請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91948
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳保中 | zh_TW |
dc.contributor.advisor | Pau-Chung Chen | en |
dc.contributor.author | 孫慶語 | zh_TW |
dc.contributor.author | Ching-Yu Sun | en |
dc.date.accessioned | 2024-02-26T16:35:17Z | - |
dc.date.available | 2024-02-27 | - |
dc.date.copyright | 2024-02-26 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-20 | - |
dc.identifier.citation | 1. Toxicological Profile for Perfluoroalkyls. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US)qpslcm@ikd 2021 May. PMID: 37220203.
2. Wee SY, Aris AZ. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. npj Clean Water. 2023/08/21 2023qpslcm@ikd6(1):57. doi:10.1038/s41545-023-00274-6 3. Kaboré HA, Vo Duy S, Munoz G, et al. Worldwide drinking water occurrence and levels of newly-identified perfluoroalkyl and polyfluoroalkyl substances. Sci Total Environ. Mar 2018qpslcm@ikd616-617:1089-1100. doi:10.1016/j.scitotenv.2017.10.210 4. Jiang J-J, Okvitasari AR, Huang F-Y, Tsai C-S. Characteristics, pollution patterns and risks of Perfluoroalkyl substances in drinking water sources of Taiwan. Chemosphere. 2021/02/01/ 2021qpslcm@ikd264:128579. doi:https://doi.org/10.1016/j.chemosphere.2020.128579 5. Pizzurro DM, Seeley M, Kerper LE, Beck BD. Interspecies differences in perfluoroalkyl substances (PFAS) toxicokinetics and application to health-based criteria. Regulatory Toxicology and Pharmacology. 2019/08/01/ 2019qpslcm@ikd106:239-250. doi:https://doi.org/10.1016/j.yrtph.2019.05.008 6. Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, et al. Obesity. Nat Rev Dis Primers. Jun 15 2017qpslcm@ikd3(1):17034. doi:10.1038/nrdp.2017.34 7. Braun JM. Early-life exposure to EDCs: role in childhood obesity and neurodevelopment. Nat Rev Endocrinol. Mar 2017qpslcm@ikd13(3):161-173. doi:10.1038/nrendo.2016.186 8. Frangione B, Birk S, Benzouak T, et al. Exposure to perfluoroalkyl and polyfluoroalkyl substances and pediatric obesity: a systematic review and meta-analysis. International Journal of Obesity. 2024/02/01 2024qpslcm@ikd48(2):131-146. doi:10.1038/s41366-023-01401-6 9. Blomberg AJ, Shih YH, Messerlian C, Jorgensen LH, Weihe P, Grandjean P. Early-life associations between per- and polyfluoroalkyl substances and serum lipids in a longitudinal birth cohort. Environ Res. Sep 2021qpslcm@ikd200:111400. doi:10.1016/j.envres.2021.111400 10. Papadopoulou E, Stratakis N, Basagaña X, et al. Prenatal and postnatal exposure to PFAS and cardiometabolic factors and inflammation status in children from six European cohorts. Environment International. 2021qpslcm@ikd157doi:10.1016/j.envint.2021.106853 11. Canova C, Di Nisio A, Barbieri G, et al. PFAS Concentrations and Cardiometabolic Traits in Highly Exposed Children and Adolescents. International Journal of Environmental Research and Public Health. Dec 2021qpslcm@ikd18(24)12881. doi:10.3390/ijerph182412881 12. Zhang S, Lei X, Zhang Y, et al. Prenatal exposure to per- and polyfluoroalkyl substances and childhood adiposity at 7 years of age. Chemosphere. Nov 2022qpslcm@ikd307(Pt 4):136077. doi:10.1016/j.chemosphere.2022.136077 13. Shih YH, Blomberg AJ, Jorgensen LH, Weihe P, Grandjean P. Early-life exposure to perfluoroalkyl substances in relation to serum adipokines in a longitudinal birth cohort. Environmental Research. Mar 2022qpslcm@ikd204111905. doi:10.1016/j.envres.2021.111905 14. The United States Department of Health and Human Services Food and Drug Administration. Bioanalytical Method Validation 2018 15. Boeke CE, Oken E, Kleinman KP, Rifas-Shiman SL, Taveras EM, Gillman MW. Correlations among adiposity measures in school-aged children. BMC Pediatrics. 2013/06/24 2013qpslcm@ikd13(1):99. doi:10.1186/1471-2431-13-99 16. Croghan, C AND P P. Egeghy. METHODS OF DEALING WITH VALUES BELOW THE LIMIT OF DETECTION USING SAS. Presented at Southeastern SAS User Group, St. Petersburg, FL, September 22-24, 2003. 17. Keil AP, Buckley JP, O''Brien KM, Ferguson KK, Zhao S, White AJ. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ Health Perspect. Apr 2020qpslcm@ikd128(4):47004. doi:10.1289/ehp5838 18. Friedland O, Nemet D, Gorodnitsky N, Wolach B, Eliakim A. Obesity and lipid profiles in children and adolescents. J Pediatr Endocrinol Metab. Jul-Aug 2002qpslcm@ikd15(7):1011-6. doi:10.1515/jpem.2002.15.7.1011 19. Keil AP, Buckley JP, O''Brien KM, Ferguson KK, Zhao S, White AJ. A Quantile-Based g-Computation Approach to Addressing the Effects of Exposure Mixtures. Environ Health Perspect. 2020qpslcm@ikd128(4):47004. doi:10.1289/EHP5838 20. Zhang Y, Beesoon S, Zhu L, Martin JW. Biomonitoring of Perfluoroalkyl Acids in Human Urine and Estimates of Biological Half-Life. Environmental Science & Technology. 2013/09/17 2013qpslcm@ikd47(18):10619-10627. doi:10.1021/es401905e 21. Xu Y, Fletcher T, Pineda D, et al. Serum Half-Lives for Short- and Long-Chain Perfluoroalkyl Acids after Ceasing Exposure from Drinking Water Contaminated by Firefighting Foam. Environ Health Perspect. Jul 2020qpslcm@ikd128(7):77004. doi:10.1289/ehp6785 22. Domingo JL, Nadal M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environmental Research. 2019/10/01/ 2019qpslcm@ikd177:108648. doi:https://doi.org/10.1016/j.envres.2019.108648 23. Kurwadkar S, Dane J, Kanel SR, et al. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of The Total Environment. 2022/02/25/ 2022qpslcm@ikd809:151003. doi:https://doi.org/10.1016/j.scitotenv.2021.151003 24. Butenhoff JL, Bjork JA, Chang SC, et al. Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reprod Toxicol. Jul 2012qpslcm@ikd33(4):513-530. doi:10.1016/j.reprotox.2011.08.004 25. Gomis MI, Vestergren R, Borg D, Cousins IT. Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environment International. 2018/04/01/ 2018qpslcm@ikd113:1-9. doi:https://doi.org/10.1016/j.envint.2018.01.011 26. Schillemans T, Iszatt N, Remy S, et al. Cross-sectional associations between exposure to per- and polyfluoroalkyl substances and body mass index among European teenagers in the HBM4EU aligned studies. Environ Pollut. Jan 1 2023qpslcm@ikd316(Pt 1):120566. doi:10.1016/j.envpol.2022.120566 27. Starling AP, Friedman C, Boyle KE, et al. Prenatal exposure to per- and polyfluoroalkyl substances and early childhood adiposity and cardiometabolic health in the Healthy Start study. International Journal of Obesity. 2023/12/02 2023qpslcm@ikddoi:10.1038/s41366-023-01420-3 28. Braun JM, Chen A, Romano ME, et al. Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study. Obesity (Silver Spring). Jan 2016qpslcm@ikd24(1):231-7. doi:10.1002/oby.21258 29. Song X, Wu J, Ji H, et al. Maternal per- and poly-fluoroalkyl substances exposure and child adiposity measures: A birth cohort study. Ecotoxicol Environ Saf. Mar 15 2023qpslcm@ikd253:114684. doi:10.1016/j.ecoenv.2023.114684 30. Sadrabadi F, Alarcan J, Sprenger H, Braeuning A, Buhrke T. Impact of perfluoroalkyl substances (PFAS) and PFAS mixtures on lipid metabolism in differentiated HepaRG cells as a model for human hepatocytes. Arch Toxicol. Dec 20 2023qpslcm@ikddoi:10.1007/s00204-023-03649-3 31. Hyötyläinen T, McGlinchey A, Salihovic S, et al. In utero exposures to perfluoroalkyl substances and the human fetal liver metabolome in Scotland: a cross-sectional study. Lancet Planet Health. Jan 2024qpslcm@ikd8(1):e5-e17. doi:10.1016/s2542-5196(23)00257-7 32. Lallas PL. The Stockholm Convention on Persistent Organic Pollutants. American Journal of International Law. 2001qpslcm@ikd95(3):692-708. doi:10.2307/2668517 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91948 | - |
dc.description.abstract | 本研究深入探討兒童暴露多氟烷基物質(PFAS)與肥胖及脂質代謝的交互關係。PFAS 是一人造化合物,因其防水、防油等穩定之性質而被廣泛應用,且因其在環境中的持久性和對健康的潛在危害而受到關注。本研究旨在探索傳統與新型PFAS 化合物如何影響兒童脂質代謝和體態組成。
本研究利用台灣出生群組研究 II(Taiwan Birth Penal Study II)在 2018 年收集的兒童樣本,我們分析了 595 名兒童(平均年齡 7.84 歲)的血清中 17 種長短鏈PFAS 的濃度、體態組成及血液生化數據,並發現這些 PFAS 的檢出率普遍高於50%,突顯出這些化合物在兒童群體中的普遍存在。進一步的線性迴歸分析揭示,部分長鏈 PFAS(如 PFOA 和 PFOS)與膽固醇濃度呈現顯著的正相關,但不同的PFAS 結果並不一致,例如較高的 PFNA 暴露與皮膚褶皺厚度成負相關,但在 6:2 PAP 卻成正相關,這表明不同 PFAS 化合物可能對體態組成和脂質代謝產生不同的影響,顯示出不同 PFAS 化合物對健康影響的差異性。此外,本研究特別採用了Quantile-Base G Computation 計算法來評估混合 PFAS 的健康風險,以克服過去研究在處理混合污染物共線性及交互作用時的限制。分析結果表明,PFAS 混合物與總膽固醇、高密度膽固醇和低密度膽固醇之間存在正相關,且在肥胖及正常體重的兒童族群中結果一致。另外一個發現是相較於傳統 PFAS,短鏈 PFAS(如 PFBA)的貢獻性在加權指數上顯著增加。然而 PFAS 混合物濃度與體態組成、甘油三酸酯、脂聯素和瘦素等其他血脂標記的相關性則不顯著。 總結來說,本研究為 PFAS 暴露與兒童肥胖和脂質代謝之間的複雜關係提供了新的視角,除了支持之前的觀點,即 PFAS 暴露會干擾脂質代謝,同時也強調了未來研究者應更關注短鏈 PFAS 對人體健康可能的影響。 | zh_TW |
dc.description.abstract | This study delves into the interplay between children''s exposure to Perfluoroalkyl Substances (PFAS) and its associations with obesity and lipid metabolism. PFAS, synthetic compounds known for their stable, water- and oil-repellent properties, are widely used and have raised concerns due to their persistence in the environment and potential health hazards. The aim of this research is to explore how traditional and novel PFAS compounds affect children''s lipid metabolism and body composition, addressing a gap in this field.
Utilizing data from the Taiwan Birth Panel Study II collected in 2018, we analyzed serum concentrations of 17 types of long- and short-chain PFAS in 595 children (average age 7.84 years), along with their body composition and biochemical blood markers. Our findings indicate a detection rate of these PFAS exceeding 50% among the children, highlighting their prevalent presence. Further linear regression analysis revealed that certain long-chain PFAS (such as PFOA and PFOS) were positively correlated with cholesterol levels. However, the impacts of different PFAS varied, for instance, higher exposure to PFNA was negatively correlated with skinfold thickness, while a positive correlation was observed with 6:2 PAP, suggesting diverse effects of various PFAS on body composition and lipid metabolism. A notable aspect of this study was the application of the Quantile-Based G Computation method to assess the health risks of mixed PFAS exposure, overcoming limitations of previous research in handling collinearity and interactions of mixed pollutants. The results indicated a positive correlation between PFAS mixtures and total cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL), consistent across both obese and normal-weight child populations. Another key finding was the increased significance of short-chain PFAS (like PFBA) in weighted indices compared to traditional PFAS. However, no significant correlations were observed between PFAS mixture concentrations and body composition, triglycerides, adiponectin, or leptin levels. In conclusion, this study provides new insights into the complex relationship between PFAS exposure, child obesity, and lipid metabolism. It not only supports previous views that PFAS exposure disrupts lipid metabolism but also emphasizes the need for future research to focus more on the potential health impacts of short-chain PFAS. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:35:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-26T16:35:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
致謝 I 中文摘要 II Abstract III Contents V List of tables VII List of. Figures VIII Chapter 1. Introduction 1 1.1 Perfluoroalkyl Substances (PFAS) 1 1.2 Childhood Obesity and Environmental Factors 3 1.2.1 The Role of PFAS in Child Adiposity 4 1.3 Objectives of the Study 6 Chapter 2. Materials and Methods 6 2.1 Study population 6 2.2 Exposure measurement 7 2.2.1 Sample collection and storage 8 2.2.2 Serum sample preparation 8 2.2.3 Instrumental analysis 9 2.2.4 Method validation 9 2.2.5 Quality assurance and quality control 10 2.3 Measurement of Adiposity 11 2.4 Confounders 11 2.5 Statistic Analysis 12 Character 3. Result 13 3.1 Characteristics of the participants from TPBSII 13 3.2 Distributions of PFAS concentrations 14 3.3 Individual PFAS exposure and childhood adiposity 15 3.4 PFAS mixture exposure and childhood adiposity 16 3.5 Additional analysis 17 Character 4. Discussion 19 4.1 Strength and limitation 19 4.2 Interpretation of results and comparison with Existing Literature 21 4.3 PFAS, lipid metabolism and obesity 22 Chapter 5. Conclusions 24 5.1 Summary of Findings 24 5.2 Recommendations for Future Research 25 Chapter 6 Reference 26 Tables 31 Figures 42 | - |
dc.language.iso | en | - |
dc.title | 早期暴露多氟烷基化合物與兒童肥胖關係的橫斷性研究 | zh_TW |
dc.title | Early-life Per- and Polyfluoroalkyl Substances exposure in relation to Child Adiposity | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳美惠;魏嘉徵; 羅宇軒;謝燕儒 | zh_TW |
dc.contributor.oralexamcommittee | Mei-Huei Chen;Chia-Cheng Wei;Yu-Syuan Luo;Yein-Rui Hsieh | en |
dc.subject.keyword | 多氟烷基物質 (PFAS),兒童肥胖,台灣出生世代研究 II,分位數 G 計算, | zh_TW |
dc.subject.keyword | Per-and polyfluoroalkyl Substances (PFAS),Childhood Adiposity,Taiwan Birth Panel Study II,,Quantile-Base G Computation, | en |
dc.relation.page | 44 | - |
dc.identifier.doi | 10.6342/NTU202400653 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-02-21 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
顯示於系所單位: | 環境與職業健康科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。