請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91964完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡欣甫 | zh_TW |
| dc.contributor.advisor | Shin-Fu Tsai | en |
| dc.contributor.author | 何善學 | zh_TW |
| dc.contributor.author | Shan-Syue He | en |
| dc.date.accessioned | 2024-02-27T16:16:07Z | - |
| dc.date.available | 2024-07-06 | - |
| dc.date.copyright | 2024-07-05 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-29 | - |
| dc.identifier.citation | Bergman, B. and Hynén, A. (1997). Dispersion effects from unreplicated designs in the 2 k-p series. Technometrics, 39, 191-198.
Box, G.E.P., and Meyer, R.D. (1986). Dispersion effects from fractional designs. Technometrics, 28,19-27. Chen, J., Zhang, X.-R. and Lin, D.K.-J. (2021). Analysis of replicated order-of-addition experiments. Statistics and Applications, 19, 453-466. Ding, X., Matsuo, K., Xu, L., Yang, J. and Zheng, L. (2015). Optimized combinations of bortezomib, camptothecin, and doxorubicin show increased efficacy and reduced toxicity in treating oral cancer. Anti-cancer Drugs, 26, 547-554. Jiang, X.-J. and Ng, D.K.P. (2014). Sequential logic operations with a molecular keypad lock with four inputs and dual fluorescence outputs. Angewandte Chemie International Edition, 53, 10481-10484. Liao, C.-T. (2000). Identification of dispersion effects from unreplicated 2 n-k fractional factorial designs. Computational Statistics and Data Analysis, 33, 291-298. McGrath, R.N. and Lin, D.K.-J. (2001). Testing multiple dispersion effects in unreplicated fractional factorial designs. Technometrics, 43, 406-414. Peng, J., Mukerjee, R. and Lin, D.K.-J. (2019). Design of order-of-addition experiments. Biometrika, 106, 683-694. Tsai, S.-F. (2023). Analyzing dispersion effects from replicated order-of-addition experiments. Journal of Quality Technology, 55, 271-288. Tsai, S.-F. and He, S.-S. (2023). Testing multiple dispersion effects from unreplicated order-of-addition experiments. Submitted manuscript. Tsai, S.-F., Liao, C.-T. and Chai, F.-S. (2015). Identification of dispersion effects from partially replicated two-level factorial designs. Journal of Quality Technology, 47, 43-53. Voelkel, J.G. (2019). The design of order-of-addition experiments. Journal of Quality Technology, 51, 230-241. Voelkel, J.G. and Gallagher. K.P. (2019). The design and analysis of order-of-addition experiments: An introduction and case study. Quality Engineering, 31, 627-638. Wang, A., Xu, H. and Ding, X. (2020). Simultaneous optimization of drug combination dose‐ratio sequence with innovative design and active learning. Advanced Therapeutics, 3:1900135. Wang, P.C. (1989). Tests for dispersion effects from orthogonal arrays. Computational Statistics and Data Analysis, 8, 109-117. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91964 | - |
| dc.description.abstract | 添加次序試驗之設計與分析近年來受到許多研究者的重視。目前多數試驗資料分析方法均專注於位置效應之篩選。然而,分散效應亦有可能在添加次序試驗中扮演關鍵的角色。基於置信廣義樞紐量,本論文提出一個適用於單一重複添加次序試驗的分散效應篩選方法。數值模擬結果顯示,新方法能有效地控制型一錯誤發生率。本論文透過分析一筆實際藥物合成試驗說明新方法的可行性,並提供一個交換演算法可用於產生合適的試驗設計。 | zh_TW |
| dc.description.abstract | Recently, statistical designs and analysis methods for order-of-addition experiments have received increasing attention from researchers and practitioners. Most existing methods focus on screening active location effects. However, active dispersion effects may also play a key role in addressing order-of-addition problems. In this study, a new testing procedure is developed using fiducial generalized pivotal quantities to screen out active dispersion effects from unreplicated order-of-addition experiments. Based on the simulation results, the proposed method can control the empirical type I error rates. A drug combination experiment is used to illustrate the proposed method. In addition, a group-wise exchange algorithm is designed to generate eligible designs for testing multiple dispersion effects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-27T16:16:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-27T16:16:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Methods 3 2.1 Location and Dispersion Effects Models 3 2.2 The Proposed Method 4 2.2.1 Removing the Impact of Active Location Effects 5 2.2.2 Defining a Requirement Set 5 2.2.3 Removing the Impact of Nuisance Parameters 8 2.2.4 Identifying Active Dispersion Effects 9 2.3 Group-wise Exchange Algorithm 12 3 Results 15 3.1 Simulation Studies 15 3.2 Real Data Analysis: Drug Combination Data 21 3.3 Performance of Group-wise Exchange Algorithm 22 4 Discussion 25 Bibliography 28 A Template Designs 30 B Rcode 31 | - |
| dc.language.iso | en | - |
| dc.subject | 置信推論 | zh_TW |
| dc.subject | 投影性質 | zh_TW |
| dc.subject | 品質改進 | zh_TW |
| dc.subject | 成對次序模型 | zh_TW |
| dc.subject | 交換演算法 | zh_TW |
| dc.subject | Quality improvement | en |
| dc.subject | Projection property | en |
| dc.subject | Pairwise order model | en |
| dc.subject | Fiducial inference | en |
| dc.subject | Exchange algorithm | en |
| dc.title | 單一重複添加次序試驗之分散效應篩選 | zh_TW |
| dc.title | Screening Active Dispersion Effects from Unreplicated Order-of-Addition Experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖振鐸;林彩玉 | zh_TW |
| dc.contributor.oralexamcommittee | Chen-Tuo Liao;Tsai-Yu Lin | en |
| dc.subject.keyword | 交換演算法,置信推論,成對次序模型,投影性質,品質改進, | zh_TW |
| dc.subject.keyword | Exchange algorithm,Fiducial inference,Pairwise order model,Projection property,Quality improvement, | en |
| dc.relation.page | 35 | - |
| dc.identifier.doi | 10.6342/NTU202301982 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農藝學系 | - |
| dc.date.embargo-lift | 2026-07-31 | - |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-07-31 | 1.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
