Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9200
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor周必泰(Pi-Tai Chou)
dc.contributor.authorChia-Cheng Kangen
dc.contributor.author康佳正zh_TW
dc.date.accessioned2021-05-20T20:12:44Z-
dc.date.available2019-07-23
dc.date.available2021-05-20T20:12:44Z-
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-24
dc.identifier.citationCh1
(1) Brus, L. E. J. Chem. Phys. 1984, 80, 4403-4409.
(2) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715.
(3) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226-13239.
(4) Alivisatos, A. P. Science 1996, 271, 933-937.
(5) Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R. Acc. Chem. Res. 1999, 32, 415-423.
(6) Klimov. V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Science 2000, 290, 314-317.
(7) Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Science 2002, 295, 1506-1508.
(8) Bakueva, L.; Musikhin, S.; Hines, M. A.; Chang, T. W. F.; Tzolov, M.; Scholes, G. D.; Sargent, E. H. Appl. Phys. Lett. 2003, 82, 2895-2897.
(9) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425-2427.
(10) McDonald, S. A.; Konstantatos, G.; zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138-142.
(11) Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409, 66-69.
(12) Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D.; Lieber, C. M. Nature 2002, 415, 617-620.
(13) Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59-61.
(14) Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Science 2001, 292, 2060-2063.
(15) Talapin, D. V.; Koeppe, R.; Gotzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, A. L.; Benson, O.; Feldmann, J.; Weller, H. Nano Lett. 2003, 3, 1677-1681.
(16) Hikmet, R. A. M.; Chin, P. T. K.; Talapin, D. V.; Weller, H. Adv. Mater. 2005, 17, 1436-1439.
(17) Acharya, S.; Patla, I.; Kost, J.; Efrima, S.; Golan, V. J. Am. Chem. Soc. 2006, 128, 9294-9295.
(18) Mullin, J. W. Crystallization, 4th Ed., Butterworth Heinemann, Boston, 2001.
(19) Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700-12706.
(20) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 1389-1395.
(21) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183-184.
(22) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 3343-3353.
(23) Peng, X. G. Adv. Mater. 2003, 15, 459-463.
(24) Soloviev, V. N.; Eichhofer, A.; Fenske, D.; Banin, U. J. Am. Chem. Soc. 2000, 122, 2673-2674.
(25) Vossmeyer, T.; Reck, G.; Schulz, B.; Haupt, E. T. K.; Weller, H. Science 1995, 267, 1477-1479.
(26) Herron, N.; Calabress, J. C.; Farneth, W. E.; Wang, Y. Science 1993, 259, 1426-1428.
(27) Dance, I. G.; Choy, A.; Scudder, L. J. Am. Chem. Soc. 1984, 106, 6285-6295.
(28) Jun, Y. W.; Lee, S. M.; Kang, N. J.; Cheon, J. W. J. Am. Chem. Soc. 2001, 123, 5150-5151.
(29) Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237-240.
(30) Wang, Y.; Tang, Z.; Liang, X.; Liz-Marzan, L. M.; Kotov, N. A. Nano Lett. 2004, 4, 225-231.
(31) Liang, X.; Tang, S.; Tang, Z.; Kotov, N. A. Langmuir 2004, 20, 1016-1020.
(32) Wang, Y.; Tang, Z.; Tang, S.; Kotov, N. A. Nano Lett. 2005, 5, 243-248.
(33) Shim, M.; Guyot-Sionnest, P. J. Chem. Phys. 1999, 111, 6955-6964.
(34) Goel, S. C.; Chiang, M. Y.; Buhro, W. E. J. Am. Chem. Soc. 1990, 112, 5636−5637.
(35) Matchett, M. A.; Viano, A. M.; Adolphi, N. L.; Stoddard, R. D.; Buhro, W. E.; Conradi, M. S.; Gibbons, P. C. Chem. Mater. 1992, 4, 508−511.
(36) Buhro, W. E. Polyhedron 1994, 13, 1131−1148.
(37) Trentler, T. J.; Hichman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science 1995, 270, 1791−1794.
(38) Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89−90.
(39) Wang, F.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Inorg. Chem. 2006, 45, 7511−7521.
(40) Dong, A.; Wang, F.; Daulton, T. L.; Buhro, W. E. Nano Lett. 2007, 7, 1308−1313.
(41) Dong, A.; Tang, R.; Buhro, W. E. J. Am. Chem. Soc. 2007, 129, 12254−12262.
Ch2
(1) Wang, Z. L. Characterization of Nanophase Materials, Wiley & Sons: New York, 2000.
(2) Williams, D. B.; Carter, C. B. Transmission Electron Microscopy, Plenum: New York, 1996.
(3) Ahn, C. V. Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Wiley & Sons: New York, 2004.
(4) Cao, G. Nanostructures & Nanomaterials, Imperial College: London, 2004.
(5) Callister, Jr. W. D. Materials Science and Engineering an Introduction, Wiley & Sons: New York, 2003.
(6) http://www.olympusfluoview.com/
(7) http://www.microscopyu.com/
(8) Arashiro, E. Y.; Demarquette, N. R. Mater. Res. 1999, 2, 23-32.
(9) Cabezas, M. G.; Bateni, A.; Montanero, J. M.; Neumann, A. W. Langmuir 2006, 22, 10053-10060.
Ch3
(1) Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59-61.
(2) Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P. Science 2001, 292, 2060-2063.
(3) Talapin, D. V.; Koeppe, R.; Gotzinger, S.; Kornowski, A.; Lupton, J. M.; Rogach, A. L.; Benson, O.; Feldmann, J.; Weller, H. Nano Lett. 2003, 3, 1677-1681.
(4) Hikmet, R. A. M.; Chin, P. T. K.; Talapin, D. V.; Weller, H. Adv. Mater. 2005, 17, 1436-1439.
(5) Acharya, S.; Patla, I.; Kost, J.; Efrima, S.; Golan, V. J. Am. Chem. Soc. 2006, 128, 9294-9295.
(6) Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700-12706.
(7) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 1389-1395.
(8) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183-184.
(9) Jun, Y. W.; Lee, S. M.; Kang, N. J.; Cheon, J. W. J. Am. Chem. Soc. 2001, 123, 5150-5151.
(10) Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Nano Lett. 2001, 1, 349-351.
(11) Qu, L. H.; Peng, Z. A.; Peng, X. G. Nano Lett. 2001, 1, 333-337.
(12) Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049-2055.
(13) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 3343-3353.
(14) Manna, L.; Scher, E. C.; Li, L. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2002, 124, 7136-7145.
(15) Yu, W. W.; Peng, X. G. Angew. Chem. Int. Ed. 2002, 41, 2368-2371.
(16) Peng, X. G. Adv. Mater. 2003, 15, 459-463.
(17) Mokari, T.; Banin, U. Chem. Mater. 2003, 15, 3955-3960.
(18) Yu, W. W.; Wang, Y. A.; Peng, X. G. Chem. Mater. 2003, 15, 4300-4308.
(19) Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L. W.; Alivisatos, A. P. Nature 2004, 430, 190-195.
(20) Qu, L. H.; Yu, W. W.; Peng, X. G. Nano Lett. 2004, 4, 465-469.
(21) Shieh, F.; Saunders, A. E.; Korgel, B. A. J. Phys. Chem. B 2005, 109, 8538-8542.
(22) Kumar, S.; Nann, T. Small 2006, 2, 316-329.
(23) Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science 2005, 310, 462-464.
(24) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425-2427.
(25) Qnsager, L. Ann. N. Y. Sci. 1949, 51, 627-659.
(26) Li, L. S.; Walda, J.; Manna, L.; Alivisatos, A. P. Nano Lett. 2002, 2, 557-560.
(27) Li, L. S.; Alivisatos, A. P. Adv. Mater. 2003, 15, 408-411.
(28) Talapin, D. V.; Shevchenko, E. V.; Mirry, C. B.; Kornowski, A; Forster, S.; Weller, H. J. Am. Chem. Soc. 2004, 126, 12984-12988.
(29) Ryan, K. M.; Mastroianni, A.; Stancil, K. A.; Liu, H. T; Alivisatos, A. P. Nano Lett. 2006, 6, 1479-1482.
(30) Gupta, S.; Zhang, Q. L.; Emrick, T.; Russell, T. P. Nano Lett. 2006, 6, 2066-2069.
(31) Ahmed, S.; Ryan, K. M. Nano Lett. 2007, 7, 2480-2485.
(32) Carbone, L.; Nobile, C.; Giorgi, M. D.; Sala, F. D.; Morello, G. Pompa, P. Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S.; Cingolani, R.; Krahne, R.; Manna, L. Nano Lett. 2007, 7, 2942-2950.
(33) Ghezelbash, A.; Koo, B.; Korgel, B. A. Nano Lett. 2006, 6, 1832-1836.
(34) He, J.; Zhang, Q. L.; Gupta, S; Emrick, T.; Russell, T. P.; Thiyagarajan, P. Small 2007, 3, 1214-1217.
(35) Winkel, D. J. Phys. Chem. 1965, 69, 348-350.
(36) Wishnia, A. J. Phys. Chem. 1963, 67, 2079-2082.
(37) Bent, S. F. ACS Nano 2007, 1, 10-12.
Ch4
(1) Cui, Y.; Duan, X.; Hu, J.; Lieber C. M. J. Phys. Chem. B 2000, 104, 5213-5216.
(2) Cui, Y. ; Lieber, C. M. Science 2001, 291, 851-853.
(3) Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K. H. ; Lieber, C. M. Science 2001, 294, 1313-1317.
(4) Wang, J. ; Gudiksen, M. S. ; Duan, X. ; Cui, Y. ; Lieber, C. M. Science 2001, 293, 1455-1457.
(5) Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66-69.
(6) Law, M.; Greene, L.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455-459.
(7) Huang, M.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897-1899.
(8) Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Nature 2003, 421, 241-245.
(9) Jing, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Zapien, J. A.; Lee, S. T. Adv. Mater. 2006, 18, 1527-1532.
(10) Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Science 2001, 293, 1289-1292.
(11) Favier, F.; Walter, E. C.; Zach, M. P.; Benter, T.; Penner, R. M. Science 2001, 293, 2227-2231.
(12) Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P. Angew. Chem. Int. Ed. 2002, 41, 2405-2408.
(13) Li, J.; Ng, H. T.; Cassel, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Han, J.; Meyyappan, M. Nano Lett. 2003, 3, 597-602.
(14) Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science 1995, 270, 1791-1794.
(15) Yu, H.; Gibbons, P. C.; Kelton, K. F.; Buhro, W. E. J. Am. Chem. Soc. 2001, 123, 9198-9199.
(16) Yu, H.; Li, J.; Loomis, R. A.; Wang, L. W.; Buhro, W. E. Nat. Mater. 2003, 2, 517-520.
(17) Buhro, W. E.; Colvin, V. L. Nat. Mater. 2003, 2, 138-139.
(18) Yu, H.; Buhro, W. E. Adv. Mater. 2003, 15, 416-419.
(19) Yu, H.; Li, J.; Loomis, R. A.; Patrick, C. G.; Wang, L. W.; Buhro, W. E. J. Am. Chem. Soc. 2003, 125, 16168-16169.
(20) Wang, F.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Inorg. Chem. 2006, 45, 7511-7521.
(21) Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237-240.
(22) Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. J. Am. Chem. Soc. 2005, 127, 7140-7147.
(23) Prashan, N.; Xu, H.; Peng, X. Nano Lett. 2006, 6, 720-724.
(24) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183-184.
(25) Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Nat. Mater. 2003, 2, 382-385.
(26) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 1389-1395.
(27) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 3343-3353.
(28) Peng, X. G. Adv. Mater. 2003, 15, 459-463.
(29) Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700-12706.
(30) Jun, Y. W.; Lee, S. M.; Kang, N. J.; Cheon, J. W. J. Am. Chem. Soc. 2001, 123, 5150-5151.
Ch5
(1) Brus, L. E. J. Chem. Phys. 1984, 80, 4403-4409.
(2) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715.
(3) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226-13239.
(4) Alivisatos, A. P. Science 1996, 271, 933-937.
(5) Markovich, G.; Collier, C. P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R. Acc. Chem. Res. 1999, 32, 415-423.
(6) Klimov. V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Science 2000, 290, 314-317.
(7) Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S. H.; Banin, U. Science 2002, 295, 1506-1508.
(8) Bakueva, L.; Musikhin, S.; Hines, M. A.; Chang, T. W. F.; Tzolov, M.; Scholes, G. D.; Sargent, E. H. Appl. Phys. Lett. 2003, 82, 2895-2897.
(9) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425-2427.
(10) McDonald, S. A.; Konstantatos, G.; zhang, S.; Cyr, P. W.; Klem, E. J. D.; Levina, L.; Sargent, E. H. Nat. Mater. 2005, 4, 138-142.
(11) Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Nature 2001, 409, 66-69.
(12) Gudiksen, M. S.; Lauhon, L. J.; Wang, J. F.; Smith, D.; Lieber, C. M. Nature 2002, 415, 617-620.
(13) Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700-12706.
(14) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 1389-1395.
(15) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183-184.
(16) Jun, Y. W.; Lee, S. M.; Kang, N. J.; Cheon, J. W. J. Am. Chem. Soc. 2001, 123, 5150-5151.
(17) Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. P. Nano Lett. 2001, 1, 349-351.
(18) Qu, L. H.; Peng, Z. A.; Peng, X. G. Nano Lett. 2001, 1, 333-337.
(19) Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049-2055.
(20) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 3343-3353.
(21) Manna, L.; Scher, E. C.; Li, L. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2002, 124, 7136-7145.
(22) Yu, W. W.; Peng, X. G. Angew. Chem. Int. Ed. 2002, 41, 2368-2371.
(23) Peng, X. G. Adv. Mater. 2003, 15, 459-463.
(24) Mokari, T.; Banin, U. Chem. Mater. 2003, 15, 3955-3960.
(25) Yu, W. W.; Wang, Y. A.; Peng, X. G. Chem. Mater. 2003, 15, 4300-4308.
(26) Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L. W.; Alivisatos, A. P. Nature 2004, 430, 190-195.
(27) Qu, L. H.; Yu, W. W.; Peng, X. G. Nano Lett. 2004, 4, 465-469.
(28) Shieh, F.; Saunders, A. E.; Korgel, B. A. J. Phys. Chem. B 2005, 109, 8538-8542.
(29) Kumar, S.; Nann, T. Small 2006, 2, 316-329.
(30) Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U. Science 2004, 304, 1787-1790.
(31) Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Nat. Mater. 2005, 4, 855-863.
(32) Salant, A.; Amitay-Sadovsky, E.; Banin, U. J. Am. Chem. Soc. 2006, 128, 10006-10007.
(33) Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L. W.; Alivisatos, A. P. Science 2007, 317, 355-358.
(34) Habas, S. E.; Yang, P.; Mokari, T. J. Am. Chem. Soc. 2008, 130, 3294-3295.
(35) Figuerola, A.; Franchini, I. R.; Fiore, A.; Mastria, R.; Falqui, A.; Bertoni, G.; Bals, S.; Tendeloo, G. V.; Kudera, S.; Cingolani, R.; Manna, L. Adv. Mater. 2008, 20, 1-5.
(36) Kudera, S.; Carbone, L.; Casula, M. F.; Cingolani, R.; Falqui, A.; Snoeck, E.; Parak, W. J.; Manna, L. Nano Lett. 2005, 5, 445-449.
(37) Shieh, F.; Saunders, A. E.; Korgel, B. A. J. Phys. Chem. B 2005, 109, 8538-8542.
(38) Saunders, A. E.; Koo, B.; Wang, X.; Shin, C. K.; Korgel, B. A. ChemPhysChem 2008, 9, 1158-1163.
(39) Ouyang, L.; Maher, K. N.; Yu, C. L.; McCarty, J.; Park, H. J. Am. Chem. Soc. 2007, 129, 133-138.
(40) Dong, A.; Wang, F.; Daulton, T. L.; Buhro, W. E. Nano Lett. 2007, 7, 1308−1313.
(41) Dong, A.; Tang, R.; Buhro, W. E. J. Am. Chem. Soc. 2007, 129, 12254−12262.
(42) Carbone, L.; Nobile, C.; Giorgi, M. D.; Sala, F. D.; Morello, G.; Pompa, P.; Hytch, M.; Snoeck, E.; Fiore, A.; Franchini, I. R.; Nadasan, M.; Silvestre, A. F.; Chiodo, L.; Kudera, S.; Cingolani, R.; Krahne, R.; Manna, L. Nano Lett. 2007, 7, 2942-2950.
(43) Talapin, D. V.; Nelson, J. H.; Shevchenko, E. V.; Aloni, S.; Sadtler, B; Alivisatos, A. P. Nano Lett. 2007, 7, 2951-2959.
(44) Hewa-Kasakarage, N. N.; Kirsanova, M.; Nemchinov, A.; Schmall, N.; El-Khoury, P. Z.; Tarnovsky, A. N.; Zamkov, M. J. Am. Chem. Soc. 2009, 131, 1328−1334.
(45) Zhong, H.; Scholes, G. D. J. Am. Chem. Soc. 2009, 131, 9170−9171.
(46) Dorfs, D.; Salant, A.; Popov, I.; Banin, U. Small 2008, 4, 1319-1323.
(47) Menagen, G.; Mocatta, D.; Salant, A.; Popov, I.; Dorfs, D.; Banin, U. Chem. Mater. 2008, 20, 6900-6902.
(48) Kumar, S.; Jones, M.; Lo, S. S.; Scholes, G. D. Small 2007, 3, 1633-1639.
(49) He, J.; Lo, S. S.; Kim, J.; Scholes, G. D. Nano Lett. 2008, 8, 4007-4013.
(50) Fiore, A.; Mastria, R.; Lupo, M. G.; Lanzani, G.; Giannini, C.; Carlino, E.; Morello, G. Giorgi, M. D.; Li, Y.; Cingolani, R.; Manna, L. J. Am. Chem. Soc. 2009, 131, 2274-2282.
(51) Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700-12706.
(52) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 3343-3353.
(53) Wang, F.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Inorg. Chem. 2006, 45, 7511−7521.
(54) Kan, S.; Mokari, T.; Rothenberg, T.; Banin, U. Nat. Mater. 2003, 2, 155-158.
(55) Xi, L.; Boothroyd, C.; Lam, Y. M. Chem. Mater. 2009, 21, 1465-1470.
(56) Kang, C. C.; Lai, C. W.; Peng, H. C.; Shyue, J. J.; Chou, P. T. ACSNano 2008, 2, 750-756.
(57) Kang, C. C.; Lai, C. W.; Peng, H. C.; Shyue, J. J.; Chou, P. T. Small 2007, 3, 1882-1885.
(58) Koo, B.; Korgel, B. A. Nano Lett. 2008, 8, 2490-2496.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9200-
dc.description.abstract於奈米材料領域中,除零維奈米粒子(亦被稱為量子點)外,具有不同長寬比,且維度均在奈米尺度下之一維半導體奈米晶體亦受到大家的重視,原因在於這類一維奈米棒的光學以及電子特性均受到粒徑大小以及不同形狀的影響。在本論文中,於溶液態的環境下反應,可以在不外加方向控制手段的前提下合成大小為二平方微米之自組裝硫化鎘陣列。奈米棒的濃度、硫化鎘本身特性以及界面活性劑上的碳鍊均對自組裝陣列之形成有決定性的影響。另外,藉由控制介面活性劑之種類與反應溫度,可合成長寬比最大達到三百之硫化鎘奈米線。最後,引入金屬奈米粒子當作保護基,合成出軸向異質結構之鉑-硒化鎘-硫化鎘奈米棒。本論文之結果應可應用於設計及構築複雜性的異質奈米結構。zh_TW
dc.description.abstractBesides zero dimensional semiconducting nanoparticles (also referred to as “quantum dots”), one dimensional semiconducting nanocrystals with dimensions in the range of nanometer and with different aspect ratios have also drawn much attention due to their fascinating size- and shape-dependent optical and electronic properties. In this study, by using a solution-based method, CdS self-bundled arrays with an area of as large as 2.0 μm2 could be produced in the absence of an external direction-controlling process. Matching in nanorod concentration, intrinsic properties of CdS, and the hydrocarbon chains of the surfactants between adjacent CdS rods play key roles in the self-assembly. Also, the self-bundled CdS nanorods exhibit optical emission nearly free from the defect-states. In addition, by optimizing the use of surfactants and temperature, the aspect ratio of CdS nanowires with diameter of 3.5 nm can be tuned up to 300. Finally, by applying metallic nanoparticles as a protecting group, nanorods with axial heterojunctions could be obtained with a mechanism different from that of the SLS model. Results of this study could serve as basic concepts in nanocrystal architecture.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:12:44Z (GMT). No. of bitstreams: 1
ntu-98-F92223003-1.pdf: 14181472 bytes, checksum: 393af8afb7c75029dea69d40b70f7278 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書...........................................i
中文摘要..................................................ii
Abstract.................................................iii
Table of Contents.........................................iv
List of Figures..........................................vii
Chapter 1. Growth Mechanism of One-Dimnesional II-VI Semiconducting Nanomaterials
1. Intorduction............................................1
2. Effective-Monomer and Selective-Adsorption Model........3
3. Oriented-Attachment Model..............................11
4. Solution-Liquid-Solid Model............................13
5. Motivation.............................................15
6. References.............................................16
7. Figures................................................21
Chapter 2. Characterization Techniques
1. Transmission Electron Microscopy (TEM).................33
2. Ultraviolet-visible spectroscopy (UV/Vis)..............36
3. Steady-State Fluorescence..............................38
4. X-Ray Diffraction (XRD)................................40
5. Confocal Microscopy....................................42
6. Pendant Drop Method....................................43
7. References.............................................44
8. Figures................................................46
Chapter 3. 2D Self-Bundled CdS Nanorods with Micrometer
Dimension in the Absence of External Directing Process
TOC & Abstract ………………………………………………………… 49
1. Intorduction ...………………………………………………………….. 50
2. Experimental Section ………………………………………………….. 54
3. Results and Discussion ………………………………………………... 56
4. Conclusion ……………………………………………………………... 68
5. Acknowledgment ………………………………………………………. 69
6. References ……………………………………………………………… 69
7. Figures ………………………………………………………………….. 73
Chapter 4. Surfactant/Temperature Controlled CdS Nanowires Formation
TOC & Abstract ………………………………………………………… 87
1. Intorduction ...………………………………………………………….. 88
2. Experimental Section ………………………………………………….. 89
3. Results and Discussion ………………………………………………... 91
4. Conclusion ……………………………………………………………... 96
5. References ……………………………………………………………… 97
6. Figures ………………………………………………………………….. 100
Chapter 5. Axial Heterostructured Pt-CdSe-CdS Semiconducting Nanorods
TOC & Abstract ………………………………………………………… 104
1. Intorduction ...………………………………………………………….. 105
2. Experimental Section ………………………………………………….. 108
3. Results and Discussion ………………………………………………... 111
4. Conclusion ……………………………………………………………... 119
5. References ……………………………………………………………… 119
6. Figures ………………………………………………………………….. 126
Chapter 6. Concluding Remarks………………………………………….. 132
List of Figures
Chapter 1. Growth Mechanism of One-Dimnesional II-VI Semiconducting Nanomaterials
Figure.1 Top: Size-dependence of the surface atom ratio and the relative chemical potential of CdSe nanocrystals, assuming a spherical shape. Bottom: Shape-dependent chemical potential of CdSe quantum rods. The volume of all nanocrystals is set to the same value as of an 8 nm CdSe dot…………………………………………………………………………….. 21
Figure.2 Influence of the history of Cd-TDPA complexes. Left panel: Without aging at room temperature. Right panel: Aged at room temperatures. TEM pictures were taken with the aliquots with the highest average aspect ratio in each reaction……………………………………….. 22
Figure.3 Schematic illustration of the size- and configuration-dependence of the relative chemical potential of crystals/clusters in the extremely small size regime. Inset: Structure of Cd17. The magic sized nanocluster observed may likely possess a similar structure………………………………………………………………………. 23
Figure.4 The temporal shape evolution of CdSe nanocrystals determined by TEM and the corresponding temporal variation of Cd monomer concentration in solution determined by ICP………………………………. 24
Figure.5 The three growth stages of elongated CdSe nanocrystals at different monomer concentration windows………………………………… 25
Figure.6 The unique chemical reactivity of the (001) facet of the wurtzite CdSe nanocrystals.……………................................................... 25
Figure.7 TEM images of CdTe nanowires made from 3.4 (A) and 5.4 nm (B) nanoparticles. Bars, 100 nm…………………………………………….. 26
Figure.8 (A) TEM image of intermediate state of nanoparticle-nanowire transition for 5.4-nm nanoparticles. (B) The enlarged portion of the chain, with short rods marked by arrows. (C) The high-resolution TEM image of the adjacent nanoparticles in the chain. The 'pearl necklace' aggregates were not observed in the standard dispersions of CdTe………. 27
Figure.9 High-resolution TEM of nanowires made from (A) orange- and (B) red-emitting CdTe quantum dots. The insets show the corresponding diffraction patterns for (001) and (100); vectors of the crystal lattice are indicated by thick arrows. Energy dispersive x-ray spectroscopy showed identical chemical composition in respect to Cd and Te for both nanoparticles and nanowires………………………………………………… 28
Figure.10 (a) Structure of {t-Bu2In[P(SiMe3)2]}2; (b) under conditions allowing the imaging of the In-catalyst droplets (arrows); (c) from a higher-temperature synthesis employing added In catalyst……………….. 29
Figure.11 Growth mechanisms for pseudo-1D crystalline morphologies: (a) VLS mechanism proposed by Wagner and Ellis for growth under CVD conditions; (b) SLS mechanism proposed by Buhro and co-workers for analogous growth from solution………………………………………… 29
Figure.12 TEM images of near-monodisperse Bi nanoparticles obtained by thermal decomposition of Bi[N(SiMe3)2]3 with Na[N(SiMe3)2]. The quantity following the ± symbol is the standard deviation in the diameter distribution, expressed as a percentage of the mean diameter. Mean diameter = (a) 6.4 nm ± 11.5%, (b) 15.1 nm ± 5.6%, and (c) 25.2 nm ±5.1%.....................................................30
Figure.13 Plots of nanowire diameter vs initial catalyst nanoparticle diameter for SLS-grown wires. The lines are least-squares fits to the data, which are identified in the inset legend. The dotted lines correspond to nanowires grown from In-catalyst nanoparticles. Legend format: nanowire composition-surfactant-catalyst nanoparticle. HAD = n-hexadecylamine, TOPO = tri-n-octylphosphine oxide, TOP = tri-n-octylphosphine, OPA = n-octylphosphonic acid, MA = myristate, SA = stearate, and polymer = poly(1-hexadecene-co-vinylpyrrolidinone) for InP and poly(1-diphenylphosphinomethyl-4-vinylbenzene) / poly(1-hexadecene-co-vinylpyrrolidinone) mixtures for GaAs…………… 31
Figure.14 TEM images of SLS-grown III-V nanowires and the corresponding diameters. (a) InP, 11.2 nm ± 17.5%, (b) GaAs, 7.0 nm ± 12.7%, and (c) InAs, 5.3 nm ± 12.4%...................................................... 32
Figure.15 TEM images of SLS-grown II-VI nanowires and the corresponding diameters. (a) CdSe, 5.3 nm ± 14.4%, (b) ZnTe, 7.6 nm ± 13.8%, and (c) CdTe, 9.7 nm ± 20.6%...................................................... 32
Chapter 2. Characterization Techniques
Figure.1 An illustration of a typical TEM system…………………………. 46
Figure.2 Ray paths through a magnetic prism spectrometer showing (A) dispersion and focusing of the electrons in the plane of the spectrometer and (B) the lens-focusing action in the plane normal to the spectrometer; compare the nonfocusing action of a glass prism on visible light (inset)... 46
Figure.3 A conventional spectrofluorometer………………………………. 47
Figure.4 Basic features of typical XRD experiment………………………. 47
Figure.5 Schematic diagram of the optical pathway and principle components in a basic confocal microscope……………………………….. 48
Figure.6 Schematic diagram of the pendant drop apparatus……………… 48
Chapter 3. 2D Self-Bundled CdS Nanorods with Micrometer
Dimension in the Absence of External Directing Process
Figure.1 (a) TEM image of TDPA and TOP capped CdS nanorods with self-assembled organization in large scale. The inset shows the diffraction pattern of the bundle. (b) TEM image of bundled-up CdS nanorods in higher magnification. (c) An extended TEM image of self-assembled CdS nanorods……………………………………………….. 73
Figure.2 Contrast-enhanced Fourier filtered micrograph of the same region in Figure 1a. The dots are the bundled CdS nanorods standing on the copper grid, and the stripe patterns are the leaning nanorods………… 74
Figure.3 An extended TEM image of self-assembled CdS nanorods synthesized with TDPA and TOP……………………………………………. 75
Figure.4 TEM image of TDPA and TOP capped CdS nanorods with concentrations of (a) 2.5 and (b) 0.5 in weight percent…………………… 76
Figure.5 The surface energy, measured by pendent drop method, with respect to different concentrations of CdS nanorods. (0, 0.4, 0.8, 1.5, 3.125, and 6.25 weight percent)…………………………………………….. 77
Figure.6 Powder X-ray diffraction (XRD) of CdS nanorods synthesized by using (a) TDPA and TOP, (b) TDPA, HDA, and TOP, and that of standard CdS (wurtzite) pattern (lower)……………………………………. 78
Figure.7 TEM image of TDPA, HDA, and TOP capped CdS nanorods with concentration of 2.0% weight percent (see text for detail)………….. 79
Figure.8 The normalized emission spectra of (a) CdS nanorods (synthesized by using TDPA and TOP) solution. (b) peripheral and (c) central region of a single array in the deposited thin film measured by a confocal microscope. The excitation wavelength is 406 nm (GaN laser) for all measurements…………………………………………………………. 80
Figure.9 TEM image of a monolayer of CdS nanorods in the hole of a Quantifoil grid……………………………………………………………….. 81
Figure.10 Proposed model of self-assembled CdS arrays synthesized by using TDPA and TOP as surfactants………………………………………… 82
Figure.11 Drawings that illustrate the corralling behavior of CdS nanorods upon the evaporation of solvent on (a) Formvar grid and (b) Quantifoil grid……………………………………………………………….. 83
Figure.12 TEM images of CdS nanorods synthesized by using (a) ODPA, TOPO, and TOP and (b) ODPA and TOP…………………………………… 84
Figure.13 Proposed model of formation of CdS nanorods synthesized by using (a) ODPA, TOPO, and TOP and (b) ODPA and TOP………………... 85
Figure.14 TEM images of CdS nanorods synthesized by using (a) OPA, TOPO, and TOP and (b) OPA and TOP……………………………………... 86
Chapter 4. Surfactant/Temperature Controlled CdS Nanowires Formation
Figure.1 TEM images of CdS nanocrystals synthesized under different temperatures of (a) 280℃, (b) 315℃, (c) 320℃ and (d) 330℃…………. 100
Figure.2 Powder X-ray diffraction (XRD) of CdS nanocrystals synthesized under 320℃ (upper) and that of standard CdS (wurtzite) pattern (lower................................101
Figure.3 A prototype of CdS nanowires synthesized under 330℃. HRTEM image (inset) clearly shows the junction of bipod that consists with a zinc-blende core with wurtzite arms epitaxially grown from the {111} plane of the core………………………………………………………. 102
Figure.4 (a) absorption and (b) emission spectra of CdS nanocrystals synthesized under different temperatures. Solvent: toluene. The excitation wavelength was fixed at 400 nm for all emission spectra. (note: The multiple peaks at longer wavelength of the defect emission prepared at 320℃ and 330℃ are due to the increase of scattering light upon increasing the length of CdS, such that some stray light from the excitation lamp was accidentally acquired.)……………………………….. 103
Chapter 5. Axial Heterostructured Pt-CdSe-CdS Semiconducting Nanorods
Figure.1 (a) TEM image and (b) UV/Vis steady-state absorption and emission spectra of CdSe nanocrystals……………………………………... 126
Figure.2 (a) TEM image and (b) HRTEM image of Pt-CdSe nanocrystals. (inset: selected area EDS spectrum of this image.)………………………... 127
Figure.3 TEM images of nanocrystals synthesized by using (a) TDPA, and TOP. (b) stearic acid and TOP………………………………………….. 128
Figure.4 (a) TEM image of Pt-CdSe-CdS nanocrystals synthesized by using oleic acid, ODE, and TOP. (b) UV/Vis steady-state absorption spectra of CdSe, Pt-CdSe, and Pt-CdSe-CdS nanocrystals………………... 129
Figure.5 (a) HRTEM image of a Pt-CdSe-CdS heterostructured nanorod
synthesized by using oleic acid, ODE, and TOP as surfactamts. The inset shows EDS results of (1) head and (2) tail part of the hybrid nanorod. (b) Se and (c) S mapping done by using EELS measurements………………... 130
Figure.6 TEM image of Pt-CdSe-CdS nanocrystals synthesized by using oleic acid, ODE, and TOP for 1 hour……………………………………….. 131
dc.language.isoen
dc.title一維II-VI族半導體奈米材料其形貌、自組裝與異質接面之合成及特性研究zh_TW
dc.titleMorphology, Self-Assembly, and Heterojunction of One-Dimensional II-VI Semiconducting Nanocrystalsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee林萬寅(Wann-Yin Lin),張鎮平(Chen-Pin Chang),陳培菱(Peilin Chen),薛景中(Jing-Jong Shyue)
dc.subject.keyword硒化鎘,硫化鎘,奈米線,奈米棒,異質結構,zh_TW
dc.subject.keywordCdSe,CdS,nanorod,nanowire,heterostructure,en
dc.relation.page133
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
Appears in Collections:化學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf13.85 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved