Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91925
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬zh_TW
dc.contributor.advisorRuey-Fen Liouen
dc.contributor.author郭芃妤zh_TW
dc.contributor.authorPeng-Yu Kuoen
dc.date.accessioned2024-02-26T16:28:57Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation柯岱妤(2019)。探討疫病菌質外體效應蛋白OPEL對於菸草轉錄體的影響。國立臺灣大學植物病理與微生物學研究所碩士論文,台北市。
陳佳君(2019)。探討疫病菌OPEL同源性基因在植物基礎防禦反應的角色。國立臺灣大學植物病理與微生物學研究所碩士論文,台北市。
楊雅媛(2020)。探討疫病菌質外體效應蛋白OPEL如何引發植物免疫反應。國立臺灣大學植物病理與微生物學研究所碩士論文,台北市。
賴沛宜(2022)。探討OPEL引發植物免疫反應之機制。國立臺灣大學植物病理與微生物學研究所碩士論文,台北市。
BEN‐DANIEL, B. H., Bar‐Zvi, D., and TSROR, L. 2012. Pectate lyase affects pathogenicity in natural isolates of Colletotrichum coccodes and in pelA gene‐disrupted and gene‐overexpressing mutant lines. Mol. Plant Pathol. 13:187-197.
Boller, T., and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742-744.
Boutrot, F., and Zipfel, C. 2017. Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55:257-286.
Brutus, A., Sicilia, F., Macone, A., Cervone, F., and De Lorenzo, G. 2010. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. USA 107:9452-9457.
Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., et al. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. elife 3:e03766. Doi: https://doi.org/10.7554/eLife.03766
Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Mol. Plant Pathol. 16:123-136.
Chen, S., Cui, L., and Wang, X. 2022. A plant cell wall-associated kinase encoding gene is dramatically downregulated during nematode infection of potato. Plant Signal. Behav. 17:2004026.
Diener, A. C., and Ausubel, F. M. 2005. Resistance to fusarium oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305-321.
Ding, P., Sakai, T., Krishna Shrestha, R., Manosalva Perez, N., Guo, W., et al. 2021. Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors. J. Exp. Bot. 72:7927-7941.
Dunigan, D. D., Golemboski, D. B., and Zaitlin, M. 2007. Analysis of the N gene of Nicotiana. Pages 120-135 in: Ciba Foundation Symposium 133‐Plant Resistance to Virus: Plant Resistance to Virus: Ciba Foundation Symposium 133 Wiley Online Library.
Faris, J. D., and Friesen, T. L. 2020. Plant genes hijacked by necrotrophic fungal pathogens. Curr. Opin. Plant Biol. 56:74-80.
Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H., Handsaker, R. E., et al. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393-398.
Hansen, E. M. 2015. Phytophthora species emerging as pathogens of forest trees. Curr. For. Rep. 1:16-24.
Hatsugai, N., and Katagiri, F. 2018. Quantification of plant cell death by electrolyte leakage assay. Bio-protocol 8:e2758-e2758.
He, Z.-H., Fujiki, M., and Kohorn, B. D. 1996. A cell wall-associated, receptor-like protein kinase. J. Biol. Chem. 271:19789-19793.
Hu, K., Cao, J., Zhang, J., Xia, F., Ke, Y., et al. 2017. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 3:1-9.
Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.
Kameshwar, A. K. S., Ramos, L. P., and Qin, W. 2019. CAZymes-based Ranking of Fungi (CBRF): an interactive web database for identifying fungi with extrinsic plant biomass degrading abilities. Bioresour. Bioprocess. 6:1-10.
Kanneganti, V., and Gupta, A. K. 2011. RNAi mediated silencing of a wall associated kinase, OsiWAK1 in Oryza sativa results in impaired root development and sterility due to anther indehiscence. Physiol. Mol. Biol. Plants 17:65-77.
Kohorn, B. D., and Kohorn, S. L. 2012. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant Sci. 3:88.
Kohorn, B. D., Kohorn, S. L., Todorova, T., Baptiste, G., Stansky, K., et al. 2012. A dominant allele of Arabidopsis pectin-binding wall-associated kinase induces a stress response suppressed by mpk6 but not mpk3 mutations. Mol Plant. 5:841-851.
Kohorn, B. D., Johansen, S., Shishido, A., Todorova, T., Martinez, R., et al. 2009. Pectin activation of map kinase and gene expression is WAK2 dependent. Plant J. 60:974-982.
Kohorn, B. D., Kobayashi, M., Johansen, S., Riese, J., Huang, L. F., et al. 2006. An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J. 46:307-316.
Kruijt, M., Brandwagt, B. F., and De Wit, P. J. 2004. Rearrangements in the Cf-9 disease resistance gene cluster of wild tomato have resulted in three genes that mediate Avr9 responsiveness. Genetics 168:1655-1663.
Larkan, N. J., Ma, L., Haddadi, P., Buchwaldt, M., Parkin, I. A., et al. 2020. The Brassica napus wall‐associated kinase‐like (WAKL) gene Rlm9 provides race‐specific blackleg resistance. Plant J. 104:892-900.
Latijnhouwers, M., de Wit, P. J., and Govers, F. 2003. Oomycetes and fungi: Similar weaponry to attack plants. Trends Microbiol. 11:462-469.
Laugé, R., Goodwin, P. H., De Wit, P. J., and Joosten, M. H. 2000. Specific HR‐associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non‐host plants. Plant J. 23:735-745.
Li, Q., Hu, A., Qi, J., Dou, W., Qin, X., et al. 2020. CsWAKL08, a pathogen-induced wall-associated receptor-like kinase in sweet orange, confers resistance to citrus bacterial canker via ROS control and JA signaling. Hortic. Res. 7:42.
Liebrand, T. W., van den Berg, G. C., Zhang, Z., Smit, P., Cordewener, J. H., et al. 2013. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection. Proc. Natl. Acad. Sci. USA. 110:10010-10015.
Liu, Y., Schiff, M., Marathe, R., and Dinesh‐Kumar, S. 2002. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N‐mediated resistance to tobacco mosaic virus. Plant J. 30:415-429.
Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., and Henrissat, B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42:D490-D495.
Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., et al. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27:2057-2072.
Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., et al. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA. 104:19613-19618.
Morales-Cruz, A., Amrine, K. C., Blanco-Ulate, B., Lawrence, D. P., Travadon, R., et al. 2015. Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genet. 16:1-22.
Muchero, W., Sondreli, K. L., Chen, J.-G., Urbanowicz, B. R., Zhang, J., et al. 2018. Association mapping, transcriptomics, and transient expression identify candidate genes mediating plant–pathogen interactions in a tree. Proc. Natl. Acad. Sci. USA. 115:11573-11578.
Nühse, T. S. 2012. Cell wall integrity signaling and innate immunity in plants. Front. Plant Sci. 3:280.
Naveed, Z. A., Wei, X., Chen, J., Mubeen, H., and Ali, G. S. 2020. The PTI to ETI continuum in Phytophthora-plant interactions. Front. Plant Sci. 11:593905.
Ngou, B. P. M., Ahn, H.-K., Ding, P., and Jones, J. D. 2021. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature 592:110-115.
Ngou, B. P. M., Ding, P., and Jones, J. D. G. 2022. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 34:1447-1478.
Pérez-Hernández, A., González, M., González, C., van Kan, J. A., and Brito, N. 2017. BcSUN1, a B. cinerea SUN-family protein, is involved in virulence. Front. Microbiol. 8:35.
Payne, C. M., Knott, B. C., Mayes, H. B., Hansson, H., Himmel, M. E., et al. 2015. Fungal cellulases. Chem. Rev. 115:1308-1448.
Peart, J. R., Cook, G., Feys, B. J., Parker, J. E., and Baulcombe, D. C. 2002. An EDS1 orthologue is required for N‐mediated resistance against tobacco mosaic virus. Plant J. 29:569-579.
Ren, J., Wen, L., Gao, X., Jin, C., Xue, Y., et al. 2009. DOG 1.0: Illustrator of protein domain structures. Cell Res. 19:271-273.
Roshandel, P. 2007. The possible involvement of MYB, WAK and RIM2 proteins in salt tolerance in rice. Indian J. Plant Physiol 12:215.
Saintenac, C., Lee, W.-S., Cambon, F., Rudd, J. J., King, R. C., et al. 2018. Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 50:368-374.
Sivaguru, M., Ezaki, B., He, Z.-H., Tong, H., Osawa, H., et al. 2003. Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol. 132:2256-2266.
Stergiopoulos, I., van den Burg, H. A., Ökmen, B., Beenen, H. G., van Liere, S., et al. 2010. Tomato Cf resistance proteins mediate recognition of cognate homologous effectors from fungi pathogenic on dicots and monocots. Proc. Natl. Acad. Sci. USA. 107:7610-7615.
Tan, X., Hu, Y., Jia, Y., Hou, X., Xu, Q., et al. 2020. A conserved glycoside hydrolase family 7 cellobiohydrolase PsGH7a of Phytophthora sojae is required for full virulence on soybean. Front. Microbiol. 11:1285.
Tamura, K., Stecher, G., and Kumar, S. 2021. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38:3022-3027.
Thomas, C. M., Jones, D. A., Parniske, M., Harrison, K., Balint-Kurti, P. J., et al. 1997. Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209-2224.
Thomma, B. P., Nürnberger, T., and Joosten, M. H. 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. Plant cell 23:4-15.
Tzean, Y., Lee, M.-C., Jan, H.-H., Chiu, Y.-S., Tu, T.-C., et al. 2019. Cucumber mosaic virus-induced gene silencing in banana. Sci. Rep. 9:1-9.
van den Burg, H. A., Harrison, S. J., Joosten, M. H., Vervoort, J., and de Wit, P. J. 2006. Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol. Plant Microbe Interact. 19:1420-1430.
van den Burg, H. A., Westerink, N., Francoijs, K.-J., Roth, R., Woestenenk, E., et al. 2003. Natural disulfide bond-disrupted mutants of AVR4 of the tomato pathogen Cladosporium fulvum are sensitive to proteolysis, circumvent Cf-4-mediated resistance, but retain their chitin binding ability. J. Biol. Chem. 278:27340-27346.
Verica, J. A., and He, Z.-H. 2002. The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol. 129:455-459.
Wang, H., Niu, H., Liang, M., Zhai, Y., Huang, W., et al. 2019. A wall-associated kinase gene CaWAKL20 from pepper negatively modulates plant thermotolerance by reducing the expression of ABA-responsive genes. Front. Plant Sci. 10:591.
Wang, N., Huang, H.-J., Ren, S.-T., Li, J.-J., Sun, Y., et al. 2012. The rice wall-associated receptor-like kinase gene OsDEES1 plays a role in female gametophyte development. Plant Physiol. 160:696-707.
Wang, P., Zhou, L., Jamieson, P., Zhang, L., Zhao, Z., et al. 2020. The cotton wall-associated kinase GhWAK7A mediates responses to fungal wilt pathogens by complexing with the chitin sensory receptors. Plant Cell 32:3978-4001.
Werner, S., Steiner, U., Becher, R., Kortekamp, A., Zyprian, E., et al. 2002. Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiol. Lett. 208:169-173.
Willmann, R., Lajunen, H. M., Erbs, G., Newman, M.-A., Kolb, D., et al. 2011. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc. Natl. Acad. Sci. USA. 108:19824-19829.
Xia, X., Zhang, X., Zhang, Y., Wang, L., An, Q., et al. 2022. Characterization of the WAK gene family reveals genes for FHB resistance in bread wheat (Triticum aestivum L.). Int. J. Mol. Sci. 23:7157.
Xia, Y., Yin, S., Zhang, K., Shi, X., Lian, C., et al. 2018. OsWAK11, a rice wall-associated kinase, regulates Cu detoxification by alteration the immobilization of Cu in cell walls. Environ. Exp. Bot. 150:99-105.
Yang, Y., Zhang, Y., Li, B., Yang, X., Dong, Y., et al. 2018. A Verticillium dahliae pectate lyase induces plant immune responses and contributes to virulence. Front. Plant Sci. 9:1271.
Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., et al. 2021. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592:105-109.
Zhang, N., Pombo, M. A., Rosli, H. G., and Martin, G. B. 2020. Tomato wall-associated kinase SlWAK1 depends on FLS2/FLS3 to promote apoplastic immune responses to Pseudomonas syringae. Plant Physiol. 183:1869-1882.
Zhang, S., Chen, C., Li, L., Meng, L., Singh, J., et al. 2005. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol. 139:1107-1124.
Zhang, Z., Fradin, E., de Jonge, R., van Esse, H. P., Smit, P., et al. 2013. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. Mol. Plant-Microbe Interact. 26:182-190.
Zhang, Z., Ma, W., Ren, Z., Wang, X., Zhao, J., et al. 2021. Characterization and expression analysis of wall-associated kinase (WAK) and WAK-like family in cotton. Int. J. Biol. Macromol. 187:867-879.
Zhou, J.-M., and Zhang, Y. 2020. Plant immunity: danger perception and signaling. Cell 181:978-989.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91925-
dc.description.abstractWall-associated receptor kinases (WAKs) 是植物特有的一群receptor-like protein kinases (RLKs),其結構包含位於胞外的WAK-GUB域與EGF域、跨膜域以及胞內的蛋白激酶域。WAKs與序列相似的WAK-likes (WAKLs) 為龐大的基因家族,部分成員作為植物細胞壁果膠受體,和細胞擴展、植物發育有關;部分則與植物防禦反應有關,在植物受病原入侵等特定刺激時被誘導表現,但不同植物的WAKs與WAKLs參與防禦反應的機制不盡相同。雖然WAKs與WAKLs已被證實參與多種植物對真菌及細菌病原的抗性,其在植物與疫病菌交互作用的角色亟待探究。Phytophthora parasitica質外體效應蛋白OPEL可在菸草Nicotiana tabacum (cv. Samsun-NN) 引發癒傷葡聚醣沉積、活性氧分子累積以及防禦相關基因表現。分析菸草以OPEL重組蛋白處理後的轉錄體,發現多個WAK與WAKL基因表現量顯著提升。為探討這些基因在OPEL引發植物免疫反應以及植物-疫病菌交互作用的角色,本研究首先進行序列分析,發現這些菸草WAKs與WAKLs大多具有典型的WAK蛋白結構;親緣分析結果顯示菸草除具有阿拉伯芥WAKs的直系同源性基因 (orthologs) 外,還含有其他數個支序群。qRT-PCR分析發現處理OPEL重組蛋白與接種P. parasitica可誘導特定菸草WAK與WAKL候選基因的表現,包括NtWAKL14x1與NtWAKL14x2。於圓葉菸草暫表現NtWAKL14x1-GFP,發現其位於植物細胞膜。藉由cucumber mosaic virus (CMV) 於Nicotiana tabacum (cv. Samsun-NN) 誘導靜默NtWAKL14x1與NtWAKL14x2,可降低OPEL引發之癒傷葡聚醣沉積與細胞死亡等植物防禦反應,並促進疫病菌感染。這些結果顯示NtWAKL14x1與NtWAKL14x2正向調控OPEL引發的防禦反應,也是首次發現WAKL參與植物對卵菌的抗性,其詳細作用機制有待後續探究。zh_TW
dc.description.abstractWall-associated receptor kinases (WAKs), a subfamily of receptor-like protein kinases (RLKs) found only in plants, consist of extracellular WAK-GUB and EGF domain, transmembrane domain, and intracellular kinase domain. WAKs and its homologs, known as WAK-likes (WAKLs), play diverse roles in plants. Some WAKs associate with pectin in plant cell wall and take part in the regulation of plant cell expansion and development, whereas some are involved in defense responses through various mechanisms. Although the roles of WAKs and WAKLs in plant interactions with fungal and bacterial pathogens have been well studied, their contribution to plant resistance against the oomycetes remains largely unknown. OPEL, an apoplastic effector from Phytophthora parasitica, can induce callose deposition, ROS production, and defense gene expression in Nicotiana tabacum (cv. Samsun-NN). Previous study based on transcriptome analysis found several NtWAKs and NtWAKLs were significantly induced by OPEL treatment. Here, we further characterized these genes to investigate their roles in plant immune responses toward OPEL and P. parasitica. Sequence analysis indicates most of these candidate genes contain predicted protein structure similar to that of typical WAKs. Phylogenetic analysis showed some of these NtWAKs are orthologous to AtWAKs from Arabidopsis thaliana, whereas others form distinct clades. Analysis by qRT-PCR demonstrated the induction of specific NtWAKs and NtWAKLs after OPEL treatment and P. parasitica inoculation, including NtWAKL14x1 and NtWAKL14x2. When overexpressed on Nicotiana benthamiana, NtWAKL14x1-GFP localized in the plasma membrane. Downregulation of NtWAKL14x1 and NtWAKL14x2 by cucumber mosaic virus (CMV)-mediated gene silencing compromised OPEL-induced callose deposition and cell death, whereas enhanced P. parasitica infection on Nicotiana tabacum (cv. Samsun-NN). These results indicate NtWAKL14x1 and NtWAKL14x2 function as positive regulators of plant defense response toward OPEL and P. parasitica. This is the first report of WAKL genes to participate in the plant-oomycete interaction. Further investigations are needed for better understanding of the underlying mechanism.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:28:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:28:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書
致 謝 i
摘 要 ii
Abstract iii
前 言 1
1. 植物防禦反應 1
2. 植物PRRs 2
3. Wall-associated receptor kinases (WAKs) 3
4. WAKs與植物生長 3
5. WAKs與WAKLs在植物非生物性逆境之角色 4
6. WAKs與WAKLs在植物生物性逆境之角色 4
7. 糖苷水解酶在植物防禦反應的角色 5
8. 疫病菌 6
9. 疫病菌外泌蛋白OPEL在植物防禦反應扮演的角色 7
10. 研究動機 8
材料與方法 9
1. 親緣關係分析與蛋白質結構預測 9
2. 植物材料與生長條件 9
3. OPEL重組蛋白表現及純化 10
4. 疫病菌 (P. parasitica) 接種 11
4.1 疫病菌全株接種 11
4.2 疫病菌離葉接種 11
5. 抽取植物RNA與製備cDNA 11
6. 即時定量聚合酶連鎖反應 (qRT-PCR) 12
7. 載體構築 13
7.1 暫表現 (transient expression) 載體建構 13
7.2 病毒介導基因靜默載體建構 13
8. 以農桿菌浸潤法 (agroinfiltration) 暫表現基因 14
9. 利用共軛焦顯微鏡觀察植物細胞內螢光蛋白分布 14
10. 以農桿菌感染法 (agroinfection) 進行CMV誘導基因靜默 15
11. 癒傷葡聚醣之測定 15
12. 偵測細胞離子滲漏 15
結 果 17
1. NtWAKs與其同源性基因之親緣關係與結構域分析 17
2. OPEL重組蛋白之純化與蛋白引發植物防禦反應的活性 18
3. NtWAKs與NtWAKLs之表現量受OPEL誘導 19
4. 疫病菌感染誘導NtWAKs與NtWAKLs候選基因表現 19
5. NtWAKL14x1-GFP分布於植物細胞膜 20
6. 植物生長與表觀不受NtWAKL14x1與NtWAKL14x2靜默之影響 20
7. 同時靜默NtWAKL14x1與NtWAKL14x2降低OPEL引發植物基礎防禦反應的能力 21
8. 同時靜默NtWAKL14x1與NtWAKL14x2降低N. tabacum對疫病菌之抗性 22
討 論 23
1. CMV介導基因靜默NtWAKL14x1與NtWAKL14x2 23
2. NtWAKL14x1與NtWAKL14x2在OPEL引發防禦反應的角色 24
3. WAK2-like基因在植物防禦反應中的角色 26
4. 結語 27
引用文獻 28
附 表 35
附 圖 36
附 錄 51
-
dc.language.isozh_TW-
dc.subjectOPELzh_TW
dc.subjectWall-associated receptor kinaseszh_TW
dc.subjectCMV誘導基因靜默zh_TW
dc.subject疫病菌zh_TW
dc.subject基礎防禦反應zh_TW
dc.subjectWall-associated receptor kinasesen
dc.subjectPhytophthora parasiticaen
dc.subjectPlant innate immunityen
dc.subjectOPELen
dc.subjectCMV-mediated gene silencingen
dc.title探討NtWAKL14在OPEL引發之植物防禦反應的角色zh_TW
dc.titleInvestigate the role of NtWAKL14 in OPEL-induced plant immune responsesen
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭秋萍;林乃君;吳志航zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordOPEL,Wall-associated receptor kinases,CMV誘導基因靜默,疫病菌,基礎防禦反應,zh_TW
dc.subject.keywordCMV-mediated gene silencing,OPEL,Phytophthora parasitica,Plant innate immunity,Wall-associated receptor kinases,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202204033-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf4.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved