Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91897
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠zh_TW
dc.contributor.advisorYi-Chung Shuen
dc.contributor.author戴煒宸zh_TW
dc.contributor.authorWei-Chen Taien
dc.date.accessioned2024-02-26T16:20:50Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citationM. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 349: 255-260, 2015.
G. Bonaccorso. Machine learning algorithms. Packt Publishing Ltd, 2017.
A. Singh, N. Thakur and A. Sharma. A review of supervised machine learning algorithms. International Conference on Computing for Sustainable Global Development, pp. 1310-1315, 2016.
S. Ray. A quick review of Machine learning algorithms, International Conference on Machine Learning, Big Data, Cloud and Parallel Computing, pp. 35-39, 2019.
T. O. Ayodele. Types of machine learning algorithms. New Advances in Machine Learning, 3: 19-48, 2010.
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto and L. Zdeborová. Machine learning and the physical sciences. Reviews of Modern Physics, 91: 045002, 2019.
K. G. Liakos, P. Busato, D. Moshou, S. Pearson and D. Bochtis. Machine learning in agriculture: A review. Sensors, 18: 2674, 2018.
A. L. Tarca, V. J. Carey, X. Chen, R. Romero and S. Drăghici. Machine learning and its applications to biology. Plos Computational Biology, 3: e116, 2007.
I. Kononenko. Machine learning for medical diagnosis: history, state of the art and perspective. Artificial Intelligence in Medicine, 23: 89-109, 2001.
K. O. Shea and R. Nash. An introduction to convolutional neural networks. arXiv, 1511.08458, 2015.
P. Kim. Convolutional neural network. MATLAB Deep Learning, Berkely, CA, pp. 121-147, 2019.
S. Albawi, T. A. Mohammed and S. Al-Zawi. Understanding of a convolutional neural network. International Conference on Engineering and Technology (ICET), pp. 1-6, 2007.
U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych and R. S. Tan. A deep convolutional neural network model to classify heartbeats. Computers in Biology and Medicine, 89: 389-396, 2017.
K. Sfikas, T. Theoharis and I. Pratikakis. Exploiting the PANORAMA representation for convolutional neural network classification and retrieval. Eurographics Workshop on 3D Object Retrieval, DOI: 10.2312/3dor.20171045, 2017.
A. El-Sawy, M. Loey and H. El-Bakry. Arabic handwritten characters recognition using convolutional neural network. WSEAS Transactions on Computer Research, 5: 11-19, 2017.
M. M. Badža and M. Č. Barjaktarović. Classification of brain tumors from MRI images using a convolutional neural network. Applied Sciences, DOI: 10.3390/app10061999, 1999.
A. Tsantekidis, N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj and A. Iosifidis. Forecasting stock prices from the limit order book using convolutional neural networks. Conference on Business Informatics, 1: 7-12, 2017.
M. Lukoševičius and H. Jaeger. Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3: 127-149, 2009.
A. C. Tsoi and A. Back. Discrete time recurrent neural network architectures: A unifying review. Neurocomputing, 15: 183-223, 1997.
H. Zhang, Z. Wang and D. Liu. A comprehensive review of stability analysis of continuous-time recurrent neural networks. Transactions on Neural Networks and Learning Systems, 25: 1229-1262, 2014.
S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9: 1735-1780, 1997.
A. Graves. Long short-term memory. Supervised Sequence Labelling with Recurrent Neural Networks, DOI: 10.1007/978-3-642-24797-2_4, 2012.
Y. Yu, X. Si, C. Hu and J. Zhang. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31: 1235-1270, 2019.
Y. Gao and D. Glowacka. Deep gate recurrent neural network. Asian Conference on Machine Learning, pp. 350-365, 2016.
R. Dey and F. M. Salem. Gate-variants of gated recurrent unit (GRU) neural networks. Midwest Symposium on Circuits and Systems, pp. 1597-1600, 2017.
W. Shu, K. Cai and N. N. Xiong. A short-term traffic flow prediction model based on an improved gate recurrent unit neural network. IEEE Transactions on Intelligent Transportation Systems, DOI: 10.1109/TITS.2021.3094659, 2021.
M. A. Zaytar and C. El Amrani. Sequence to sequence weather forecasting with long short-term memory recurrent neural networks. International Journal of Computer Applications, 143: 7-11, 2016.
X. Ma, Z. Tao, Y. Wang, H. Yu and Y. Wang. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 54: 187-197, 2015.
W. Li, H. Wu, N. Zhu, Y. Jiang, J. Tan and Y. Guo. Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit (GRU). Information Processing in Agriculture, 8: 185-193, 2021.
K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng and F. Y. Wang. Generative adversarial networks: introduction and outlook. IEEE/CAA Journal of Automatica Sinica, 4: 588-598, 2017.
A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta and A. A. Bharath. Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35: 53-65, 2018.
X. Yi, E. Walia and P. Babyn. Generative adversarial network in medical imaging: A review. Medical Image Analysis, 58: 101552, 2019.
T. Karras, T. Aila, S. Laine and J. Lehtinen. Progressive growing of gans for improved quality, stability, and variation. arXiv: 1710.10196, 2017.
Y. Jin, J. Zhang, M. Li, Y. Tian, H. Zhu and Z. Fang. Towards the automatic anime characters creation with generative adversarial networks. arXiv: 1708.05509, 2017.
A. Elgammal, B. Liu, M. Elhoseiny and M. Mazzone. CAN: creative adversarial networks, generating "Art" by learning about styles and deviating from style norms. arXiv: 1706.07068, 2017.
S. J. Kim and S. K. Lee. Experimental identification for inverse problem of a mechanical system with a non-minimum phase based on singular value decomposition. Journal of Mechanical Science and Technology, 22: 1504-1509, 2008.
Y. M. Mao, X. L. Guo and Y. Zhao. A state space force identification method based on Markov parameters precise computation and regularization technique. Journal of Sound and Vibration, 329: 3008-3019, 2010.
A. N. Thite and D. J. Thompson. Selection of response measurement locations to improve inverse force determination. Applied Acoustics, 67: 797-818, 2006.
M. S. Hossain, Z. C. Ong, Z. Ismail, S. Noroozi and S. Y. Khoo. Artificial neural networks for vibration based inverse parametric identifications: A review. Applied Soft Computing, 52: 203-219, 2017.
E. Haghighat, A. C. Bekar, E. Madenci and R. Juanes. Deep learning for solution and inversion of structural mechanics and vibrations. arXiv: 2105.09477, 2021.
D. Ma, G. Lan, W. Xu, M. Hassan and W. Hu. Simultaneous energy harvesting and gait recognition using piezoelectric energy harvester. IEEE Transactions on Mobile Computing, 21: 2198-2209, 2020.
C. Zhang, G. Hu, D. Yurchenko, P. Lin, S. Gu, D. Song, H. Peng and J. Wang. Machine learning based prediction of piezoelectric energy harvesting from wake galloping. Mechanical Systems and Signal Processing, 160: 107876, 2021.
劉威廷,「壓電貼片結合機器學習應用於軸承監測」,台灣大學應用力學所碩士論文,2021。
葉庭妤,「壓電感測器配合機器學習應用於時規皮帶狀態監測之研究」,台灣大學應用力學所碩士論文,2021。
A. Likas, N. Vlassis and J. J. Verbeek. The global k-means clustering algorithm. Pattern Recognition, 36: 451-461, 2003.
F. Y. Wang, J. J. Zhang, X. Zheng, X. Wang, Y. Yuan, X. Dai, J. Zhang and L. Yang. Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond. IEEE/CAA Journal of Automatica Sinica, 3: 113-120, 2016.
M. W. Gardner and S. R. Dorling. Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32: 2627-2636, 1998.
L. Yang, D. Zang and G. E. Karniadakis. Physics-informed generative adversarial networks for stochastic differential equations. SIAM Journal on Scientific Computing, 42: 292-317, 2020.
L. Lu, X. Meng, Z. Mao and G. E. Karniadakis. DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63: 208-228, 2021.
M. Raissi, P. Perdikaris and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378: 686-707, 2019.
M. Verleysen and D. François. The curse of dimensionality in data mining and time series prediction, Computational Intelligence and Bioinspired Systems, pp. 758-770, 2005.
A. G. Baydin, B. A. Pearlmutter, A. A. Radul and J. M. Siskind. Automatic differentiation in machine learning: A survey. Journal of Machine Learning Research, 18: 1-43, 2018.
Q. Zhang, Y. Chen and Z. Yang. Data-driven solutions and discoveries in mechanics using physics informed neural network. Preprints, DOI: 10.20944/preprints202006.0258.v2, 2020.
E. Haghighat, M. Raissi, A. Moure, H. Gomez and R. Juanes. A deep learning framework for solution and discovery in solid mechanics. arXiv: 2003.02751, 2020.
W. Peng, J. Zhang, W. Zhou, X. Zhao, W. Yao and X. Chen. IDRLnet: A physics-informed neural network library. arXiv: 2107.04320, 2021.
A. D. Jagtap, K. Kawaguchi and G. E. Karniadakis. Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. Journal of Computational Physics, 404: 109136, 2020.
S. Wang, Y. Teng and P. Perdikaris. Understanding and mitigating gradient flow pathologies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43: A3055-A3081, 2021.
Z. Xiang, W. Peng, X. Zheng, X. Zhao and W. Yao. Self-adaptive loss balanced physics-informed neural networks for the incompressible navier-stokes equations. arXiv: 2104.06217v1, 2021.
V. Dwivedi, N. Parashar and B. Srinivasan. Distributed physics informed neural network for data-efficient solution to partial differential equations. arXiv: 1907.08967v1, 2019.
E. Haghighat and R. Juanes. SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks. Computer Methods in Applied Mechanics and Engineering, 373: 113552, 2021.
P. Ramachandran, B. Zoph and Q. V. Le. Searching for activation functions. arXiv: 1710.05941v2, 2017.
S. M. Allen and J. W. Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica, 27: 1085-1095, 1979.
D. E. Rumelhart, G. E. Hinton and R. J. Williams. Learning representations by back-propagating errors. Nature, 323: 533-536, 1986.
Z. Lyu, A. ElSaid, J. Karns, M. Mkaouer and T. Desell. An experimental study of weight initialization and Lamarckian inheritance on neuroevolution. Applications of Evolutionary Computation, pp. 584-600, 2021.
A. Erturk and D. J. Inman. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18: 025009, 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91897-
dc.description.abstract本研究主要利用類神經網路(Artificial Neural Network, ANN)以及基於物理信息神經網路(Physics Informed Neural Network, PINN)進行壓電能量擷取振子之參數反算研究。當輸出功率之解析解為已知時,類神經網路可藉由內含壓電參數之解析解與不同電路負載下的實驗數據所構成的損失函數進行訓練。但是絕大部分物理模型的解析解難以取得,因此必須採用基於物理信息神經網路。該神經網路損失函數包含了基於物理模型的微分方程以及實驗所得的時域電壓訊號。研究結果顯示,類神經網路能夠替代人力且大幅降低曲線擬合時間,並識別出機械阻尼比、外力振動大小以及壓電電容值。此外,基於物理信息神經網路在含有雜訊模擬訊號的訓練下,能夠準確的識別出機械阻尼比、外力振動大小以及力電耦合係數,展現了其在有限的實驗數據下的優勢,並將於未來的研究中證實。zh_TW
dc.description.abstractThe thesis studies the inverse parametric identifications in a piezoelectric energy harvester based on the artificial neural network (ANN) and the physics informed neural network (PINN). The former is suitable when the analytic estimate of power is available in terms of device parameters. Thus, ANN can be trained by assigning the loss functions consisting of the analytic formula of power estimate as well as the experimental data of power against various electric loads. The latter approach is suitable when the formula of power estimate is unavailable. Under this circumstance, the loss functions contain two parts: the first is the model-based differential equations and the second is the experimental data of time waveforms of voltage signals. The results show that the ANN approach is capable of replacing the curve fitting which requires significant labor efforts in identifying mechanical damping ratio, voltage source magnitude and piezoelectric capacitance. In addition, the PINN approach trained on noisy simulated data accurately identifies the parameters of mechanical damping ratio, voltage source magnitude and electromechanical coupling factor. It provides an advantage of extracting limited amount of experimental data and will be demonstrated in the future work.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:20:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:20:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
誌謝 ii
中文摘要 iv
ABSTRACT v
目錄 vi
圖目錄 ix
表目錄 xii
Chapter 1 導論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 論文架構 12
Chapter 2 基於物理信息神經網路介紹 13
2.1 機器學習與神經網路 13
2.1.1 多層感知器(Multilayer Perceptron, MLP) 15
2.1.2 激活函數(Activation Function) 16
2.1.3 損失函數(Loss Function) 18
2.1.4 反向傳播算法(Backpropagation Algorithm) 18
2.2 基於物理信息神經網路 19
2.2.1 熱傳導方程式(Heat Equation) 20
2.2.2 柏格斯方程式(Burgers' Equation) 23
2.2.3 反算問題:以阻尼自由振動方程式為例 26
Chapter 3 壓電效應與理論模型 29
3.1 壓電效應 29
3.1.1 正壓電效應 29
3.1.2 逆壓電效應 30
3.2 壓電懸臂樑之等效電路模型 31
3.3 單軸向往復式激振實驗之輸出功率分析 33
3.4 無因次化壓電統御方程式 35
3.5 無因次化方程式之穩態解析解推導 38
Chapter 4 利用類神經網路輔助壓電參數提取 41
4.1 壓電振子等效參數之曲線擬合方法 41
4.2 類神經網路應用於參數反算 43
4.2.1 神經網路架構實現 43
4.2.2 神經網路輸出結果 45
Chapter 5 基於物理信息神經網路應用於壓電參數反算 49
5.1 基於物理信息神經網路架構實現 49
5.2 基於物理信息神經網路輸出結果 52
Chapter 6 結論與未來展望 59
6.1 結論 59
6.2 未來展望 60
附錄 61
參考文獻 63
-
dc.language.isozh_TW-
dc.title基於物理信息神經網路進行壓電能量擷取振子之參數反算研究zh_TW
dc.titleParameter Identification of a Piezoelectric Harvester Based on Physics Informed Neural Networken
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳志鴻;林哲宇zh_TW
dc.contributor.oralexamcommitteeChih-Hung Chen;Che-Yu Linen
dc.subject.keyword類神經網路,基於物理信息神經網路,參數反算問題,壓電能量擷取振子,振動反算問題,zh_TW
dc.subject.keywordartificial neural network (ANN),physics informed neural network (PINN),inverse parametric identification,piezoelectric energy harvester,vibration inverse problem,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202200931-
dc.rights.note未授權-
dc.date.accepted2022-07-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
  目前未授權公開取用
4.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved