Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92038
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃恆獎zh_TW
dc.contributor.advisorHeng-Chiang Huangen
dc.contributor.author徐可庭zh_TW
dc.contributor.authorKo-Ting Hsuen
dc.date.accessioned2024-03-04T16:13:49Z-
dc.date.available2024-03-05-
dc.date.copyright2024-03-04-
dc.date.issued2024-
dc.date.submitted2024-02-06-
dc.identifier.citation[中文部分]
天下創新學院(2020年3月)。解析跨世代生鮮網購「大食力」。遠東人。https://magazine.feg.com.tw/magazine/tw/magazine_detail.aspx?id=11819
行政院主計處(2010)。中華民國職業標準分類 第六次修訂。https://statdb.mol.gov.tw/html/svy12/0.職業標準分類電子書.pdf
行政院性別平等會(2021)。家庭組織型態(單人、夫妻、單親、核心、祖孫、三代、其他)。https://www.gender.ey.gov.tw/gecdb/Stat_Statistics_Query.aspx?sn=MwEtyBleRxJh%24lZApHWboQ%40%40&statsn=iGJRpsNX45yniGDj!w1ueQ%40%40&d=&n=201193
李芝熒(2008)。人際關係及個人特質與國中生網路使用行為之關聯性研究。 [未出版之碩士論文]。國立成功大學。
邱皓政(2019)。量化研究與統計分析SPSS與R資料分析範例解析全新六版 (第六版)。五南出版社。
高敬原(2020年6月23日)。五千人群聊的LINE社群上線!六大常見QA一次看。數位時代。https://www.bnext.com.tw/article/58194/line-open-chat-launch
黃厚銘(2002)。網路上的身份認同。資訊社會研究(Journal of Cyber Culture and Information Society),2, 226–228。http://hdl.handle.net/11536/123681
MIC產業情報研究所(2019)。【網購調查系列一】網購消費占比達16.5% 愛用電商平台大排名。https://mic.iii.org.tw/news.aspx?id=516
TWNIC台灣財團法人台灣網路資訊中心(2023)。2023年台灣網路報告。https://www.twnic.tw/doc/twrp/202308e.pdf

[英文部分]
Allison, S. T., & Messick, D. M. (1985). The group attribution error. Journal of Experimental Social Psychology, 21(6), 563–579. https://doi.org/10.1016/0022-1031(85)90025-3
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130–1132. https://doi.org/10.1126/science.aaa1160
Bargh, J. A., McKenna, K. Y. A., & Fitzsimons, G. M. (2002). Can you see the real me? Activation and expression of the “true self” on the Internet. Journal of Social Issues, 58(1), 33–48. https://doi.org/10.1111/1540-4560.00247
Bauman, K. P., & Geher, G. (2002). We think you agree: The detrimental impact of the false consensus effect on behavior. Current Psychology: A Journal for Diverse Perspectives on Diverse Psychological Issues, 21(4), 293–318. https://doi.org/10.1007/s12144-002-1020-0
Baym, N. K. (1995). The emergence of community in computer-mediated communication. In S. G. Jones (Ed.), CyberSociety: Computer-mediated Communication and Community, 138–163. Sage Publications, Inc.
Bearden, W. O., Netemeyer, R. G., & Teel, J. E. (1989). Measurement of consumer susceptibility to interpersonal influence. Journal of Consumer Research, 15(4), 473–481. https://doi.org/10.1086/209186
Bohlmann, J. D., Rosa, J. A., Bolton, R. N., & Qualls, W. J. (2006). The effect of group interactions on satisfaction judgments: Satisfaction escalation. Marketing Science, 25(4), 301–321. https://doi.org/10.1287/mksc.1050.0182
Bosveld, W., Koomen, W., & van der Pligt, J. (1994). Selective exposure and the false consensus effect: The availability of similar and dissimilar others. British Journal of Social Psychology, 33(4), 457–466. https://doi.org/10.1111/j.2044-8309.1994.tb01041.x
Bruns, A. (2019). Filter bubble. Internet Policy Review, 8(4), 1–14. https://doi.org/10.14763/2019.4.1426
Bunker, C. J., & Varnum, M. E. W. (2021). How strong is the association between social media use and false consensus? Computers in Human Behavior, 125, Article 106947. https://doi.org/10.1016/j.chb.2021.106947
Burnkrant, R. E., & Cousineau, A. (1975). Informational and normative social influence in buyer behavior. Journal of Consumer Research, 2(3), 206–215. https://doi.org/10.1086/208633
Calder, B. J., & Burnkrant, R. E. (1977). Interpersonal influence on consumer behavior: An attribution theory approach. Journal of Consumer Research, 4(1), 29–38. https://doi.org/10.1086/208676
Cherry, K. (2023, May 19). Understanding Attribution in Social Psychology. Verywell Mind. https://www.verywellmind.com/understanding-attribution-in-social-psychology-2795906
Choi, I., & Cha, O. (2019). Cross-cultural examination of the false consensus effect. Frontiers in Psychology, 10, 2747. https://doi.org/10.3389/fpsyg.2019.02747
Chung, M., Jang, Y., Lapinski, M. K., Kerr, J. M., Zhao, J., Shupp, R., & Peng, T.-Q. (2022). I do, therefore I think it is normal: The causal effects of behavior on descriptive norm formation and evolution. Social Influence, 17(1), 17–35. https://doi.org/10.080/15534510.2022.2052955
Cialdini, R. B., Demaine, L. J., Sagarin, B. J., Barrett, D. W., Rhoads, K., & Winter, P. L. (2006). Managing social norms for persuasive impact. Social Influence, 1(1), 3–15. https://doi.org/10.1080/15534510500181459
Cinelli, M., De Francisci Morales, G., Galeazzi, A., et al. (2021). The echo chamber effect on social media. Proceedings of the National Academy of Sciences, 118(9), Article e2023301118. https://doi.org/10.1073/pnas.2023301118
Costa, J., Matos, A. P., Pinheiro, M. do R., & Salvador, M. do C. T. (2016). Evaluating Use and Attitudes Towards Social Media and ICT for Portuguese youth: The MTUAS-PY scale. In Proceedings of the 2nd icH & Hpsy International Conference on Health and Health Psychology. https://doi.org/10.15405/epsbs.2016.07.02.9
Cross, S. E., Morris, M. L., & Gore, J. (2002). Thinking about oneself and others: The relational-interdependent self-construal and social cognition. Journal of Personality and Social Psychology, 82(3), 399–418. https://doi.org/10.1037//0022-3514.82.3.399
Curtin, R., Presser, S., & Singer, E. (2000). The effects of response rate changes on the index of consumer sentiment. Public Opinion Quarterly, 64(4), 413–428. https://doi.org/10.1086/318638
Dawes, R. M., & Mulford, M. (1996). The false consensus effect and overconfidence: Flaws in judgment or flaws in how we study judgment? Organizational Behavior and Human Decision Processes, 65(3), 201–211. https://doi.org/10.1006/obhd.1996.0020
Del Vicario, M., Bessi, A., Zollo, F., et al. (2016). The spreading of misinformation online. PNAS Proceedings of the National Academy of Sciences of the United States of America, 113(3), 554–559. https://doi.org/10.1073/pnas.1517441113
Dodds, W. B., Monroe, K. B., & Grewal, D. (1991). Effects of price, brand, and store information on buyers’ product evaluations. Journal of Marketing Research, 28(3), 307–319. https://doi.org/10.1177/002224379102800305
Ebren, F. (2009). Susceptibility to interpersonal influence: A study in Turkey. Social Behavior and Personality: An International Journal, 37(8), 1051–1063. https://doi.org/10.2224/sbp.2009.37.8.1051
Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook “friends:“ Social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication, 12(4), 1143–1168. https://doi.org/10.1111/j.1083-6101.2007.00367.x
Festinger, L. (1957). A theory of cognitive dissonance. Stanford University Press.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley. https://people.umass.edu/aizen/f&a1975.html
Folkes, V. S. (1988). Recent Attribution Research in Consumer Behavior: A Review and New Directions. Journal of Consumer Research, 14(4), 548–565. https://doi.org/10.1086/209135
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
Gauthier, L. D. (2010). The False Consensus Effect: Projection or Conformity? [Unpublished doctoral dissertation]. Stanford University.
Gill, H., & Rojas, H. (2022). Perceiving immigrants as a threat: A motivational approach to false consensus. Communication Research, 49(8), 1148–1175. https://doi.org/10.1177/00936502211043699
Gilovich, T., Jennings, D. L., & Jennings, S. (1983). Causal focus and estimates of consensus: An examination of the false-consensus effect. Journal of Personality and Social Psychology, 45(3), 550–559. https://doi.org/10.1037/0022-3514.45.3.550
Hagel, J. III, & Armstrong, A. G. (1997). Net gain: Expanding markets through virtual communities. Journal of Marketing, 62(1), 120–121. https://doi.org/10.2307/1251808
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate Data Analysis (5th ed.). Macmillan.
Hayes, A. F. (2022). Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition: A Regression-Based Approach. The Guilford Press.
Heider, F. (1958). The Psychology of Interpersonal Relations. John Wiley & Sons Inc. https://doi.org/10.1037/10628-000
Herzog, W., Hattula, J. D., & Dahl, D. W. (2021). Marketers Project Their Personal Preferences onto Consumers: Overcoming the Threat of Egocentric Decision Making. Journal of Marketing Research, 58(3), 456–475. https://doi.org/10.1177/0022243721998378
Hofmann, V., Schwayer, L. M., Stokburger-Sauer, N. E., & Wanisch, A. T. (2021). Consumers’ self-construal: Measurement and relevance for social media communication success. Journal of Consumer Behaviour. 20(4), 959–979. https://doi.org/10.1002/cb.1927
Jenkins-Guarnieri, M. A., Wright, S. L., & Johnson, B. D. (2012). Development and validation of a social media use integration scale. Psychology of Popular Media Culture, 2(1), 38. https://doi.org/10.1037/a0030277
Johnson, T. J., Bichard, S. L., & Zhang W. (2009). Communication communities or “cyber ghettos?“: A path analysis model examining factors that explain selective exposure to blogs. Journal of Computer-Mediated Communication, 15(1), 60–82. https://doi.org/10.1111/j.1083-6101.2009.01492.x
Jones, E. E., & Nisbett, R. E. (1987). The actor and the observer: Divergent perceptions of the causes of behavior. In E.E. Jones, D. E. Kanouse, H. H. Kelley, R. E. Nisbett, S. Valines, &B. Weiner (Eds.), Attribution: Perceiving the causes of behavior, 79–94. Lawrence Erlbaum Associates, Inc.
Knee, C. R., & Neighbors, C. (2002). Self-determination, perception of peer pressure, and drinking among college students. Journal of Applied Social Psychology, 32, 522–543. https://doi.org/10.1111/j.1559-1816.2002.tb00228.x
Knobloch‐Westerwick, S., Johnson, B. K., & Westerwick, A. (2015). Confirmation bias in online searches: Impacts of selective exposure before an election on political attitude strength and shifts. Journal of Computer-Mediated Communication, 20(2), 171–187. https://doi.org/10.1111/jcc4.12105
Krueger, J. I., & Funder, D. C. (2004). Towards a balanced social psychology: Causes, consequences, and cures for the problem-seeking approach to social behavior and cognition. Behavioral and Brain Sciences, 27(3), 313–327. https://doi.org/10.1017/S0140525X04000081
Krueger, J., & Clement, R. W. (1994). The truly false consensus effect: An ineradicable and egocentric bias in social perception. Journal of Personality and Social Psychology, 67(4), 596–610. https://doi.org/10.1037/0022-3514.67.4.596
Krueger, J. (1998). On the perception of social consensus. Advances in Experimental Social Psychology, 30, 163–240. https://doi.org/10.1016/S0065-2601(08)60384-6
Li, C.-Y. (2017). How social commerce constructs influence customers’ social shopping intention? An empirical study of a social commerce website. Technological Forecasting and Social Change, 144, 282–294. https://doi.org/10.1016/j.techfore.2017.11.026
Luzsa, R., & Mayr, S. (2019). Links between users’ online social network homogeneity, ambiguity tolerance, and estimated public support for own opinions. Cyberpsychology, Behavior, and Social Networking, 22(5), 325–329. http://doi.org/10.1089/cyber.2018.0550
Marks, G., & Miller, N. (1987). Ten years of research on the false-consensus effect: An empirical and theoretical review. Psychological Bulletin, 102(1), 72–90. https://doi.org/10.1037/0033-2909.102.1.72
Merkle, E. R., & Richardson, R. A. (2004). Digital dating and virtual relating: Conceptualizing computer mediated romantic relationships. Family Relations, 49(2), 187–192. https://doi.org/10.1111/j.1741-3729.2000.00187.x
Monin, B., & Norton, M. I. (2003). Perceptions of a fluid consensus: Uniqueness bias, false consensus, false polarization, and pluralistic ignorance in a water conservation crisis. Personality and Social Psychology Bulletin, 29(5), 559–567. https://doi.org/10.1177/0146167203029005001
Neighbors, C., Larimer, M. E., & Lewis, M. A. (2004). Targeting misperceptions of descriptive drinking norms: Efficacy of a computer-delivered personalized normative feedback intervention. Journal of Consulting and Clinical Psychology, 72(3), 434–447. https://doi.org/10.1037/0022-006X.72.3.434
Netemeyer, R. G., Bearden, W. O., & Teel, J. E. (1992). Consumer susceptibility to interpersonal influence and attributional sensitivity. Psychology & Marketing, 9(5), 381–405. https://doi.org/10.1002/mar.4220090504
Papacharissi, Z. (2004). Democracy online: Civility, politeness, and the democratic potential of online discussion groups. New Media & Society, 6, 259–283. https://doi.org/10.1177/1461444804041444
Park, H. S. (2012). Culture, need for uniqueness, and the false consensus effect. Journal of Social, Evolutionary, and Cultural Psychology, 6(1), 82–92. https://doi.org/10.1037/h0099223
Parks, M. R., & Floyd, K. (1996). Making friends in cyberspace. Journal of Communication, 46(1), 80–97. https://doi.org/10.1111/j.1460-2466.1996.tb01462.x
Reisenzein R, Rudolph U. (2008). The discovery of common-sense psychology. Social Psychology, 39(3), 125–133. https://doi.org/10.1027/1864-9335.39.3.125
Rheingold, H. (1993). The Virtual Community: Homesteading on the Electronic Frontier. https://doi.org/10.7551/mitpress/7105.001.0001
Roberts, J. A., Manolis, C., & Tanner, J. F., Jr. (2008). Interpersonal influence and adolescent materialism and compulsive buying. Social Influence, 3(2), 114–131. https://doi.org/10.1080/15534510802185687
Ross, L., Greene, D., & House, P. (1977). The false consensus effect: An egocentric bias in social perception and attribution processes. Journal of Experimental Social Psychology, 13(3), 279–301. https://doi.org/10.1016/0022-1031(77)90049-X
Sarason, S. B. (1974). The psychological sense of community: Prospects for a community psychology. Brookline Books.
Schmitt, J. (2015). Attribution theory. Wiley Encyclopedia of Management, 9, 1–3. https://doi.org/10.1002/9781118785317.weom090014
Schwartz, B. (2009). The Paradox of Choice: Why More Is Less (Rev. ed.). HarperCollins.
Segrist, D., Bartels, L. K., & Nordstrom, C. R. (2018). “But everyone else is doing it:” A social norms perspective on classroom incivility. College Teaching, 66:4, 181–186. https://doi.org/10.1080/87567555.2018.1482858
Sherman, S. J., Presson, C. C., & Chassin, L. (1984). Mechanisms underlying the false consensus effect: The special role of threats to the self. Personality and Social Psychology Bulletin, 10(1), 127–138. https://doi.org/10.1177/0146167284101015
Sigerson, L., & Cheng, C. (2018). Scales for measuring user engagement with social network sites: A systematic review of psychometric properties. Computers in Human Behavior, 83, 87–105. https://doi.org/10.1016/j.chb.2018.01.023
Simon, K. (2022, February). Digital 2022: TAIWAN. DataReportal. https://datareportal.com/reports/digital-2022-taiwan
Simon, K. (2023, February). Digital 2023: TAIWAN. DataReportal. https://datareportal.com/reports/digital-2023-taiwan
Singelis, T. M. (1994). The measurement of independent and interdependent self-construals. Personality and Social Psychology Bulletin, 20(5), 580–591. https://doi.org/10.1177/0146167294205014
Solomon, M. R. (1983). The role of products as social stimuli: A symbolic interactionism perspective. Journal of Consumer Research, 10(3), 319–329. https://doi.org/10.1086/208971
Stroud, N. J. (2008). Media use and political predispositions: Revisiting the concept of selective exposure. Political Behavior, 30, 341–366. https://doi.org/10.1007/s11109-007-9050-9
Tezcan, U. T. (2019). Popular Culture and Peer Effects in Consumption: Survey of Economic Consequences. In O. Ozgen (Ed.), Handbook of Research on Consumption, Media, and Popular Culture in the Global Age (pp. 25). IGI Global. https://doi.org/10.4018/978-1-5225-8491-9.ch002
Topaloglu, M., Caldibi, E., & Oge, G. (2016). The scale for the individual and social impact of students’ social network use: The validity and reliability studies. Computers in Human Behavior, 61, 350–356. https://doi.org/10.1016/j.chb.2016.03.036
Wojcieszak, M. E. (2008). False consensus goes online: Impact of ideologically homogeneous groups on false consensus. Public Opinion Quarterly, 72(4), 781–791. https://doi.org/10.1093/poq/nfn056
Wojcieszak, M. E. (2011). Computer-mediated false consensus: Radical online groups, social networks and news media. Mass Communication & Society, 14(4), 527–546. https://doi.org/10.1080/15205436.2010.513795
Zuckerman, M., & Mann, R. W. (1979). The other way around: Effects of causal attributions on estimates of consensus, distinctiveness, and consistency. Journal of Experimental Social Psychology, 15(6), 582–597. https://doi.org/10.1016/0022-1031(79)90053-2
Zuckerman, M., Mann, R. W., & Bernieri, F. J. (1982). Determinants of consensus estimates: Attribution, salience, and representativeness. Journal of Personality and Social Psychology, 42(5), 839–852. https://doi.org/10.1037/0022-3514.42.5.839
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/92038-
dc.description.abstract隨著科技進步,網路購物市場展現了巨大的發展潛力。社群媒體和網購的迅速崛起,特別是在 2021 年新冠疫情的刺激下,線上購物成為更加吸引人的選項。在這個過程中,社群媒體扮演了關鍵角色,不僅推動了對品牌的認知,也影響消費者的購買決策。在台灣, LINE 應用程式的普及率已高達 95.7% ,顯示出其在作為品牌資訊傳播管道方面的日益重要性。因而本研究試以「 LINE 社群」為例,深入分析社交商務中的錯誤共識效應。LINE 社群具備許多錯綜複雜的新興功能,是現在時興的社交軟體,但目前相關的研究仍顯不足。此外,錯誤共識效應理論在社交商務及消費者行為研究中的應用同樣稀少。考量到「食品」的普及性和網購調查的便利性,本研究將重點放在以「烘焙點心」為主題的 LINE 社群。經過文獻回顧,本研究將在烘焙點心的 LINE 社群中探尋社交商務中錯誤共識效應的存在及其對購買意願的相關性,同時闡明錯誤共識效應及其四個因果機制—選擇性接觸與可用認知、注意力集中與聚焦、因果歸因、自我保護動機—與購買意願之間的中介關係。

本研究於2023年10月23日至11月5日間,透過判斷性抽樣(purposive sampling)於烘焙點心 LINE 社群中發放 SurveyCake 平台問卷連結以收集相關樣本,最終有效樣本數為 300 筆。在本研究中,研究者將社群媒體使用程度作為控制變數,並運用 SPSS 統計分析軟體以及 PROCESS 路徑分析模組來進行數據分析。結果說明了錯誤共識效應在社交商務中確實存在,且對購買意願產生負面影響。此外,錯誤共識效應的四項因果機制中的三項—注意力集中與聚焦、因果歸因、自我保護動機—分別透過錯誤共識效應影響購買意願。這一結果發現了錯誤共識效應作為上述三個因果機制與購買意願之間的負向中介變數的角色。

整體而言,在學術貢獻上,本研究試圖補足LINE社群的研究缺口,並以錯誤共識效應理論解釋社交商務中的購物行為。並試著透過心理學、社會學與管理學理論發展出一套模型,用以解釋網路原生世代消費者在社交購物行為當中,社群產生之社群意識對於購買意願影響的運作機制:若社群參與者錯誤共識程度越低、其購買意願越高。而在實務意涵上,本研究亦提供品牌及企業社群行銷策略和建議。
zh_TW
dc.description.abstractWith the advancement of technology, the online shopping market has shown tremendous potential. The rapid rise of social media and online shopping, especially fueled by the 2021 COVID-19 pandemic, has made online shopping an increasingly attractive option. Social media plays a key role in online shopping, driving brand awareness and influencing consumers purchasing decisions. In Taiwan, the prevalence of the LINE app has reached 95.7%, highlighting its growing importance as a channel for brand information dissemination. This study focuses on the LINE community, specifically analyzing the “False Consensus Effect (FCE)” in social commerce. With its intricate emerging features, represents a popular social media platform. However, research on this topic is currently insufficient. Additionally, applying the FCE theory in social commerce and consumer behavior research is limited. Considering the widespread popularity of “food” and the convenience of online surveys, this study centers on the LINE community with a theme of “baking dessert.” Through a literature review, this study aims to explore the existence of the FCE in the LINE community focused on baking dessert. It investigates its relevance to purchasing intentions, elucidating the negative mediation relationships between the FCE and its four causal mechanisms—Selective Exposure and Cognitive Availability, Salience and Focus of Attention, Attribution Processing, and Self-protection Motivations—and purchasing intentions.

The study used purposive sampling to distribute SurveyCake platform questionnaires in the baking dessert LINE community, collecting a total of 300 valid responses from October 23 to November 5, 2023. Social media usage is considered a control variable in this study, with SPSS statistical analysis software and the PROCESS path analysis module utilized for data analysis. The results confirm the existence of the FCE in social commerce, negatively impacting purchasing intentions. Moreover, three of the four causal mechanisms—Salience and Focus of Attention, Attribution Processing, and Self-protection Motivations—each influence purchasing intentions through the FCE. This finding validates the role of the FCE as a mediator between these three causal mechanisms and purchasing intentions.

In academic contributions, this study aims to fill the research gap in LINE community studies, using the FCE theory to explain shopping behavior in social commerce. It seeks to develop a model through psychological, sociological, and management theories to explain the operational mechanisms of how community consciousness generated in social commerce affects purchasing intentions among consumers of the internet-native generation: the lower the FCE among community participants, the higher their purchasing intentions. In practical implications, the study provides actionable community marketing strategies and recommendations for brands and businesses.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-03-04T16:13:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-03-04T16:13:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………… i
誌謝…………………………………………………………………………………… ii
摘要…………………………………………………………………………………… iii
ABSTRACT………………………………………………………………………… iv
第一章 緒論………………………………………………………………………… 1
第一節 研究背景與動機……………………………………………………… 1
第二節 研究範疇……………………………………………………………… 2
第三節 研究目的、問題與流程……………………………………………… 4
第二章 文獻回顧…………………………………………………………………… 7
第一節 錯誤共識效應理論與購買意願……………………………………… 7
第二節 錯誤共識效應與LINE社群………………………………………… 14
第三節 錯誤共識效應與自我建構歸因……………………………………… 17
第四節 錯誤共識效應與消費者易受人際影響的程度……………………… 19
第五節 錯誤共識效應與社群媒體使用程度………………………………… 20
第三章 研究架構與方法…………………………………………………………… 22
第一節 研究架構……………………………………………………………… 22
第二節 研究變數定義與衡量………………………………………………… 23
第三節 研究方法與設計……………………………………………………… 34
第四節 資料分析方法………………………………………………………… 35
第四章 研究分析結果……………………………………………………………… 37
第一節 敘述性統計分析……………………………………………………… 37
第二節 測量模型分析………………………………………………………… 43
第三節 迴歸模型分析………………………………………………………… 50
第五章 結論與討論………………………………………………………………… 55
第一節 研究發現……………………………………………………………… 55
第二節 理論貢獻與實務意涵………………………………………………… 58
第三節 研究限制與未來研究方向…………………………………………… 62

參考文獻…………………………………………………………………………… 65
附錄………………………………………………………………………………… 76
-
dc.language.isozh_TW-
dc.subject錯誤共識效應zh_TW
dc.subject社交商務zh_TW
dc.subjectLINE社群zh_TW
dc.subject選擇性接觸與可用認知zh_TW
dc.subject注意力集中與聚焦zh_TW
dc.subject因果歸因zh_TW
dc.subject自我保護動機zh_TW
dc.subjectSelective Exposure and Cognitive Availabilityen
dc.subjectSocial Commerceen
dc.subjectLINE Communityen
dc.subjectSelf-protection Motivationsen
dc.subjectAttribution Processingen
dc.subjectSalience and Focus of Attentionen
dc.subjectFalse Consensus Effecten
dc.title社交商務中的錯誤共識效應─以LINE社群為例zh_TW
dc.titleThe False Consensus Effect in Social Commerce—Taking LINE Community as an Exampleen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor潘令妍zh_TW
dc.contributor.coadvisorLing-Yen Panen
dc.contributor.oralexamcommittee王仕茹;林嘉薇zh_TW
dc.contributor.oralexamcommitteeShih-Ju Wang;Chia-Wei Linen
dc.subject.keyword錯誤共識效應,社交商務,LINE社群,選擇性接觸與可用認知,注意力集中與聚焦,因果歸因,自我保護動機,zh_TW
dc.subject.keywordFalse Consensus Effect,Social Commerce,LINE Community,Selective Exposure and Cognitive Availability,Salience and Focus of Attention,Attribution Processing,Self-protection Motivations,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202400508-
dc.rights.note未授權-
dc.date.accepted2024-02-11-
dc.contributor.author-college管理學院-
dc.contributor.author-dept國際企業學系-
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
7.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved