farid, A. Charidimou, and J. C. Baron, "Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update," Neuroimage Clin, vol. 15, pp. 247-263, 2017, doi: 10.1016/j.nicl.2017.05.002.
[36] E. Rodriguez-Vieitez et al., "Comparison of Early-Phase 11C-Deuterium-l-Deprenyl and 11C-Pittsburgh Compound B PET for Assessing Brain Perfusion in Alzheimer Disease," J. Nucl. Med., vol. 57, no. 7, pp. 1071-7, Jul 2016, doi: 10.2967/jnumed.115.168732.
[37] L. L. B. Ponto et al., "Early Phase PIB-PET as a Surrogate for Global and Regional Cerebral Blood Flow Measures," J. Neuroimaging, vol. 29, no. 1, pp. 85-96, Jan 2019, doi: 10.1111/jon.12582.
[38] D. E. Peretti et al., "Diagnostic performance of regional cerebral blood flow images derived from dynamic PIB scans in Alzheimer''s disease," EJNMMI Res, vol. 9, no. 1, p. 59, Jul 4 2019, doi: 10.1186/s13550-019-0528-3.
[39] C. Shen et al., "Identifying Mild Alzheimer''s Disease With First 30-Min (11)C-PiB PET Scan," Front. Aging Neurosci., vol. 14, p. 785495, 2022, doi: 10.3389/fnagi.2022.785495.
[40] S. Komori et al., "Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging," Ann. Nucl. Med., vol. 36, no. 10, pp. 913-921, Oct 2022, doi: 10.1007/s12149-022-01775-z.
[41] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. Aerts, "Artificial intelligence in radiology," Nat. Rev. Cancer, vol. 18, no. 8, pp. 500-510, Aug 2018, doi: 10.1038/s41568-018-0016-5.
[42] M. de Bruijne, "Machine learning approaches in medical image analysis: From detection to diagnosis," Med. Image Anal., vol. 33, pp. 94-97, Oct 2016, doi: 10.1016/j.media.2016.06.032.
[43] M. L. Giger, "Machine Learning in Medical Imaging," J. Am. Coll. Radiol., vol. 15, no. 3 Pt B, pp. 512-520, Mar 2018, doi: 10.1016/j.jacr.2017.12.028.
[44] C. Tchito Tchapga et al., "Biomedical Image Classification in a Big Data Architecture Using Machine Learning Algorithms," J. Healthc. Eng., vol. 2021, p. 9998819, 2021, doi: 10.1155/2021/9998819.
[45] L. Wang, O. Sourina, M. Erdt, Y. Wang, and Q. Chang, "Machine learning methods for bio-medical image and signal processing: Recent advances," Methods, vol. 202, pp. 1-2, Jun 2022, doi: 10.1016/j.ymeth.2022.03.009.
[46] G. Currie, K. E. Hawk, E. Rohren, A. Vial, and R. Klein, "Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging," J Med Imaging Radiat Sci, vol. 50, no. 4, pp. 477-487, Dec 2019, doi: 10.1016/j.jmir.2019.09.005.
[47] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Campbell, "Introduction to Machine Learning, Neural Networks, and Deep Learning," Transl Vis Sci Technol, vol. 9, no. 2, p. 14, Feb 27 2020, doi: 10.1167/tvst.9.2.14.
[48] W. T. Le, F. Maleki, F. P. Romero, R. Forghani, and S. Kadoury, "Overview of Machine Learning: Part 2: Deep Learning for Medical Image Analysis," Neuroimaging Clin. N. Am., vol. 30, no. 4, pp. 417-431, Nov 2020, doi: 10.1016/j.nic.2020.06.003.
[49] B. J. Erickson, "Basic Artificial Intelligence Techniques: Machine Learning and Deep Learning," Radiol. Clin. North Am., vol. 59, no. 6, pp. 933-940, Nov 2021, doi: 10.1016/j.rcl.2021.06.004.
[50] L. Manco, N. Maffei, S. Strolin, S. Vichi, L. Bottazzi, and L. Strigari, "Basic of machine learning and deep learning in imaging for medical physicists," Phys. Med., vol. 83, pp. 194-205, Mar 2021, doi: 10.1016/j.ejmp.2021.03.026.
[51] P. Lakhani, D. L. Gray, C. R. Pett, P. Nagy, and G. Shih, "Hello World Deep Learning in Medical Imaging," J. Digit. Imaging, vol. 31, no. 3, pp. 283-289, Jun 2018, doi: 10.1007/s10278-018-0079-6.
[52] A. Maier, C. Syben, T. Lasser, and C. Riess, "A gentle introduction to deep learning in medical image processing," Z Med Phys, vol. 29, no. 2, pp. 86-101, May 2019, doi: 10.1016/j.zemedi.2018.12.003.
[53] M. Tsuneki, "Deep learning models in medical image analysis," J. Oral Biosci., vol. 64, no. 3, pp. 312-320, Sep 2022, doi: 10.1016/j.job.2022.03.003.
[54] X. Chen et al., "Recent advances and clinical applications of deep learning in medical image analysis," Med. Image Anal., vol. 79, p. 102444, Jul 2022, doi: 10.1016/j.media.2022.102444.
[55] M. Li, Y. Jiang, Y. Zhang, and H. Zhu, "Medical image analysis using deep learning algorithms," Front Public Health, vol. 11, p. 1273253, 2023, doi: 10.3389/fpubh.2023.1273253.
[56] J. Egger et al., "Medical deep learning-A systematic meta-review," Comput Methods Programs Biomed, vol. 221, p. 106874, Jun 2022, doi: 10.1016/j.cmpb.2022.106874.
[57] M. P. McBee et al., "Deep Learning in Radiology," Acad. Radiol., vol. 25, no. 11, pp. 1472-1480, Nov 2018, doi: 10.1016/j.acra.2018.02.018.
[58] D. Li, L. Ma, J. Li, S. Qi, Y. Yao, and Y. Teng, "A comprehensive survey on deep learning techniques in CT image quality improvement," Med Biol Eng Comput, vol. 60, no. 10, pp. 2757-2770, Oct 2022, doi: 10.1007/s11517-022-02631-y.
[59] A. S. Lundervold and A. Lundervold, "An overview of deep learning in medical imaging focusing on MRI," Z Med Phys, vol. 29, no. 2, pp. 102-127, May 2019, doi: 10.1016/j.zemedi.2018.11.002.
[60] M. A. Mazurowski, M. Buda, A. Saha, and M. R. Bashir, "Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI," J. Magn. Reson. Imaging, vol. 49, no. 4, pp. 939-954, Apr 2019, doi: 10.1002/jmri.26534.
[61] B. Yu, Y. Wang, L. Wang, D. Shen, and L. Zhou, "Medical Image Synthesis via Deep Learning," Adv Exp Med Biol, vol. 1213, pp. 23-44, 2020, doi: 10.1007/978-3-030-33128-3_2.
[62] J. Chen, S. Chen, L. Wee, A. Dekker, and I. Bermejo, "Deep learning based unpaired image-to-image translation applications for medical physics: a systematic review," Phys. Med. Biol., vol. 68, no. 5, Feb 23 2023, doi: 10.1088/1361-6560/acba74.
[63] H. J. Yun et al., "Centiloid method evaluation for amyloid PET of subcortical vascular dementia," Sci. Rep., vol. 7, no. 1, p. 16322, 2017/11/24 2017, doi: 10.1038/s41598-017-16236-1.
[64] L. Mosconi et al., "Increased fibrillar amyloid-{beta} burden in normal individuals with a family history of late-onset Alzheimer''s," Proc. Natl. Acad. Sci. U. S. A., vol. 107, no. 13, pp. 5949-54, Mar 30 2010, doi: 10.1073/pnas.0914141107.
[65] L. Fu, L. Liu, J. Zhang, B. Xu, Y. Fan, and J. Tian, "Brain Network Alterations in Alzheimer''s Disease Identified by Early-Phase PIB-PET," Contrast Media Mol. Imaging, vol. 2018, p. 6830105, 2018, doi: 10.1155/2018/6830105.
[66] C. A. Mathis et al., "In vivo assessment of amyloid-β deposition in nondemented very elderly subjects," Ann. Neurol., vol. 73, no. 6, pp. 751-61, Jun 2013, doi: 10.1002/ana.23797.
[67] J. C. Morris et al., "APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging," Ann. Neurol., vol. 67, no. 1, pp. 122-31, Jan 2010, doi: 10.1002/ana.21843.
[68] M. R. Flanigan et al., "Imaging beta-amyloid (Aβ) burden in the brains of middle-aged individuals with alcohol-use disorders: a [(11)C]PIB PET study," Transl Psychiatry, vol. 11, no. 1, p. 257, May 1 2021, doi: 10.1038/s41398-021-01374-y.
[69] Y. Wakabayashi et al., "Increased Pittsburgh Compound-B Accumulation in the Subcortical White Matter of Alzheimer''s Disease Brain," Kobe J. Med. Sci., vol. 62, no. 5, pp. E136-e141, Mar 13 2017.
[70] Y. Chang et al., "Diagnostic Utility of Integrated(11)C-Pittsburgh Compound B Positron Emission Tomography/Magnetic Resonance for Cerebral Amyloid Angiopathy: A Pilot Study," Front. Aging Neurosci., vol. 13, p. 721780, 2021, doi: 10.3389/fnagi.2021.721780.
[71] C. Chanisa, N. Monchaya, K. Anchisa, P. Chetsadaporn, and J. Attapon, "Analysis of amyloid and tau deposition in Alzheimer''s disease using (11)C-Pittsburgh compound B and (18)F-THK 5351 positron emission tomography imaging," World J. Nucl. Med., vol. 20, no. 1, pp. 61-72, Jan-Mar 2021, doi: 10.4103/wjnm.WJNM_50_20.
[72] D. P. Faria et al., "Topography of 11C-Pittsburgh compound B uptake in Alzheimer''s disease: a voxel-based investigation of cortical and white matter regions," Braz J Psychiatry, vol. 41, no. 2, pp. 101-111, Mar-Apr 2019, doi: 10.1590/1516-4446-2017-0002.
[73] J. L. Whitwell et al., "Pittsburgh Compound B and AV-1451 positron emission tomography assessment of molecular pathologies of Alzheimer''s disease in progressive supranuclear palsy," Parkinsonism Relat. Disord., vol. 48, pp. 3-9, Mar 2018, doi: 10.1016/j.parkreldis.2017.12.016.
[74] N. Nelissen et al., "Phase 1 study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease," J. Nucl. Med., vol. 50, no. 8, pp. 1251-9, Aug 2009, doi: 10.2967/jnumed.109.063305.
[75] D. P. Devanand et al., "Pittsburgh compound B (11C-PIB) and fluorodeoxyglucose (18 F-FDG) PET in patients with Alzheimer disease, mild cognitive impairment, and healthy controls," J. Geriatr. Psychiatry Neurol., vol. 23, no. 3, pp. 185-98, Sep 2010, doi: 10.1177/0891988710363715.
[76] O. H. Lesman-Segev et al., "Diagnostic Accuracy of Amyloid versus (18) F-Fluorodeoxyglucose Positron Emission Tomography in Autopsy-Confirmed Dementia," Ann. Neurol., vol. 89, no. 2, pp. 389-401, Feb 2021, doi: 10.1002/ana.25968.
[77] D. A. Wolk, Z. Zhang, S. Boudhar, C. M. Clark, M. J. Pontecorvo, and S. E. Arnold, "Amyloid imaging in Alzheimer''s disease: comparison of florbetapir and Pittsburgh compound-B positron emission tomography," J Neurol Neurosurg Psychiatry, vol. 83, no. 9, pp. 923-6, Sep 2012, doi: 10.1136/jnnp-2012-302548.
[78] M. A. Butters et al., "Imaging Alzheimer pathology in late-life depression with PET and Pittsburgh Compound-B," Alzheimer Dis. Assoc. Disord., vol. 22, no. 3, pp. 261-8, Jul-Sep 2008, doi: 10.1097/WAD.0b013e31816c92bf.
[79] C. A. Raji et al., "Characterizing regional correlation, laterality and symmetry of amyloid deposition in mild cognitive impairment and Alzheimer''s disease with Pittsburgh Compound B," J. Neurosci. Methods, vol. 172, no. 2, pp. 277-82, Jul 30 2008, doi: 10.1016/j.jneumeth.2008.05.005.
[80] A. Perrotin, E. C. Mormino, C. M. Madison, A. O. Hayenga, and W. J. Jagust, "Subjective cognition and amyloid deposition imaging: a Pittsburgh Compound B positron emission tomography study in normal elderly individuals," Arch. Neurol., vol. 69, no. 2, pp. 223-9, Feb 2012, doi: 10.1001/archneurol.2011.666.
[81] D. S. Knopman et al., "Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia," Neurology, vol. 87, no. 7, pp. 691-8, Aug 16 2016, doi: 10.1212/wnl.0000000000002979.
[82] R. L. McNamee et al., "Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements," J. Nucl. Med., vol. 50, no. 3, pp. 348-55, Mar 2009, doi: 10.2967/jnumed.108.057612.
[83] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," p. arXiv:1505.04597doi: 10.48550/arXiv.1505.04597.
[84] P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth, "A review of medical image data augmentation techniques for deep learning applications," J. Med. Imaging Radiat. Oncol., vol. 65, no. 5, pp. 545-563, Aug 2021, doi: 10.1111/1754-9485.13261.
[85] A. L. C. Ottoni, R. M. de Amorim, M. S. Novo, and D. B. Costa, "Tuning of data augmentation hyperparameters in deep learning to building construction image classification with small datasets," Int J Mach Learn Cybern, vol. 14, no. 1, pp. 171-186, 2023, doi: 10.1007/s13042-022-01555-1.
[86] C. Athalye and R. Arnaout, "Domain-guided data augmentation for deep learning on medical imaging," PLoS One, vol. 18, no. 3, p. e0282532, 2023, doi: 10.1371/journal.pone.0282532.
[87] F. A. Fardo, V. H. Conforto, F. C. de Oliveira, and P. S. Rodrigues, "A Formal Evaluation of PSNR as Quality Measurement Parameter for Image Segmentation Algorithms," p. arXiv:1605.07116doi: 10.48550/arXiv.1605.07116.
[88] J. Nilsson and T. Akenine-Möller, "Understanding SSIM," p. arXiv:2006.13846doi: 10.48550/arXiv.2006.13846.
[89] V. J. Lowe et al., "White Matter Reference Region in PET Studies of (11)C-Pittsburgh Compound B Uptake: Effects of Age and Amyloid-β Deposition," J. Nucl. Med., vol. 59, no. 10, pp. 1583-1589, Oct 2018, doi: 10.2967/jnumed.117.204271.
[90] R. Hosch et al., "Artificial intelligence guided enhancement of digital PET: scans as fast as CT?," Eur. J. Nucl. Med. Mol. Imaging, vol. 49, no. 13, pp. 4503-4515, Nov 2022, doi: 10.1007/s00259-022-05901-x.
[91] M. Wenzel, "Generative Adversarial Networks and Other Generative Models," in Machine Learning for Brain Disorders, O. Colliot Ed. New York, NY: Humana, Copyright 2023, The Author(s). 2023, pp. 139-92.
[92] S. A. Alajaji et al., "Generative Adversarial Networks in Digital Histopathology: Current Applications, Limitations, Ethical Considerations, and Future Directions," Mod. Pathol., vol. 37, no. 1, p. 100369, Oct 27 2023, doi: 10.1016/j.modpat.2023.100369.
[93] Z. Ren, S. X. Yu, and D. Whitney, "Controllable Medical Image Generation via GAN," J Percept Imaging, vol. 5, pp. 0005021-50215, Jan 2022, doi: 10.2352/j.percept.imaging.2022.5.000502.
[94] B. L. Vey, J. W. Gichoya, A. Prater, and C. M. Hawkins, "The Role of Generative Adversarial Networks in Radiation Reduction and Artifact Correction in Medical Imaging," J. Am. Coll. Radiol., vol. 16, no. 9 Pt B, pp. 1273-1278, Sep 2019, doi: 10.1016/j.jacr.2019.05.040.
[95] M. E. Laino, P. Cancian, L. S. Politi, M. G. Della Porta, L. Saba, and V. Savevski, "Generative Adversarial Networks in Brain Imaging: A Narrative Review," J Imaging, vol. 8, no. 4, Mar 23 2022, doi: 10.3390/jimaging8040083.
[96] H. Tang, H. Liu, and N. Sebe, "Unified Generative Adversarial Networks for Controllable Image-to-Image Translation," IEEE Transactions on Image Processing, vol. 29, pp. 8916-8929, 2020, doi: 10.1109/TIP.2020.3021789.
[97] K. Ko, T. Yeom, and M. Lee, "SuperstarGAN: Generative adversarial networks for image-to-image translation in large-scale domains," Neural Netw., vol. 162, pp. 330-339, May 2023, doi: 10.1016/j.neunet.2023.02.042.
[98] K. Matsubara, M. Ibaraki, M. Nemoto, H. Watabe, and Y. Kimura, "A review on AI in PET imaging," Ann. Nucl. Med., vol. 36, no. 2, pp. 133-143, Feb 2022, doi: 10.1007/s12149-021-01710-8.
[99] Z. Hu et al., "Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks," Phys. Med. Biol., vol. 65, no. 21, p. 215010, Nov 3 2020, doi: 10.1088/1361-6560/aba5e9.
[100] Y. Zhou, Z. Yang, H. Zhang, E. Chang, Y. Fan, and Y. Xu, 3D Segmentation Guided Style-based Generative Adversarial Networks for PET Synthesis. 2022.
[101] I. D. Apostolopoulos, N. D. Papathanasiou, D. J. Apostolopoulos, and G. S. Panayiotakis, "Applications of Generative Adversarial Networks (GANs) in Positron Emission Tomography (PET) imaging: A review," Eur. J. Nucl. Med. Mol. Imaging, vol. 49, no. 11, pp. 3717-3739, Sep 2022, doi: 10.1007/s00259-022-05805-w.
[102] A. Ghafari et al., "Generation of(18)F-FDG PET standard scan images from short scans using cycle-consistent generative adversarial network," Phys. Med. Biol., vol. 67, no. 21, Oct 19 2022, doi: 10.1088/1361-6560/ac950a.
[103] H. J. Choi, M. Seo, A. Kim, and S. H. Park, "Generation of Conventional (18)F-FDG PET Images from (18)F-Florbetaben PET Images Using Generative Adversarial Network: A Preliminary Study Using ADNI Dataset," Medicina (Kaunas), vol. 59, no. 7, Jul 10 2023, doi: 10.3390/medicina59071281.
[104] K. T. Chen et al., "Generative Adversarial Network-Enhanced Ultra-Low-Dose [(18)F]-PI-2620 τ PET/MRI in Aging and Neurodegenerative Populations," AJNR Am. J. Neuroradiol., vol. 44, no. 9, pp. 1012-1019, Sep 2023, doi: 10.3174/ajnr.A7961.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92046-
dc.description.abstract背景介紹
類澱粉蛋白正子斷層掃描(PET)在診斷腦部疾病,如阿茲海默症方面是一項強大並且廣泛應用的造影技術。最近的研究亦顯示從早期(Early-phase)類澱粉蛋白放射性示蹤劑成像中能夠獲取腦部血流的相關訊息。然而,受檢者需要經過長時間的等待使示蹤劑於腦部的吸收達到穩定狀態,此漫長的等待過程可能會給病患帶來一定程度的不適和焦慮感,增加病患在掃描過程中移動的可能性,進而造成影像上假影的產生,降低其診斷品質。為了縮短整體類澱粉蛋白PET的檢查時間,以及在單次掃描中能同時取得腦血流和腦部類澱粉蛋白沉積的相關資訊,將利用早期類澱粉蛋白的PET影像透過深度學習的方法生成晚期(Late-phase)類澱粉蛋白的PET影像,並且在生成過程中加入多模態的解剖性影像(電腦斷層掃描[CT]和磁共振造影[MRI]),探討其對於影像生成之影響。
研究方法
我們在此回溯性研究中所使用的影像資料來自於52位受試者,PET檢查中所使用的類澱粉蛋白放射性示蹤劑為[11C]-Pittsburgh Compound-B (PiB),而PET影像的收取採用動態掃描模式。研究中我們使用MATLAB (R2021b) 和SPM12進行影像的前處理。晚期類澱粉蛋白PET影像(Ground Truth)利用示蹤劑注射後40~70分鐘的PET影像產生,而早期類澱粉蛋白PET影像則透過示蹤劑注射之後前20分鐘的PET影像來生成。我們訓練U-net神經網絡來生成影像,神經網絡的輸入有五種不同情況(Model 1:只有早期類澱粉蛋白PET影像、Model 2:早期類澱粉蛋白PET和CT影像、Model 3:早期類澱粉蛋白PET和T1加權MR影像、Model 4:早期類澱粉蛋白PET、CT和T1加權MR影像以及Model 5:早期類澱粉蛋白PET和T2加權MR影像)。此外,在過程中我們加入資料增強與交叉驗證的方法幫助神經網絡訓練。最後利用峰值訊噪比(PSNR)、結構相似性(SSIM)以及標準攝取值比值(SUVr)對生成影像與晚期類澱粉蛋白PET影像進行比較,以此來評估網絡生成影像之成效。
結果
由神經網絡所生成的影像和作為網絡輸入的早期類澱粉蛋白PET影像相較之下有著明顯圖像視覺上的改善,更加接近晚期類澱粉蛋白PET影像,但卻顯得較為平滑。此外,於峰值訊噪比以及結構相似性兩項指標中皆表現出統計上顯著性的增加(p<0.05)。然而,經由不同組合的影像輸入所生成的結果在彼此之間雖然有數值上的差異,但皆未呈現出統計上的顯著性。在SUVr指標中,根據生成影像與晚期類澱粉蛋白PET影像在額葉、頂葉、顳葉、後扣帶皮層以及楔前葉這五個腦區以小腦做為參考區域所計算出的結果,顯示兩者於這五個腦區的SUVr值在統計上皆未有顯著性的差異存在。但是在加入多模態解剖性影像前後並未觀察到明顯的趨勢變化。
結論
研究結果顯示透過深度學習的神經網絡對晚期類澱粉蛋白PET影像進行預測具有可行性。此外,在訓練過程中加入CT與MR等不同模態的解剖性影像對於網絡生成PET影像亦是可行的。然而在峰值訊噪比、結構相似性指標中,加入多模態解剖性影像前後所得到的數值並未有顯著性的差異,而在SUVr指標中亦未觀察到明顯的趨勢變化。因此,在神經網絡訓練過程中加入解剖性影像並不會對影像預測及生成產生負面的影響,然而是否具有正向的助益還需要更進一步的研究來驗證。
zh_TW
dc.description.abstractIntroduction
Amyloid positron emission tomography (PET) is a powerful and widespread imaging technique in diagnosing brain disorders such as Alzheimer's disease. Recent findings have also shown that information related to blood flow can be obtained with early-phase amyloid radiotracer imaging. However, it takes a long period of time for the radiotracer uptake to reach steady-state, which may bring discomfort and anxiety to patients and increase the possibility of image artifacts caused by patient motion. For shortening the total duration of the amyloid PET exam and to obtain both flow-related and amyloid plaque deposition information in a single scan, deep learning methods have been proposed to generate late-phase amyloid PET images from dynamic early-phase amyloid PET images. Here, the contribution of multimodal anatomical images (computed tomography [CT] and magnetic resonance imaging [MRI]) in PET image synthesis is investigated.
Methods
The images used in this retrospective study were obtained from 52 participants. The amyloid radiotracer [11C]-Pittsburgh Compound-B (PiB) was administered and scanned with a dynamic PET protocol. MATLAB (R2021b) and SPM12 were used for image preprocessing. The late-phase PET image (ground truth) was created by the 40-70 minutes post-injection dynamic PET data, and the early-phase PET image was generated by averaging the frames from 0 to 20 minutes post-injection, respectively. U-nets were trained in this work with the inputs being combinations of various multimodal images (Model 1: early-phase PET images only, Model 2: early-phase PET and CT images, Model 3: early-phase PET and T1-weighted MR images, Model 4: early-phase PET, CT, and T1-weighted MR images, and Model 5: early-phase PET and T2-weighted MR images). Data augmentation and 10-fold cross-validation were used in the network training. For each axial slice, the image quality of the synthesized PET image was compared to the ground truth image using peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and standardized uptake value ratio (SUVr).
Results
Qualitatively, the images generated by the networks exhibited visible improvements compared to the early-phase PET images and were visually similar to the late-phase PET images. However, the synthesized images were smoother than the late-phase PET images. In terms of PSNR and SSIM, the results generated from the five networks all demonstrated significant improvements (p-value < 0.05) when compared to the original early-phase PET images. Nevertheless, no significant differences were observed in PSNR and SSIM between all models. In terms of SUVr, there were no significant differences in results calculated from frontal lobe, parietal lobe, temporal lobe, posterior cingulate, and precuneus with cerebellum as reference region between all synthesized images and the late-phase PET images, but no specific trend was observed after incorporating CT and MR images into network training.
Conclusion
This study demonstrated that predicting the late-phase PET image from the early-phase PET image via deep learning neural networks is feasible. Moreover, the feasibility of incorporating multimodal anatomical images into the late-phase PET image generation by neural networks was also verified. However, there were no significant differences in PSNR as well as SSIM, and no specific pattern was observed in SUVr when incorporating various combinations of multimodal anatomical images. Therefore, incorporating multimodal anatomical images into neural network training does not have negative influences on image prediction. Nevertheless, whether it has positive effects on image synthesis requires further investigation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:16:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-04T16:16:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 v
目次 viii
圖次 x
表次 xii
第一章 背景介紹 1
1.1 醫學影像 1
1.2 PET造影 2
1.3 類澱粉蛋白PET造影 3
1.4 阿茲海默症 4
1.5 腦血管類澱粉蛋白病變 4
1.6 早期類澱粉蛋白PET影像 5
1.7 早期類澱粉蛋白PET影像之潛在應用 5
第二章 研究方法 7
2.1 受檢者資料與影像取得 7
2.2 影像前處理 8
2.3 神經網絡訓練 15
2.4 影像分析―峰值訊噪比與結構相似性 19
2.5 影像分析―標準攝取值比值 21
第三章 結果 27
第四章 討論 57
4.1 結果總述 57
4.2 研究中嘗試過的改良方法 58
4.3 當前研究限制與未來發展方向 60
第五章 結論 65
參考文獻 66
附錄―英文縮寫全名與中英文對照表 80
-
dc.language.isozh_TW-
dc.title探討在以深度學習方式生成類澱粉蛋白沉積正子斷層掃描影像的過程中加入多模態解剖性影像之成效zh_TW
dc.titleThe Effect of Multimodal Anatomical Images in Deep Learning-based Prediction of Amyloid Deposition from Dynamic Amyloid PETen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁祥光;顏若芳zh_TW
dc.contributor.oralexamcommitteeHsiang-Kuang Liang;Ruoh-Fang Yenen
dc.subject.keyword類澱粉蛋白造影,早期PET影像,多模態影像,神經網絡,影像生成,zh_TW
dc.subject.keywordamyloid imaging,early-phase PET,multimodal images,neural networks,image synthesis,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202400468-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved