Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹魁元zh_TW
dc.contributor.advisorKuei-Yuan Chanen
dc.contributor.author李亭宜zh_TW
dc.contributor.authorTING-I Leeen
dc.date.accessioned2024-02-26T16:22:17Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationK.Shafique,B.Khawaja,F.Sabir,S.Qazi,andM.Mustaqim.Internetofthings(iot) for next-generation smart systems: A review of current challenges, future trends and prospects for emerging 5g-iot scenarios. IEEE Access, 8:23022–23040, 2020.
G. Angelis, A. Angelis, V. Pasku, A. Moschitta, and P. Carbone. A hybrid outdoor/ indoor positioning system for iot applications. In 2015 IEEE International Sympo- sium on Systems Engineering (ISSE), pages 1–6, 2015.
S.Yeh,Wu-HsiaoHsu,Ming-YangSu,Ching-HuiChen,andKo-HungLiu.Astudy on outdoor positioning technology using gps and wifi networks. In 2009 Interna- tional Conference on Networking, Sensing and Control, pages 597–601, 2009.
M. Maheepala, A. Kouzani, and M. Joordens. Light-based indoor positioning sys- tems: A review. IEEE Sensors Journal, 20(8):3971–3995, 2020.
Y.Zhuang,L.Hua,L.Qi,J.Yang,P.Cao,Y.Cao,Y.Wu,J.Thompson,andH.Haas. A survey of positioning systems using visible led lights. IEEE Communications Surveys Tutorials, 20(3):1963–1988, 2018.
L. Mainetti, L. Patrono, and I. Sergi. A survey on indoor positioning systems. In 
2014 22nd International Conference on Software, Telecommunications and Com- puter Networks (SoftCOM), pages 111–120, 2014.
F. Zafari, A. Gkelias, and K. Leung. A survey of indoor localization systems and technologies. IEEE Communications Surveys & Tutorials, 21:2568–2599, 2019.
J. Kunhoth, A. Karkar, S. Al-ma’adeed, and A. Al-Ali. Indoor positioning and wayfinding systems: a survey. Human-centric Computing and Information Sciences, 10, 12 2020.
T. Geok, K. Aung, M. Sandar Aung, M. Thu Soe, A. Abdaziz, C. Pao Liew, F. Hos- sain, C. Tso, and W. Yong. Review of indoor positioning: Radio wave technology. Applied Sciences, 11(1), 2021.
G. del Campo-Jimenez, J. Perandones, and F. Lopez-Hernandez. A vlc-based bea- con location system for mobile applications. In 2013 International Conference on Localization and GNSS (ICL-GNSS), pages 1–4, 2013.
T. Tegou, I. Kalamaras, M. Tsipouras, N. Giannakeas, K. Votis, and D. Tzovaras. A low-cost indoor activity monitoring system for detecting frailty in older adults. Sensors, 19:452, 01 2019.
J. Kim, I. Kim, D. Yun, T. Jung, S. Kwon, and K. Jung. Visual positioning system based on 6d object pose estimation using mobile web. Electronics, 11(6), 2022.
OpenCV. Detection of ArUco Markers. Retrieved Jul 2022 from: https://docs. opencv.org/4.x/d5/dae/tutorial_aruco_detection.html.
Z. Qiu, Y. Lu, and Z. Qiu. Review of ultrasonic ranging methods and their current challenges. Micromachines, 13(4):520, 2022.
Y. Abdelrahman, A. Schmidt, and P. Knierim. Snake view: exploring thermal imag- ing as a vision extender in mountains. pages 1067–1071, 09 2017.
David J. Griffiths. Introduction to Electrodynamics. Pearson, Boston, 1942(2013).
國家通訊傳播委員會. 業餘無線電技術規範, 10 2015.
A. Motroni, A. Buffi, and P. Nepa. A survey on indoor vehicle localization through RFID technology. IEEE Access, 9:17921–17942, 2021.
L. Ni, Y. Liu, Y. Lau, and A. Patil. Landmarc: indoor location sensing using ac- tive rfid. In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)., pages 407–415, 2003.
M. Kim and N. Chong. Enhancing rfid location sensing using a dual directional antenna. 2005.
T.ÇevikandS.Yilmaz.Anoverviewofvisiblelightcommunicationsystems.ArXiv, abs/1512.03568, 2015.
P. Pathak, X. Feng, P. Hu, and P. Mohapatra. Visible light communication, network- ing, and sensing: A survey, potential and challenges. IEEE Communications Surveys and Tutorials, 17(4):2047–2077, 2015.
OSRAM Opto Semiconductors Inc. High power infrared emitter (940 nm). Retrieved Aug 2022 from: https://dammedia.osram.info/media/resource/ hires/osram-dam-5824111/SFH%204545_EN.pdf, 11 2021. Ver 1.8.
Avery Dennison Corp. Digital labeling technologies that optimize rfid performance. Retrieved Aug 2022 from: https://rfid.averydennison.com/content/ dam/rfid/en/products/rfid-products/data-sheets/RFID_Product_ Portfolio_Joint_Digital.pdf#page=3, 2022.
A. Sood, J. Zeller, R. Richwine, Y. Puri, H. Efstathiadis, P. Haldar, N. Dhar, and D. Polla. Sige based visible-nir photodetector technology for optoelectronic appli- cations. In Moh Yasin, Hamzah Arof, and Sulaiman Wadi Harun, editors, Advances in Optical Fiber Technology, chapter 10. IntechOpen, Rijeka, 2015.
C. Gueymard. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy, 76(4):423–453, 2004.
StandardSolarSpectra.NumberASTMG-173-03(InternationalstandardISO9845- 1). 1992.
M. Rahman, M. Sejan, J. Kim, and W. Chung. Reduced tilting effect of smartphone cmos image sensor in visible light indoor positioning. Electronics, 9:1–19, 10 2020.
Y. Kuo, P. Pannuto, K. Hsiao, and P. Dutta. Luxapose: indoor positioning with mobile phones and visible light. Proceedings of the 20th annual international con- ference on Mobile computing and networking, 2014.
G.Kumar,G.Rao,andM.Kumar.Gpssignalshort-termpropagationcharacteristics modeling in urban areas for precise navigation applications. Positioning, 04:192– 199, 01 2013.
A. Bakar, T. Glass, H. Tee, F. Alam M., and Legg. Accurate visible light positioning using multiple-photodiode receiver and machine learning. IEEE Transactions on Instrumentation and Measurement, 70:1–12, 2021.
S. Yang, H. Kim, Y. Son, and S. Han. Three-dimensional visible light indoor lo- calization using aoa and rss with multiple optical receivers. Journal of Lightwave Technology, 32(14):2480–2485, 2014.
S.Shen,S.Li,andS.Heidi.Simultaneouspositionandorientationestimationforvis- ible light systems with multiple LEDs and multiple PDs. IEEE Journal on Selected Areas in Communications, 38(8):1866–1879, aug 2020.
W. Mccluney. Introduction to Radiometry and Photometry 2nd ed: Title Page & Table of Contents. 11 2015.
Vishay.Highpowerinfraredemittingdiode,850nm,surfaceemittertechnology.Re- trieved Aug 2022 from: https://www.vishay.com/docs/80297/vsma1085250. pdf, 03 2022.
X.Yu,J.Wang,andH.Lu.Singleled-basedindoorpositioningsystemusingmultiple photodetectors. IEEE Photonics Journal, 10(6):1–8, 2018.
X. Yu, J. Wang, and H. Lu. Indoor positioning system based on single led using symmetrical optical receiver. In Asia Communications and Photonics Conference (ACP) 2018, page Su2A.50. Optica Publishing Group, 2018.
S. Yang, E. Jeong, and S. Han. Indoor positioning based on received optical power difference by angle of arrival. Electronics Letters, 50:49–51, 2014.
T.Raharijaona,P.Mignon,R.Juston,L.Kerhuel,andS.Viollet.Hypercube:Asmall lensless position sensing device for the tracking of flickering infrared leds. Sensors, 15(7):16484–16502, 2015.
S. Saab and K. Saab. A positioning system for photodiode device using collocated leds. IEEE Photonics Journal, 8(5):1–14, 2016.
S. Rehman, S. Ullah, P. Chong, S. Yongchareon, and C. Komosny. Visible light communication: A system perspective—overview and challenges. Sensors, 19(5), 2019.
J. Barry, J. Kahn, W. Krause, E. Lee, and D. Messerschmitt. Simulation of multipath impulse response for indoor wireless optical channels. IEEE Journal on Selected Areas in Communications, 11(3):367–379, 1993.
Hamamatsu. Technical Note of Si Photodiodes. Retrieved Aug 2022 from: 
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/ documents/99_SALES_LIBRARY/ssd/si_pd_kspd9001e.pdf, May 2022.
Hamamatsu. Infrared LED L12170. Retrieved Aug 2022 from: https: //www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/ documents/99_SALES_LIBRARY/ssd/si_pd_kspd9001e.pdf, Aug 2014.
Lumineds. Ds190 Luxeon IR Compact Line Product Datasheet. Retrieved Aug 2022 from: https://lumileds.com/wp-content/uploads/files/DS190.pdf, 2018.
Hamamatsu. Si Photodiodes S12915 series. Retrieved Aug 2022 from: 
https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/ documents/99_SALES_LIBRARY/ssd/s12915_series_kspd1086e.pdf, Jan 2019.
W.Gu,M.Aminikashani,P.Deng,andM.Kavehrad.Impactofmultipathreflections on the performance of indoor visible light positioning systems. Journal of Lightwave Technology, 34:2578–2587, 05 2016.
W. Zhang, M. Chowdhury, and M. Kavehrad. Asynchronous indoor positioning system based on visible light communications. Optical Engineering, 53:045105, 04 2014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91902-
dc.description.abstract隨著科技與物連網的發展,各領域對於量測資訊的需求大量增加,其中相對位置的資訊實為重要。然而,現今室內定位仍仰賴多個參考點進行定位,缺乏僅以「可攜式單位」達到兩物體之間三維定位的方法。因此,我們由探討不同的室內定位方法開始,根據以上需求將研究重點聚焦在光波段中發光二極體(Light Emitting Diode,簡稱LED)與光電二極體(Photodiode,簡稱PD)的定位方法,此方法有達到兩單位之間三維定位的潛力,但現今文獻中對使用情境與系統設計的限制仍許多,大多需限制接收與發射平面平行且僅能達到二維定位,除此之外也會對硬體進行限制。因此,本研究針對LED與PD的定位方法,建立一個可以不限制接收與發射平面平行的三維定位演算法,也不限制硬體的朗博次方(Lambertian Order)、硬體數量以及各硬體的擺放指向,使系統具有根據不同情境進行改變與設計的能力,改善此領域中對系統設計以及使用情境較多的限制。建立演算法後,本研究由該演算法建立一模擬環境與系統成效的量化方式,於模擬環境中,我們可以評估各系統設計下的定位效能,並透過改變不同的系統設計、使用情境與應用範圍(Region of Interest)、以及誤差參數,來觀察以及探討各參數對系統成效的影響。除此之外,本研究針對不同的使用情境,將系統設計作為變數進行最佳化,可將該最佳系統設計作為實際硬體系統搭建的參考。總結來說,本研究提供一僅利用兩單位進行三維定位的定位演算法,並建立一模擬環境,讓使用者得以在不浪費硬體搭建的成本下對系統設計進行分析與評估,也可以針對特定的使用情境進行系統設計的最佳化,在硬體系統搭建前達到有效的評估。zh_TW
dc.description.abstractThe development of the Internet of Things(IoT) increases the demand of sensors and data, especially positioning information. Current indoor positioning systems rely on multiple reference points in obtaining position information. An efficient approach using portable devices to obtain their 3-dimensional relative position is yet to be developed. In this research, we start from investigating existing positioning techniques. In order to have an efficient way to measure 3D relative position using portable devices, we focus on light emitting diode(LED) and photodiodes(PD). Most current research activities in LED and PD positioning can only be used in limited scenarios with certain given hardware configurations. Specifically, they could only calulcate 2D position data while restricting transmitting and receiving planes to be parralel. We develope a positioning algorithm to abtain 3D position without parallel planes assumption. In addition, the Lambertian order and hardware orientation are flexible with respect to different scenarios. A simulation environment is set up to quantify the performance of the position system in different scenarios. By adjusting system design variables and simulated noise respectively, the influence of each variable can be discussed. We then propose an optimization method to find the optimized system design in specific scenarios. Overall, the proposed algorithm can provide flexible 3D position system design without parallel planes assumption while considering Lambertian order, hardware amount and placing orientation as variables. The simulation environment provides users an approach to evaluate positioning system performance without the cost of setting up the actual hardware system. And the optimized result provides users a guide to construct the hardware system whenever he/she has the need to measure 3D position of multiple objects.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:22:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:22:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii 
中文摘要 iv 
Abstract v 
目錄 vii 
圖目錄 xi 
表目錄 xv
第一章 緒論 1 
1.1  前言  1 
1.2  研究動機 2 
1.2.1 室內定位考量的面向 3
1.3  研究目的 6 
1.4  論文架構 6 
第二章 室內定位相關文獻探討 8 
2.1  相對定位定義 10 
2.2  依後處理方法分類 11 
2.2.1 資訊種類  12 
2.2.2 定位演算法  12 
2.2.3 小結 15 
2.3  依硬體技術分類 16 
2.3.1 無線電波段定位 16
2.3.2 光波段定位 20 
2.3.2.1 依照波段分類:紅外光、近紅外光與可見光 22
2.3.2.2 依接收子類型分類:PD 與影像感測器 23 
2.3.3 小結:本研究使用技術的選擇 28 
2.4  LED 與 PD 的定位系統 30 
2.4.1 LED 與 PD 的定位理論 32
2.4.1.1 光領域常用單位介紹 32 
2.4.1.2 朗博輻射模型 35 
2.4.1.3 LED與PD的硬體特性 36 
2.4.1.4 LED與PD於次系統中的硬體擺設 39 
2.4.1.5 光傳遞模型 40 
2.4.2 現行 LED 與 PD 的定位方法與應用 44 
2.4.2.1 常見的次系統規格與系統設置的限制 44 
2.4.2.2 LED與PD定位系統文獻案例 48
2.4.3 現行 LED 與 PD 定位所遇困難  51 
2.5  結論  52 
第三章 建立廣用於三維空間的LED與PD的定位演算法 53 
3.1  系統的限制 53
3.2  定位演算法 55 
3.2.1  訊號過濾 56 
3.2.2  求解 LED 座標系方位 56 
3.2.2.1 比較兩強度取得入射角餘弦比值 58 
3.2.2.2 滿足餘弦比值的方位解為一平面 58 
3.2.2.3 兩平面交軸為方位 59 
3.2.2.4 平均方位 60 
3.2.2.5 小結 61
3.2.3  求解 LED 座標系中 PD 座標系所在方位 61
3.2.4  求解距離 62 
3.2.4.1 解出LED與PD的出入射角 62 
3.2.4.2 利用光傳遞模型取得距離並平均 62 
3.2.4.3 小結 63
3.3  建立之演算法與其他文獻比較  63 
第四章 模擬與評估系統表現 65 
4.1 模擬室內定位流程之方法 66 
4.1.1 模擬 Step1. 決定次系統規格 66 
4.1.1.1 硬體數量 66 
4.1.1.2 硬體規格 67 
4.1.1.3 硬體擺法 68 
4.1.2  模擬 Step2. 系統設置 70 
4.1.3  模擬 Step3.LED 發送與 PD 接收訊號 71 
4.1.3.1 模擬Step3.量測的訊號誤差 73 
4.1.4  呈現定位模擬結果74
4.2  定位系統效能評估之方法 78 
4.2.1  StepA. 設定使用情境與 ROI 中樣本點 78
4.2.2  StepC. 量化系統表現 80 
4.3  分析各參數對系統成效的影響 84 
4.3.1  StepC. 量化系統成效參數的影響  84 
4.3.1.1 有效閥值的影響 84 
4.3.1.2 容許範圍的影響 85 
4.3.2  Step3. 誤差模擬參數對系統成效的影響  87 
4.3.2.1 頻寬對系統成效的影響 87 
4.3.2.2 背景電流對系統成效的影響 92 
4.3.2.3 多重路徑增益對系統成效的影響 92 
4.3.3  Step1. 次系統規格對系統成效的影響 94 
4.3.3.1 朗博次方對系統成效的影響 94 
4.3.3.2 硬體指向對系統效能的影響 97 
4.3.3.3 硬體數量對系統表現的影響 98 
4.4  分析使用情境改變對系統效能的影響 100 
4.4.1 使用情境甲:3 × 3 × 3m 空間的系統表現 100 
4.4.2 使用情境乙:10×10×10m空間的系統表現 100 
4.4.3 使用情境丙:平面平行且垂直距離相同的系統表現 102 
4.4.4 使用情境丁:球狀空間的系統表現 104 
4.5  結論 104 
第五章 針對不同使用情境進行次系統最佳化 107 
5.1  最佳化問題 107 
5.1.1 目標函數 109 
5.1.2 最佳化變數 109
5.2  最佳化案例 110 
5.2.1 使用情境甲:3 × 3 × 3m 空間 110 
5.2.2 使用情境丙:平面平行且垂直距離相同 111 
5.2.3 使用情境丁:球狀空間 113 
5.3 結論 115 
第六章 結論 117 
6.1 研究總結 117 
6.2 未來目標118 
參考文獻 119 
-
dc.language.isozh_TW-
dc.title一個不限制平面平行的LED-PD室內三維定位系統最佳化考量硬體指向與朗博次方參數zh_TW
dc.titleThe optimal design of a three-dimensional LED-PD indoor positioning system considering variable hardware orientation and Lambertian order without parallel planes assumptions.en
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳湘鳳;蘇偉儁zh_TW
dc.contributor.oralexamcommitteeShana Smith;Wei-Jiun Suen
dc.subject.keyword室內定位,光定位,發光二極體,光電二極體,定位演算法,最佳化,zh_TW
dc.subject.keywordIndoor Positioning,Light Positioning,Light-Emitting-Diode,Photodiode,Positioning Algorithm,Optimization,Lambertian Order,en
dc.relation.page123-
dc.identifier.doi10.6342/NTU202203729-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-09-28-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
31.64 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved