Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91928
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬zh_TW
dc.contributor.advisorYih-Peng Chiouen
dc.contributor.author沈政勳zh_TW
dc.contributor.authorJheng-Syun Shenen
dc.date.accessioned2024-02-26T16:29:47Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationX. Mu, S. Wu, L. Cheng, and H. Fu, “Edge couplers in silicon photonic integrated circuits: a review,”Applied Sciences, vol. 10, p. 1538, 2020.
L. Cheng, S. Mao, Z. Li, Y. Han, and H. Fu, “Grating couplers on silicon photonics: design principles, emerging trends and practical issues,” Micromachines, vol. 11, p. 666, 2020.
R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, and P. Minzioni, “Coupling strategies for silicon photonics integrated chips (invited),” Photonics Research, vol. 7, pp. 201–239, 2019.
K. Kasaya, O. Mitomi, M. Naganuma, Y. Kondo, and Y. Noguchi, “A simple laterally tapered waveguide for low-loss coupling to single-mode fibers,” IEEE Photonics Technology Letters, vol. 5, pp. 345–347, 1993.
V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters, vol. 28, pp. 1302–1304, 2003.
S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. V. Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in 2009 Conference on Lasers and Electro- Optics and 2009 Conference on Quantum electronics and Laser Science Conference, pp. 1–2, 2009.
F. V. Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. V. Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” Journal of Lightwave Technology, vol. 25, pp. 151–156, 2007.
D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. V. Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced cmos-compatible silicon-on-insulator platform,” Optics Express, vol. 18, pp. 18278–18283, 2010.
D. Benedikovic, C. Alonso-Ramos, D. Pérez-Galacho, S. Guerber, V. Vakarin, G. Marcaud, X. L. Roux, E. Cassan, D. Marris-Morini, P. Cheben, F. Boeuf, C. Baudot, and L. Vivien, “L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-uv lithography,” Optics Letters, vol. 42, pp. 3439–3442, 2017.
D. Benedikovic, C. Alonso-Ramos, P. Cheben, J. H. Schmid, S. Wang, D. X. Xu, J. Lapointe, S. Janz, R. Halir, A. Ortega-Moñux, J. G. Wangüemert-Pérez, I. Molina- Fernández, J. M. Fédéli, L. Vivien, and M. Dado, “High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure,” Optics Letters, vol. 40, pp. 4190–4193, 2015.
A. Bozzola, L. Carroll, D. Gerace, I. Cristiani, and L. C. Andreani, “Optimising apodized grating couplers in a pure soi platform to −0.5 db coupling efficiency,” Optics Express, vol. 23, pp. 16289–16304, 2015.
D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Japanese Journal of Applied Physics, vol. 45, pp. 6071–6077, 2006.
Y. Ding, C. Peucheret, H. Ou, and K. Yvind, “Fully etched apodized grating coupler on the soi platform with −0.58 db coupling efficiency,” Optics Letters, vol. 39, pp. 5348–5350, 2014.
W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Optics Express, vol. 22, pp. 1277–1286, 2014.
C. R. Doerr, L. Chen, Y. K. Chen, and L. L. Buhl, “Wide bandwidth silicon nitride grating coupler,” IEEE Photonics Technology Letters, vol. 22, pp. 1461–1463, 2010.
D. S. Zemtsov, D. M. Zhigunov, S. S. Kosolobov, A. K. Zemtsova, M. Puplauskis, I. A. Pshenichnyuk, and V. P. Drachev, “Broadband silicon grating couplers with high efficiency and a robust design,” Optics Letters, vol. 47, pp. 3339–3342, 2022.
V. Y. Banine, K. N. Koshelev, and G. H. P. M. Swinkels, “Physical processes in euv sources for microlithography,” Journal of Physics D: Applied Physics, vol. 44, pp. 253001–253018, 2001.
M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in nanoimprint lithography,” Annual Review of Chemical and Biomolecular Engineering, vol. 7, pp. 583–604, 2016.
S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub‐25 nm vias and trenches in polymers,” Applied Physics Letters, vol. 67, pp. 3114–3116, 1995.
C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, “Relaxation in glassforming liquids and amorphous solids,” Journal of Applied Physics, vol. 88, pp. 3113–3157, 2000.
M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography: a new approach to high-resolution patterning,” Proceedings of SPIE, vol. 3676, pp. 379–389, 1999.
T. Asano, K. Sakai, K. Yamamoto, H. Hiura, T. Nakayama, T. Hayashi, Y. Takabayashi, T. Iwanaga, and D. J. Resnick, “The advantages of nanoimprint lithography for semiconductor device manufacturing,” in Photomask Japan 2019: XXVI Symposium on Photomask and Next-Generation Lithography Mask Technology, vol. 11178, pp. 131–140, 2019.
D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nature Photon, vol. 4, pp. 511–517, 2010.
G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nature Photon, vol. 4, pp. 518–526, 2010.
D. Dai, “Silicon nanophotonic integrated devices for on-chip multiplexing and switching,” Journal of Lightwave Technology, vol. 35, pp. 572–587, 2017.
W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [invited],” Optics Express, vol. 27, pp. 3642–3663, 2019.
D. Pascal, R. Orobtchouk, A. Layadi, A. Koster, and S. Laval, “Optimized coupling of a gaussian beam into an optical waveguide with a grating coupler: comparison of experimental and theoretical results,” Applied Optics, vol. 36, pp. 2443–2447, 1997.
R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “Highefficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Applied Optics, vol. 39, pp. 5773–5777, 2000.
K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, pp. 302–307, 1966.
S. Singer and J. Nelder, “Nelder-Mead algorithm,” Scholarpedia, vol. 4, p. 2928, 2009.
Y. Ozaki, M. Yano, and M. Onishi, “Effective hyperparameter optimization using nelder-mead method in deep learning,” IPSJ Transactions on Computer Vision and Applications, vol. 9, pp. 20–31, 2017.
C. P. Hernandez, S. Cabrini, and K. Munechika, “Ultra-high refractive index polymers in the visible wavelength for nanoimprint lithography,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XIV, vol. 11696, 2021.
S. Rytov, “Electromagnetic properties of a finely stratified medium,” Soviet Physics JEPT, vol. 2, pp. 466–475, 1956.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91928-
dc.description.abstract奈米壓印是一種逐漸被重視的微影技術,透過模板便可以將所設計的圖形壓印在基板上,近年來已被運用在於硬碟、顯示器以及太陽能電池的製作。在耦合技術中,垂直耦合透過其可以改變入射光波向量的特性,可以由各個角度入射耦合而不被波導行進方向所束縛。垂直耦合運用最多的便是光柵耦合器,但是光柵耦合器傳統的製程需要利用浸潤式微影或是電子束微影,必須花上較大的成本與較多的時間。然而透過採用奈米壓印的製程,便可以大幅改善浸潤式微影與電子束微影需要的成本。本論文利用數值模擬的方法來設計光柵耦合器,透過在SOI平台上設計聚合物光柵,完成對1550奈米波長有57.2% 耦合效率的光柵耦合器,以及88%模態間的相似。接著,透過最佳化來改變各個光柵的結構參數,設計出有67.4%耦合效率、97%模態間相似的光柵耦合器,透過反射層的使用可以使耦合效率再上升至84.8%,設計出透過奈米壓印製程的高效光柵耦合器。zh_TW
dc.description.abstractNanoimprint lithography which is patterned by mold is favorable for the process of hard disk drive, displays, and solar cells. Within coupling techniques, the vertical coupling can modify k-vector of the incident light, permitting light not to couple from lateral sides of waveguide. The most generally adopted in vertical coupling is the grating coupler. The traditional process of grating coupler needs immersion lithography or electron beam lithography which costs more expense and time. This problem can be improved by utilizing nanoimprint lithography. In this thesis, we use numerical simulation to design a grating coupler. The proposed grating coupler is based on nanoimprint lithography on SOI platform and it can reach coupling efficiency of 57.2% and modal overlap of 88% at the wavelength of 1550 nm. By optimizing the parameter of each grating, the grating coupler can accomplish coupling efficiency of 67.4% and modal overlap of 97%. By including a bottom reflector, the grating coupler achieves high coupling efficiency of 84.4%. The high-efficiency grating coupler can be designed by nanoimprint lithography process.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:29:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:29:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 耦合技術與光柵耦合器. . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 奈米壓印技術. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
第二章基本原理與研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 光柵基本原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 光柵耦合器之最適高斯光束. . . . . . . . . . . . . . . . . . . . . . . 18
2.3 電磁模擬軟體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Nelder-Mead method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
第三章光柵耦合器設計與最佳化. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 設計流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 單模光纖以10◦角入射. . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 耦合至矽平板波導. . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 耦合至寬度較窄之矽波導. . . . . . . . . . . . . . . . . . . . 35
3.3 單模光纖入射. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 改善方向性. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 改善模態相似. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 最適高斯光束入射. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.1 統一光柵耦合器. . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.2 變跡光柵耦合器. . . . . . . . . . . . . . . . . . . . . . . . . . 57
第四章結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
-
dc.language.isozh_TW-
dc.subject垂直耦合zh_TW
dc.subject一維光柵zh_TW
dc.subject布拉格條件zh_TW
dc.subject光柵耦合器zh_TW
dc.subject奈米壓印zh_TW
dc.subjectvertical couplingen
dc.subjectnanoimprint lithographyen
dc.subjectgrating coupleren
dc.subjectBragg conditionen
dc.subjectone dimensional gratingen
dc.title使用奈米壓印的聚合物覆SOI光柵耦合器之設計zh_TW
dc.titleDesign of Polymer-on-SOI Grating Couplers Using Nanoimprint Lithographyen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王子建;賴志賢zh_TW
dc.contributor.oralexamcommitteeTzyy-Jiann Wang;Chih-Hsien Laien
dc.subject.keyword垂直耦合,一維光柵,布拉格條件,光柵耦合器,奈米壓印,zh_TW
dc.subject.keywordvertical coupling,one dimensional grating,Bragg condition,grating coupler,nanoimprint lithography,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202203892-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-26-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf9.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved