Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91985
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林達德zh_TW
dc.contributor.advisorTa-Te Linen
dc.contributor.author何宜臻zh_TW
dc.contributor.authorI Chen Hoen
dc.date.accessioned2024-02-27T16:23:07Z-
dc.date.available2024-02-28-
dc.date.copyright2022-09-07-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation安奎,何鎧光。1997,養蜂學,華香園出版社。
盧美君。2016,臺灣蜂產業發展及挑戰之因應策略簡介,農政與農情,290。取自:https://www.coa.gov.tw/ws.php?id=2505439
Abdollahi, M., Giovenazzo, P., & Falk, T. H. (2022). Automated Beehive Acoustics Monitoring: A Comprehensive Review of the Literature and Recommendations for Future Work. Applied Sciences, 12(8), 3920.
Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y., & Basuny, N. K. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64(4), 455-463.
Al-Ghamdi, A. A., Abou-Shaara, H. F., & Mohamed, A. A. (2014). Hatching rates and some characteristics of Yemeni and Carniolan honey bee eggs. Journal of Entomology and Zoology Studies, 2(1), 6-10.
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3), 175-185.
Barron, A. B. (2015). Death of the bee hive: understanding the failure of an insect society. Current Opinion in Insect Science, 10, 45-50.
Becher, M. A., Scharpenberg, H., & Moritz, R. F. (2009). Pupal developmental temperature and behavioral specialization of honeybee workers (Apis mellifera L.). Journal of Comparative Physiology A, 195(7), 673-679.
Braga, A. R., Gomes, D. G., Rogers, R., Hassler, E. E., Freitas, B. M., & Cazier, J. A. (2020). A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 169, 105161.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees. Routledge.
Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278-294.
Brown, M. J. F., Loosli, R., & Schmid‐Hempel, P. (2000). Condition‐dependent expression of virulence in a trypanosome infecting bumblebees. Oikos, 91(3), 421-427.
Burrill, R. M., & Dietz, A. (1981). The response of honey bees to variations in solar radiation and temperature. Apidologie, 12(4), 319-328.
Campbell, J. M., Dahn, D. C., Ryan, D. A. J. (2005). Capacitance-based sensor for monitoring bees passing through a tunnel. Meas. Sci. Technol. 16, 2503.
Cazier, J., Rogers, D., Hassler, E., Wilkes, J. (2018). A Healthy Colony Checklist: A Framework for Aggregating Hive Inspection. https://www.beeculture.com/a-healthy-colony-checklist/
Cejrowski, T., & Szymański, J. (2021). Buzz-based honeybee colony fingerprint. Computers and Electronics in Agriculture, 191, 106489.
Chen, W., Wang, C., Jiang, J., Yang, E. C. (2015). Development of a monitoring system for honeybee activities. 9th International Conference on Sensing Technology, pp. 745–750.
Chensheng, L. U., Warchol, K. M., & Callahan, R. A. (2014). Sub-lethal exposure to neonicotinoids impaired honey bee’s winterization before proceeding to colony collapse disorder. Bulletin of Insectology, 67(1), 125-130.
Clarke, D., & Robert, D. (2018). Predictive modelling of honey bee foraging activity using local weather conditions. Apidologie, 49(3), 386-396.
Decourtye, A., Devillers, J., Aupinel, P., Brun, F., Bagnis, C., Fourrier, J., & Gauthier, M. (2011). Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology 20(2), 429-437.
Degrandi-Hoffman, G., Spivak, M., & Martin, J. H. (1993). Role of thermoregulation by nestmates on the development time of honey bee (Hymenoptera: Apidae) queens. Annals of the Entomological Society of America, 86(2), 165-172.
Edwards-Murphy, F., Magno, M., Whelan, P. M., O’Halloran, J., & Popovici, E. M. (2016). b+ WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Computers and Electronics in Agriculture, 124, 211-219.
Ferrari, S., Silva, M., Guarino, M., & Berckmans, D. (2008). Monitoring of swarming sounds in bee hives for early detection of the swarming period. Computers and electronics in agriculture, 64(1), 72-77.
Genersch, E., Von Der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Büchler, R., ... & Rosenkranz, P. (2010). The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 41(3), 332-352.
Gilioli, G., Sperandio, G., Hatjina, F., & Simonetto, A. (2019). Towards the development of an index for the holistic assessment of the health status of a honey bee colony. Ecological Indicators, 101, 341-347.
Gray, A., Brodschneider, R., Adjlane, N., Ballis, A., Brusbardis, V., Charriere, J. D., ... & Soroker, V. (2019). Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. Journal of Apicultural Research, 58(4), 479-485.
Guyot, P. & Eldridge, A. (2019). Acoustic_Indices source code (Version 0.4) https://github.com/patriceguyot/Acoustic_Indices
Hadjur, H., Ammar, D., & Lefèvre, L. (2022). Toward an intelligent and efficient beehive: A survey of precision beekeeping systems and services. Computers and Electronics in Agriculture, 192, 106604.
Hadjur, H., Ammar, D., & Lefèvre, L. (2022). Toward an intelligent and efficient beehive: A survey of precision beekeeping systems and services. Computers and Electronics in Agriculture, 192, 106604.
Healthy colony checklist. (2018). https://www.alamancebeekeepers.org/wp-content /uploads/2018/08/Healthy-Colony-Checklist-Form.pdf
Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., ... & Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), 348-350.
Himmer, A. (1932). Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biological Reviews, 7(3), 224-253.
Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition. Vol. 1, pp. 278–282.
Hong, W., Xu, B., Chi, X., Cui, X., Yan, Y., & Li, T. (2020). Long-term and extensive monitoring for bee colonies based on internet of things. IEEE Internet of Things Journal, 7(8), 7148-7155.
Hord, L., & Shook, E. (2013). Determining honey bee behaviors from audio analysis. National Science Foundation Research Experience for Teachers. Appalachian State Univ.
Hord, L., & Shook, E. (2013). Determining honey bee behaviors from audio analysis. National Science Foundation Research Experience for Teachers. Appalachian State Univ.
Imoize, A. L., Odeyemi, S. D., & Adebisi, J. A. (2020). Development of a low-cost wireless bee-hive temperature and sound monitoring system. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 8(3), 476-485.
Jacques, A., Laurent, M., Epilobee Consortium, Ribière-Chabert, M., Saussac, M., Bougeard, S., ... & Chauzat, M. P. (2017). A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS one, 12(3), e0172591.
Jiang, J. A., Wang, C. H., Chen, C. H., Liao, M. S., Su, Y. L., Chen, W. S., ... & Chuang, C. L. (2016). A WSN-based automatic monitoring system for the foraging behavior of honey bees and environmental factors of beehives. Computers and Electronics in Agriculture, 123, 304-318.
Kronenberg, F. (1980). Colonial Thermoregulation in Honey Bees.
Kviesis, A., Komasilovs, V., Komasilova, O., & Zacepins, A. (2020). Application of fuzzy logic for honey bee colony state detection based on temperature data. Biosystems Engineering, 193, 90-100.
Magnier, B., Ekszterowicz, G., Laurent, J., Rival, M., Pfister, F. (2018). Beehive traffic monitoring by tracking bee flight paths. 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Funchal, Madeira, Portugal, pp. 563–571.
May, R. M. (1977). Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 269(5628), 471-477.
McLellan, A. R. (1977). Honeybee colony weight as an index of honey production and nectar flow: a critical evaluation. Journal of Applied Ecology, 401-408.
Meikle, W. G., & Weiss, M. (2017). Monitoring colony-level effects of sublethal pesticide exposure on honey bees. Journal of Visualized Experiments, (129), e56355.
Meikle, W. G., Holst, N., Colin, T., Weiss, M., Carroll, M. J., McFrederick, Q. S., & Barron, A. B. (2018). Using within-day hive weight changes to measure environmental effects on honey bee colonies. PloS one, 13(5), e0197589.
Meikle, W. G., Rector, B. G., Mercadier, G., & Holst, N. (2008). Within-day variation in continuous hive weight data as a measure of honey bee colony activity. Apidologie, 39(6), 694-707.
Meikle, W. G., Weiss, M., & Stilwell, A. R. (2016). Monitoring colony phenology using within-day variability in continuous weight and temperature of honey bee hives. Apidologie, 47(1), 1-14.
Meikle, W. G., Weiss, M., Maes, P. W., Fitz, W., Snyder, L. A., Sheehan, T., ... & Anderson, K. E. (2017). Internal hive temperature as a means of monitoring honey bee colony health in a migratory beekeeping operation before and during winter. Apidologie, 48(5), 666-680.
Michelsen, A., Kirchner, W. H., Andersen, B. B., & Lindauer, M. (1986). The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. Journal of Comparative Physiology A, 158(5), 605-611.
Michelsen, A., Kirchner, W. H., Andersen, B. B., & Lindauer, M. (1986). The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. Journal of Comparative Physiology A, 158(5), 605-611.
Ngo, T. N., Rustia, D. J. A., Yang, E. C., & Lin, T. T. (2021a). Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system. Computers and Electronics in Agriculture, 187, 106239.
Ngo, T. N., Rustia, D. J. A., Yang, E. C., & Lin, T. T. (2021b). Honey Bee Colony Population Daily Loss Rate Forecasting and an Early Warning Method Using Temporal Convolutional Networks. Sensors, 21(11), 3900.
Nicolson, S. W. (2009). Water homeostasis in bees, with the emphasis on sociality. Journal of Experimental Biology, 212(3), 429-434.
Nolasco, I., Terenzi, A., Cecchi, S., Orcioni, S., Bear, H. L., & Benetos, E. (2019). Audio-based identification of beehive states. IEEE. pp. 8256-8260.
Nürnberger, F., Härtel, S., & Steffan-Dewenter, I. (2018). The influence of temperature and photoperiod on the timing of brood onset in hibernating honey bee colonies. PeerJ, 6, e4801.
Palmer, M. J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G. A., & Connolly, C. N. (2013). Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature communications, 4(1), 1-8.
Pieretti, N., Duarte, M. H. L., Sousa-Lima, R., Rodrigues, M., Young, R. J., & Farina, A. (2015). Determining temporal sampling schemes for passive acoustic studies in different tropical ecosystems. Tropical Conservation Science, 8(1), 215–234.
Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecological Indicators, 11(3), 868–873.
Riley, J. R., Smith, A. D., Reynolds, D. R., Edwards, A. S., Osborne, J. L., Williams, I. H., Carreck, N. L., Poppy, G. M. (1996). Tracking bees with harmonic radar. Nature 379, 29–30.
Robles-Guerrero, A., Saucedo-Anaya, T., González-Ramérez, E., & Galván-Tejada, C. E. (2017). Frequency Analysis of Honey Bee Buzz for Automatic Recognition of Health Status: A Preliminary Study. Res. Comput. Sci., 142, 89-98.
Robles-Guerrero, A., Saucedo-Anaya, T., González-Ramírez, E., & De La Rosa-Vargas, J. I. (2019). Analysis of a multiclass classification problem by lasso logistic regression and singular value decomposition to identify sound patterns in queenless bee colonies. Computers and Electronics in Agriculture, 159, 69-74.
Schmid-Hempel, P., & Heeb, D. (1991). Worker mortality and colony development in bumblebees (Hymenoptera, Apidae). Mitt. Schweiz. Entomol. Ges, 64, 93-108.
Schneider, S. S. (1990). Nest characteristics and recruitment behavior of absconding colonies of the African honey bee, Apis mellifera scutellata, in Africa. Journal of Insect Behavior, 3 (2), 225-240.
Sharif, M. Z., Wario, F., Di, N., Xue, R., & Liu, F. (2020). Soundscape indices: New features for classifying beehive audio samples. Sociobiology, 67(4), 566-571.
Stabentheiner, A., Kovac, H., & Brodschneider, R. (2010). Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS one, 5(1), e8967.
Stabentheiner, A., Kovac, H., & Brodschneider, R. 2010. Honeybee colony thermoregulation–regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS one, 5(1), e8967.
Stalidzans, E., Zacepins, A., Kviesis, A., Brusbardis, V., Meitalovs, J., Paura, L., ... & Liepniece, M. 2017. Dynamics of weight change and temperature of Apis mellifera (Hymenoptera: Apidae) colonies in a wintering building with controlled temperature. Journal of economic entomology, 110(1), 13-23.
Staveley, J. P., Law, S. A., Fairbrother, A., & Menzie, C. A. (2014). A causal analysis of observed declines in managed honey bees (Apis mellifera). Human and Ecological Risk Assessment: An International Journal, 20(2), 566-591.
Streit, S., Bock, F., Pirk, C. W. W., & Tautz, J. 2003. Automatic life-long monitoring of individual insect behaviour now possible. Zoology 106(3), 169-171.
Sueur, J., Aubin, T., & Simonis, C. 2008. Seewave: a free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213–226.
Tan, K., Bock, F., Fuchs, S., Streit, S., Brockmann, A., & Tautz, J. 2005. Effects of brood temperature on honey bee Apis mellifera wing morphology. Acta Zoologica Sinica, 51(4), 768-771.
Terenzi, A., Ortolani, N., Nolasco, I., Benetos, E., & Cecchi, S. 2021. Comparison of Feature Extraction Methods for Sound-Based Classification of Honey Bee Activity. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 30, 112-122.
Villanueva-Rivera, L. J., Pijanowski, B. C., Doucette, J., & Pekin, B. 2011. A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 26(9), 1233–1246.
Waiker, P., Baral, S., Kennedy, A., Bhatia, S., Rueppell, A., Le, K., ... & Rueppell, O. 2019. Foraging and homing behavior of honey bees (Apis mellifera) during a total solar eclipse. The Science of Nature, 106(1), 1-10.
Williamson, S. M., & Wright, G. A. (2013). Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees. Journal of Experimental Biology, 216(10), 1799-1807.
Yang, E. C., Chang, H. C., & Chuang, Y. C. 2014. Abnormal behavior of honeybee workers due to contamination of Imidacloprid.
Žgank, A. 2018. Acoustic monitoring and classification of bee swarm activity using MFCC feature extraction and HMM acoustic modeling. In 2018 ELEKTRO. IEEE.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91985-
dc.description.abstract蜜蜂是重要的昆蟲授粉媒介,除協助提高經濟作物產量外,同時在維持生態系穩定上扮演重要角色。監測蜜蜂行為和蜂箱健康狀況不僅對了解蜜蜂生物學至關重要,也有利於協助養蜂人進行蜂箱健康管理。基於以上理由,我們建立智慧蜂箱監測系統,目標提升蜂箱管理品質並降低蜂箱損失的風險。我們使用多感測器組建智慧蜂箱健康狀態監測系統,以監測多項蜂箱特徵,包括巢內溫濕度、重量、蜜蜂交通量和聲音信號。本研究收集了南投水里與雲林古坑兩地共四蜂箱的長期數據集,自多重感測器與當地氣象站所蒐集的資料中,導出27項蜂巢特徵,以研究蜂巢特徵用於健康狀態偵測的可能性。重量特徵方面,我們自每日重量變化曲線中,以分段迴歸之方式提取蜜蜂白日出巢與夜間歸巢之時間點以觀察蜜蜂生理活動週期,並對照蜜蜂活動量特徵與聲音特徵之日夜週期,驗證各觀測值之間的關連與正確性。聲音訊號方面,我們使用聲景指數 (soundscape indices) 中的聲音複雜度指數 (Acoustic complexity index, ACI)、聲音多樣性指數 (Acoustic diversity index, ADI)、聲音均勻度指數 (Acoustic evenness index, AEI)、頻譜熵 (Spectral entropy)、與方均根能量 (RMS Energy) 等五種來量化巢內錄音訊號,並細部檢視一日內各指數的變化情形。我們善用智慧蜂箱多角度觀測的優勢,結合環境溫濕度、雨量、巢重變化與蜜蜂進出量資訊,綜合檢視在降雨、低溫、收穫等三種狀態下聲景指數的變化,細部且直觀的分析環境變化、晝夜變化與蜂巢蜂鳴改變間的連動關係。基於對以上蜂巢特徵的了解,我們以隨機森林模型 (Random Forest) 對資料集進行訓練,得聲音特徵群為二分類蜂巢健康狀態預測命題下之最佳分類特徵群,準確度達0.80。若以各巢單獨訓練模型,準確度能進一步達0.84。多重感測智慧蜂箱監控系統能自動收集長期數據,監測蜂箱狀態,幫助了解蜜蜂生理活動與長期變化規律,並能提出蜂巢衰敗警示,進一步幫助養蜂人以數據導向的方式管理蜂箱,對養蜂業之智慧化做出推動與貢獻,協助蜂農良好管理蜂巢崩解之風險。zh_TW
dc.description.abstractHoneybees are important insect pollinators ensuring food security and maintaining the biodiversity of ecosystems. Monitoring honeybee behavior is not only essential for understanding the biology of the honeybee but also beneficial for beekeepers for beehive management. In the apiculture industry, beekeepers usually look after beehives regularly and manually. However, the assessment of beehive health status is laborious and requires considerable experience. An automated beehive monitoring system will facilitate efficient beehive management and reduce the risk of beehive losses. We propose an intelligent beehive health status monitoring system using multiple sensors and a sensor fusion technique. The system monitors various features of beehives, including in-hive temperature, humidity, hive weight, bee traffic, and acoustic signals. A long-term dataset of 4 beehives in two different locations was collected. 27 features were derived from sensors’ data to aid in hive health status detection and prediction. We analyzed the relationship between weight features and beehive circadian rhythm, and correlated them with bee traffic features and acoustic features to verify their correlation and correctness. Harvest status was also explored by assessing the weight change in the daily weight curve. Regarding the aspect of acoustic features, soundscape indices are used to interpret the acoustic signals, including acoustic complexity index (ACI), acoustic diversity index (ADI), acoustic evenness index (AEI), spectral entropy, and root mean square energy (RMS energy). We inspected these indices under raining, cold, and harvest situations. Leveraging the multi-sensing dataset, we demonstrated a clear relation between environmental changes and beehive acoustic changes. Based on these features, the two-class hive health status prediction with Random Forest model hit an accuracy of 0.80. The multi-sensor intelligent beehive monitoring system is an efficient tool to observe the long-term hive activity and to help beekeepers in managing their beehives in a data-driven approach thereby improving the beekeeping quality.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-27T16:23:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-27T16:23:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻探討 5
2.1 巢內生態 5
2.1.1 蜂巢社會結構與分工 5
2.1.2 分蜂與逃蜂 5
2.1.3 巢內微氣候 6
2.1.4 蜂鳴生理頻率結構 7
2.1.5 蜂巢崩解威脅 8
2.2 蜂巢監測設備 9
2.2.1 重量與溫濕度數據分析 9
2.2.2 巢內音頻數據分析 10
2.2.3 蜜蜂活動量分析 11
2.2.4 氣象因子對蜂巢之影響 12
2.3 蜂巢健康狀態分析的相關研究 13
2.4 機器學習方法 14
第三章 研究方法 17
3.1 實驗場域 17
3.2 蜂箱監測系統設置 18
3.2.1 硬體設置 18
3.2.2 AWS雲端架構 20
3.2.3 分析軟體之程式與套件 22
3.3 監測數據分析 24
3.3.1 重量數據特徵 24
3.3.2 巢內溫濕度數據特徵 27
3.3.3 聲音數據特徵 27
3.3.4 蜂群出入數據特徵 30
3.3.5 氣象數據特徵 30
3.3.6 各類特徵彙整 30
3.4 蜂巢狀態記錄 31
3.5 機器學習方法 32
3.5.1 隨機森林 32
3.5.2 K近鄰演算法 33
3.6 蜂巢健康狀態預測 33
第四章 結果與討論 35
4.1 資料分析與特徵提取 35
4.1.1 重量曲線檢視與前處理結果 37
4.1.2 聲音特徵資料檢視與前處理結果 40
4.1.3 蜂巢出入特徵資料檢視 47
4.1.4 巢內溫濕度與巢外氣象資料檢視 49
4.1.5 各類特徵之對照與相關性分析 51
4.2 資料互動關係 53
4.2.1 雨聲對聲景指數的影響 53
4.2.2 低溫對聲景指數的影響 56
4.2.3 收穫對聲景指數的影響 59
4.3 健康狀態預測 61
4.3.1 蜂巢健康狀態描述與資料標記 61
4.3.2 健康狀態預測與結果討論 62
4.3.3 最適化健康狀態預測 65
4.4 蜂巢健康狀態的數據分析視覺化設計 66
第五章 結論與建議 67
5.1 結論 67
5.2 建議 68
參考文獻 71
-
dc.language.isozh_TW-
dc.title整合多重感測訊號於蜂巢健康狀態之監測與預測zh_TW
dc.titleIntegration of Multiple Sensors for Bee Hive Health Status Monitoring and Forecastingen
dc.typeThesis-
dc.date.schoolyear111-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊恩誠;賴彥任zh_TW
dc.contributor.oralexamcommitteeEn-Cheng Yang;Yen-Jen Laien
dc.subject.keyword智慧蜂箱,聲景指數,智慧農業,機器學習,zh_TW
dc.subject.keywordsmart beehive,soundscape indices,machine learning,smart agriculture,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202202842-
dc.rights.note未授權-
dc.date.accepted2022-08-29-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-1.pdf
  目前未授權公開取用
8.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved