Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 健康政策與管理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91895
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭年真zh_TW
dc.contributor.advisorRaymond N. Kuoen
dc.contributor.author楊如燁zh_TW
dc.contributor.authorJu-Yeh Yangen
dc.date.accessioned2024-02-26T16:20:15Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2024-
dc.date.submitted2024-01-22-
dc.identifier.citationAdministration, F. a. D. (2019). Clinical Decision Support Software-Draft Guidance for Industry and Food and Drug Administration Staff. https://www.fda.gov/media/109618/download
Akbari, A., Clase, C. M., Acott, P., Battistella, M., Bello, A., Feltmate, P., Grill, A., Karsanji, M., Komenda, P., Madore, F., Manns, B. J., Mahdavi, S., Mustafa, R. A., Smyth, A., & Welcher, E. S. (2015). Canadian Society of Nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management. Am J Kidney Dis, 65(2), 177-205. https://doi.org/10.1053/j.ajkd.2014.10.013
Akizawa, T., Okumura, H., Alexandre, A. F., Fukushima, A., Kiyabu, G., & Dorey, J. (2018). Burden of Anemia in Chronic Kidney Disease Patients in Japan: A Literature Review. Ther Apher Dial, 22(5), 444-456. https://doi.org/10.1111/1744-9987.12712
Ancker, J. S., Edwards, A., Nosal, S., Hauser, D., Mauer, E., Kaushal, R., & with the, H. I. (2017). Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system. BMC Med Inform Decis Mak, 17(1), 36. https://doi.org/10.1186/s12911-017-0430-8
Andersson Hagiwara, M., Suserud, B. O., Andersson-Gare, B., Sjoqvist, B., Henricson, M., & Jonsson, A. (2014). The effect of a Computerised Decision Support System (CDSS) on compliance with the prehospital assessment process: results of an interrupted time-series study. BMC Med Inform Decis Mak, 14, 70. https://doi.org/10.1186/1472-6947-14-70
Ash, J. S., Sittig, D. F., Campbell, E. M., Guappone, K. P., & Dykstra, R. H. (2007). Some unintended consequences of clinical decision support systems. AMIA Annu Symp Proc, 26-30. https://www.ncbi.nlm.nih.gov/pubmed/18693791
Avram, M. M., Blaustein, D., Fein, P. A., Goel, N., Chattopadhyay, J., & Mittman, N. (2003). Hemoglobin predicts long-term survival in dialysis patients: a 15-year single-center longitudinal study and a correlation trend between prealbumin and hemoglobin. Kidney Int Suppl(87), S6-11. https://doi.org/10.1046/j.1523-1755.64.s87.3.x
Barbieri, C., Mari, F., Stopper, A., Gatti, E., Escandell-Montero, P., Martinez-Martinez, J. M., & Martin-Guerrero, J. D. (2015). A new machine learning approach for predicting the response to anemia treatment in a large cohort of End Stage Renal Disease patients undergoing dialysis. Comput Biol Med, 61, 56-61. https://doi.org/10.1016/j.compbiomed.2015.03.019
Barbieri, C., Molina, M., Ponce, P., Tothova, M., Cattinelli, I., Ion Titapiccolo, J., Mari, F., Amato, C., Leipold, F., Wehmeyer, W., Stuard, S., Stopper, A., & Canaud, B. (2016). An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients. Kidney Int, 90(2), 422-429. https://doi.org/10.1016/j.kint.2016.03.036
Besarab, A., Bolton, W. K., Browne, J. K., Egrie, J. C., Nissenson, A. R., Okamoto, D. M., Schwab, S. J., & Goodkin, D. A. (1998). The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med, 339(9), 584-590. https://doi.org/10.1056/NEJM199808273390903
Birnie, K., Caskey, F., Ben-Shlomo, Y., Sterne, J. A., Gilg, J., Nitsch, D., & Tomson, C. (2017). Erythropoiesis-stimulating agent dosing, haemoglobin and ferritin levels in UK haemodialysis patients 2005-13. Nephrol Dial Transplant, 32(4), 692-698. https://doi.org/10.1093/ndt/gfw043
Brier, M. E., Gaweda, A. E., Dailey, A., Aronoff, G. R., & Jacobs, A. A. (2010). Randomized trial of model predictive control for improved anemia management. Clin J Am Soc Nephrol, 5(5), 814-820. https://doi.org/10.2215/CJN.07181009
Bright, T. J., Wong, A., Dhurjati, R., Bristow, E., Bastian, L., Coeytaux, R. R., Samsa, G., Hasselblad, V., Williams, J. W., Musty, M. D., Wing, L., Kendrick, A. S., Sanders, G. D., & Lobach, D. (2012). Effect of clinical decision-support systems: a systematic review. Ann Intern Med, 157(1), 29-43. https://doi.org/10.7326/0003-4819-157-1-201207030-00450
Brimble, K. S., Rabbat, C. G., McKenna, P., Lambert, K., & Carlisle, E. J. (2003). Protocolized anemia management with erythropoietin in hemodialysis patients: a randomized controlled trial. J Am Soc Nephrol, 14(10), 2654-2661. https://doi.org/10.1097/01.asn.0000088026.88074.20
Brunelli, S. M., Monda, K. L., Burkart, J. M., Gitlin, M., Neumann, P. J., Park, G. S., Symonian-Silver, M., Yue, S., Bradbury, B. D., & Rubin, R. J. (2013). Early trends from the Study to Evaluate the Prospective Payment System Impact on Small Dialysis Organizations (STEPPS). Am J Kidney Dis, 61(6), 947-956. https://doi.org/10.1053/j.ajkd.2012.11.040
Buising, K. L., Thursky, K. A., Black, J. F., MacGregor, L., Street, A. C., Kennedy, M. P., & Brown, G. V. (2008). Improving antibiotic prescribing for adults with community acquired pneumonia: Does a computerised decision support system achieve more than academic detailing alone?--A time series analysis. BMC Med Inform Decis Mak, 8, 35. https://doi.org/10.1186/1472-6947-8-35
Camacho, J., Zanoletti-Mannello, M., Landis-Lewis, Z., Kane-Gill, S. L., & Boyce, R. D. (2020). A Conceptual Framework to Study the Implementation of Clinical Decision Support Systems (BEAR): Literature Review and Concept Mapping. J Med Internet Res, 22(8), e18388. https://doi.org/10.2196/18388
Chait, Y., Kalim, S., Horowitz, J., Hollot, C. V., Ankers, E. D., Germain, M. J., & Thadhani, R. I. (2016). The greatly misunderstood erythropoietin resistance index and the case for a new responsiveness measure. Hemodial Int, 20(3), 392-398. https://doi.org/10.1111/hdi.12407
Collins, A. J., Li, S., St Peter, W., Ebben, J., Roberts, T., Ma, J. Z., & Manning, W. (2001). Death, hospitalization, and economic associations among incident hemodialysis patients with hematocrit values of 36 to 39%. J Am Soc Nephrol, 12(11), 2465-2473. https://www.ncbi.nlm.nih.gov/pubmed/11675424
Collins, A. J., Ma, J. Z., & Ebben, J. (2000). Impact of hematocrit on morbidity and mortality. Semin Nephrol, 20(4), 345-349. https://www.ncbi.nlm.nih.gov/pubmed/10928336
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems : theory and results http://hdl.handle.net/1721.1/15192
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://www.jstor.org/stable/249008
English, D., Ankem, K., & English, K. (2017). Acceptance of clinical decision support surveillance technology in the clinical pharmacy. Inform Health Soc Care, 42(2), 135-152. https://doi.org/10.3109/17538157.2015.1113415
Eschbach, J. W., Abdulhadi, M. H., Browne, J. K., Delano, B. G., Downing, M. R., Egrie, J. C., Evans, R. W., Friedman, E. A., Graber, S. E., Haley, N. R., & et al. (1989). Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med, 111(12), 992-1000. https://doi.org/10.7326/0003-4819-111-12-992
Esmaeilzadeh, P., Sambasivan, M., Kumar, N., & Nezakati, H. (2015). Adoption of clinical decision support systems in a developing country: Antecedents and outcomes of physician''s threat to perceived professional autonomy. Int J Med Inform, 84(8), 548-560. https://doi.org/10.1016/j.ijmedinf.2015.03.007
Ewusie, J. E., Soobiah, C., Blondal, E., Beyene, J., Thabane, L., & Hamid, J. S. (2020). Methods, Applications and Challenges in the Analysis of Interrupted Time Series Data: A Scoping Review. J Multidiscip Healthc, 13, 411-423. https://doi.org/10.2147/JMDH.S241085
Fishbane, S., & Berns, J. S. (2005). Hemoglobin cycling in hemodialysis patients treated with recombinant human erythropoietin. Kidney Int, 68(3), 1337-1343. https://doi.org/10.1111/j.1523-1755.2005.00532.x
Fishbane, S., & Besarab, A. (2007). Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol, 2(6), 1274-1282. https://doi.org/10.2215/CJN.02380607
Freburger, J. K., Ng, L. J., Bradbury, B. D., Kshirsagar, A. V., & Brookhart, M. A. (2012). Changing patterns of anemia management in US hemodialysis patients. Am J Med, 125(9), 906-914 e909. https://doi.org/10.1016/j.amjmed.2012.03.011
Fuller, D. S., Bieber, B. A., Pisoni, R. L., Li, Y., Morgenstern, H., Akizawa, T., Jacobson, S. H., Locatelli, F., Port, F. K., & Robinson, B. M. (2016). International Comparisons to Assess Effects of Payment and Regulatory Changes in the United States on Anemia Practice in Patients on Hemodialysis: The Dialysis Outcomes and Practice Patterns Study. J Am Soc Nephrol, 27(7), 2205-2215. https://doi.org/10.1681/ASN.2015060673
Gaweda, A. E., Aronoff, G. R., Jacobs, A. A., Rai, S. N., & Brier, M. E. (2014). Individualized anemia management reduces hemoglobin variability in hemodialysis patients. J Am Soc Nephrol, 25(1), 159-166. https://doi.org/10.1681/ASN.2013010089
Gaweda, A. E., Jacobs, A. A., Aronoff, G. R., & Brier, M. E. (2008). Model predictive control of erythropoietin administration in the anemia of ESRD. Am J Kidney Dis, 51(1), 71-79. https://doi.org/10.1053/j.ajkd.2007.10.003
Gaweda, A. E., Jacobs, A. A., Aronoff, G. R., & Brier, M. E. (2018). Individualized anemia management in a dialysis facility - long-term utility as a single-center quality improvement experience. Clin Nephrol, 90(4), 276-285. https://doi.org/10.5414/CN109499
Hategeka, C., Ruton, H., Karamouzian, M., Lynd, L. D., & Law, M. R. (2020). Use of interrupted time series methods in the evaluation of health system quality improvement interventions: a methodological systematic review. BMJ Glob Health, 5(10). https://doi.org/10.1136/bmjgh-2020-003567
Hsiao, J. L., & Chen, R. F. (2016). Critical factors influencing physicians'' intention to use computerized clinical practice guidelines: an integrative model of activity theory and the technology acceptance model. BMC Med Inform Decis Mak, 16, 3. https://doi.org/10.1186/s12911-016-0241-3
Hung, S. C., Kuo, K. L., Tarng, D. C., Hsu, C. C., Wu, M. S., & Huang, T. P. (2014). Anaemia management in patients with chronic kidney disease: Taiwan practice guidelines. Nephrology (Carlton), 19(12), 735-739. https://doi.org/10.1111/nep.12332
Kalantar-Zadeh, K., & Aronoff, G. R. (2009). Hemoglobin variability in anemia of chronic kidney disease. J Am Soc Nephrol, 20(3), 479-487. https://doi.org/10.1681/ASN.2007070728
Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ, 330(7494), 765. https://doi.org/10.1136/bmj.38398.500764.8F
KDOQI. (2001). IV. NKF-K/DOQI Clinical Practice Guidelines for Anemia of Chronic Kidney Disease: update 2000. Am J Kidney Dis, 37(1 Suppl 1), S182-238. https://doi.org/10.1016/s0272-6386(01)70008-x
KDOQI. (2006). KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Anemia in Chronic Kidney Disease. Am J Kidney Dis, 47(5 Suppl 3), S11-145. https://doi.org/10.1053/j.ajkd.2006.03.010
Khairat, S., Marc, D., Crosby, W., & Al Sanousi, A. (2018). Reasons For Physicians Not Adopting Clinical Decision Support Systems: Critical Analysis. JMIR Med Inform, 6(2), e24. https://doi.org/10.2196/medinform.8912
Kilsdonk, E., Peute, L. W., & Jaspers, M. W. (2017). Factors influencing implementation success of guideline-based clinical decision support systems: A systematic review and gaps analysis. Int J Med Inform, 98, 56-64. https://doi.org/10.1016/j.ijmedinf.2016.12.001
Kilsdonk, E., Peute, L. W., Knijnenburg, S. L., & Jaspers, M. W. (2011). Factors known to influence acceptance of clinical decision support systems. Stud Health Technol Inform, 169, 150-154. https://www.ncbi.nlm.nih.gov/pubmed/21893732
Kimura, T., Arai, M., Masuda, H., & Kawabata, A. (2004). Impact of a pharmacist-implemented anemia management in outpatients with end-stage renal disease in Japan. Biol Pharm Bull, 27(11), 1831-1833. https://doi.org/10.1248/bpb.27.1831
Kliger, A. S., Foley, R. N., Goldfarb, D. S., Goldstein, S. L., Johansen, K., Singh, A., & Szczech, L. (2013). KDOQI US commentary on the 2012 KDIGO Clinical Practice Guideline for Anemia in CKD. Am J Kidney Dis, 62(5), 849-859. https://doi.org/10.1053/j.ajkd.2013.06.008
Kuragano, T., Matsumura, O., Matsuda, A., Hara, T., Kiyomoto, H., Murata, T., Kitamura, K., Fujimoto, S., Hase, H., Joki, N., Fukatsu, A., Inoue, T., Itakura, I., & Nakanishi, T. (2014). Association between hemoglobin variability, serum ferritin levels, and adverse events/mortality in maintenance hemodialysis patients. Kidney Int, 86(4), 845-854. https://doi.org/10.1038/ki.2014.114
Kwan, J. L., Lo, L., Ferguson, J., Goldberg, H., Diaz-Martinez, J. P., Tomlinson, G., Grimshaw, J. M., & Shojania, K. G. (2020). Computerised clinical decision support systems and absolute improvements in care: meta-analysis of controlled clinical trials. BMJ, 370, m3216. https://doi.org/10.1136/bmj.m3216
Lacson, E., Jr., Ofsthun, N., & Lazarus, J. M. (2003). Effect of variability in anemia management on hemoglobin outcomes in ESRD. Am J Kidney Dis, 41(1), 111-124. https://doi.org/10.1053/ajkd.2003.50030
Liberati, E. G., Ruggiero, F., Galuppo, L., Gorli, M., Gonzalez-Lorenzo, M., Maraldi, M., Ruggieri, P., Polo Friz, H., Scaratti, G., Kwag, K. H., Vespignani, R., & Moja, L. (2017). What hinders the uptake of computerized decision support systems in hospitals? A qualitative study and framework for implementation. Implement Sci, 12(1), 113. https://doi.org/10.1186/s13012-017-0644-2
Lines, S. W., Lindley, E. J., Tattersall, J. E., & Wright, M. J. (2012). A predictive algorithm for the management of anaemia in haemodialysis patients based on ESA pharmacodynamics: better results for less work. Nephrol Dial Transplant, 27(6), 2425-2429. https://doi.org/10.1093/ndt/gfr706
Liu, S., Reese, T. J., Kawamoto, K., Del Fiol, G., & Weir, C. (2021). A systematic review of theoretical constructs in CDS literature. BMC Med Inform Decis Mak, 21(1), 102. https://doi.org/10.1186/s12911-021-01465-2
Liu, Y., Wang, Z., Ren, J., Tian, Y., Zhou, M., Zhou, T., Ye, K., Zhao, Y., Qiu, Y., & Li, J. (2020). A COVID-19 Risk Assessment Decision Support System for General Practitioners: Design and Development Study. J Med Internet Res, 22(6), e19786. https://doi.org/10.2196/19786
Lopez Bernal, J., Soumerai, S., & Gasparrini, A. (2018). A methodological framework for model selection in interrupted time series studies. J Clin Epidemiol, 103, 82-91. https://doi.org/10.1016/j.jclinepi.2018.05.026
Maddux, F. W., Shetty, S., del Aguila, M. A., Nelson, M. A., & Murray, B. M. (2007). Effect of erythropoiesis-stimulating agents on healthcare utilization, costs, and outcomes in chronic kidney disease. Ann Pharmacother, 41(11), 1761-1769. https://doi.org/10.1345/aph.1K194
Mahadevaiah, G., Rv, P., Bermejo, I., Jaffray, D., Dekker, A., & Wee, L. (2020). Artificial intelligence-based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance. Med Phys, 47(5), e228-e235. https://doi.org/10.1002/mp.13562
Manns, B. J., White, C. T., Madore, F., Moist, L. M., Klarenbach, S. W., Barrett, B. J., Foley, R. N., Culleton, B. F., & Tonelli, M. (2008). Introduction to the Canadian Society of Nephrology clinical practice guidelines for the management of anemia associated with chronic kidney disease. Kidney Int Suppl(110), S1-3. https://doi.org/10.1038/ki.2008.267
McCarthy, J. T., Hocum, C. L., Albright, R. C., Rogers, J., Gallaher, E. J., Steensma, D. P., Gudgell, S. F., Bergstralh, E. J., Dillon, J. C., Hickson, L. J., Williams, A. W., & Dingli, D. (2014). Biomedical system dynamics to improve anemia control with darbepoetin alfa in long-term hemodialysis patients. Mayo Clin Proc, 89(1), 87-94. https://doi.org/10.1016/j.mayocp.2013.10.022
McRae, M. P., Dapkins, I. P., Sharif, I., Anderman, J., Fenyo, D., Sinokrot, O., Kang, S. K., Christodoulides, N. J., Vurmaz, D., Simmons, G. W., Alcorn, T. M., Daoura, M. J., Gisburne, S., Zar, D., & McDevitt, J. T. (2020). Managing COVID-19 With a Clinical Decision Support Tool in a Community Health Network: Algorithm Development and Validation. J Med Internet Res, 22(8), e22033. https://doi.org/10.2196/22033
Middleton, B., Sittig, D. F., & Wright, A. (2016). Clinical Decision Support: a 25 Year Retrospective and a 25 Year Vision. Yearb Med Inform, Suppl 1, S103-116. https://doi.org/10.15265/IYS-2016-s034
Minssen, T., Mimler, M., & Mak, V. (2020). When Does Stand-Alone Software Qualify as a Medical Device in the European Union?-The Cjeu''s Decision in Snitem and What it Implies for the Next Generation of Medical Devices. Med Law Rev, 28(3), 615-624. https://doi.org/10.1093/medlaw/fwaa012
Miskulin, D. C., Weiner, D. E., Tighiouart, H., Ladik, V., Servilla, K., Zager, P. G., Martin, A., Johnson, H. K., Meyer, K. B., & Medical Directors of Dialysis Clinic, I. (2009). Computerized decision support for EPO dosing in hemodialysis patients. Am J Kidney Dis, 54(6), 1081-1088. https://doi.org/10.1053/j.ajkd.2009.07.010
Miskulin, D. C., Zhou, J., Tangri, N., Bandeen-Roche, K., Cook, C., Ephraim, P. L., Crews, D. C., Scialla, J. J., Sozio, S. M., Shafi, T., Jaar, B. G., Boulware, L. E., & Investigators, D. E. N. P. O. i. E. S. R. D. S. (2013). Trends in anemia management in US hemodialysis patients 2004-2010. BMC Nephrol, 14, 264. https://doi.org/10.1186/1471-2369-14-264
Moxey, A., Robertson, J., Newby, D., Hains, I., Williamson, M., & Pearson, S. A. (2010). Computerized clinical decision support for prescribing: provision does not guarantee uptake. J Am Med Inform Assoc, 17(1), 25-33. https://doi.org/10.1197/jamia.M3170
National Health Research Institutes, T. S. o. N. (2015). 2015 Taiwan Chronic Kidney Disease Clinical Guidelines. National Health Research Institutes.
National Health Research Institutes, T. S. o. N. (2017). 2016 Annual Report on Kidney Disease in Taiwan. National Health Research Institutes. https://www.tsn.org.tw/UI/L/L002_2018.aspx
National Health Research Institutes, T. S. o. N. (2020). 2019 Annual Report on Kidney Disease in Taiwan. National Health Research Institutes. https://lib.nhri.edu.tw/NewWeb/nhri/ebook/39000400105446/
Nissenson, A. R., Wade, S., Goodnough, T., Knight, K., & Dubois, R. W. (2005). Economic burden of anemia in an insured population. J Manag Care Pharm, 11(7), 565-574. https://doi.org/10.18553/jmcp.2005.11.7.565
Park, E. S. P., Min S. (2020). Factors of the Technology Acceptance Model for Construction IT. Applied Sciences., 10(22), 8299. https://doi.org/10.3390/app10228299
Patterson, P., & Allon, M. (1998). Prospective evaluation of an anemia treatment algorithm in hemodialysis patients. Am J Kidney Dis, 32(4), 635-641. https://doi.org/10.1016/s0272-6386(98)70028-9
Perez-Garcia, R., Varas, J., Cives, A., Martin-Malo, A., Aljama, P., Ramos, R., Pascual, J., Stuard, S., Canaud, B., Merello, J. I., & group, O. R. D. (2018). Increased mortality in haemodialysis patients administered high doses of erythropoiesis-stimulating agents: a propensity score-matched analysis. Nephrol Dial Transplant, 33(4), 690-699. https://doi.org/10.1093/ndt/gfx269
Pisoni, R. L., Fuller, D. S., Bieber, B. A., Gillespie, B. W., & Robinson, B. M. (2012). The DOPPS Practice Monitor for US dialysis care: trends through August 2011. Am J Kidney Dis, 60(1), 160-165. https://doi.org/10.1053/j.ajkd.2012.04.001
Richardson, D., Bartlett, C., & Will, E. J. (2001). Optimizing erythropoietin therapy in hemodialysis patients. Am J Kidney Dis, 38(1), 109-117. https://doi.org/10.1053/ajkd.2001.25203
Robinson, B. M., Fuller, D. S., Bieber, B. A., Turenne, M. N., & Pisoni, R. L. (2012). The DOPPS Practice Monitor for US dialysis care: trends through April 2011. Am J Kidney Dis, 59(2), 309-312. https://doi.org/10.1053/j.ajkd.2011.11.005
Roshanov, P. S., Fernandes, N., Wilczynski, J. M., Hemens, B. J., You, J. J., Handler, S. M., Nieuwlaat, R., Souza, N. M., Beyene, J., Van Spall, H. G., Garg, A. X., & Haynes, R. B. (2013). Features of effective computerised clinical decision support systems: meta-regression of 162 randomised trials. BMJ, 346, f657. https://doi.org/10.1136/bmj.f657
Sakaguchi, Y., Hamano, T., Wada, A., & Masakane, I. (2019). Types of Erythropoietin-Stimulating Agents and Mortality among Patients Undergoing Hemodialysis. J Am Soc Nephrol, 30(6), 1037-1048. https://doi.org/10.1681/ASN.2018101007
Sheibani, R., Sheibani, M., Heidari-Bakavoli, A., Abu-Hanna, A., & Eslami, S. (2017). The Effect of a Clinical Decision Support System on Improving Adherence to Guideline in the Treatment of Atrial Fibrillation: An Interrupted Time Series Study. J Med Syst, 42(2), 26. https://doi.org/10.1007/s10916-017-0881-6
Shortliffe, E. H., & Sepulveda, M. J. (2018). Clinical Decision Support in the Era of Artificial Intelligence. JAMA, 320(21), 2199-2200. https://doi.org/10.1001/jama.2018.17163
Singh, A. K., Szczech, L., Tang, K. L., Barnhart, H., Sapp, S., Wolfson, M., Reddan, D., & Investigators, C. (2006). Correction of anemia with epoetin alfa in chronic kidney disease. N Engl J Med, 355(20), 2085-2098. https://doi.org/10.1056/NEJMoa065485
Solomon, S. D., Uno, H., Lewis, E. F., Eckardt, K. U., Lin, J., Burdmann, E. A., de Zeeuw, D., Ivanovich, P., Levey, A. S., Parfrey, P., Remuzzi, G., Singh, A. K., Toto, R., Huang, F., Rossert, J., McMurray, J. J., Pfeffer, M. A., & Trial to Reduce Cardiovascular Events with Aranesp Therapy, I. (2010). Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N Engl J Med, 363(12), 1146-1155. https://doi.org/10.1056/NEJMoa1005109
Stauffer, M. E., & Fan, T. (2014). Prevalence of anemia in chronic kidney disease in the United States. PLoS One, 9(1), e84943. https://doi.org/10.1371/journal.pone.0084943
Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit Med, 3, 17. https://doi.org/10.1038/s41746-020-0221-y
Thamer, M., Zhang, Y., Kaufman, J., Cotter, D., Dong, F., & Hernan, M. A. (2007). Dialysis facility ownership and epoetin dosing in patients receiving hemodialysis. JAMA, 297(15), 1667-1674. https://doi.org/10.1001/jama.297.15.1667
Thamer, M., Zhang, Y., Kaufman, J., Kshirsagar, O., Cotter, D., & Hernan, M. A. (2014). Major declines in epoetin dosing after prospective payment system based on dialysis facility organizational status. Am J Nephrol, 40(6), 554-560. https://doi.org/10.1159/000370334
Tolman, C., Richardson, D., Bartlett, C., & Will, E. (2005). Structured conversion from thrice weekly to weekly erythropoietic regimens using a computerized decision-support system: a randomized clinical study. J Am Soc Nephrol, 16(5), 1463-1470. https://doi.org/10.1681/ASN.2004080688
Trivedi, M. H., Kern, J. K., Marcee, A., Grannemann, B., Kleiber, B., Bettinger, T., Altshuler, K. Z., & McClelland, A. (2002). Development and implementation of computerized clinical guidelines: barriers and solutions. Methods Inf Med, 41(5), 435-442. https://www.ncbi.nlm.nih.gov/pubmed/12501817
Tsubakihara, Y., Nishi, S., Akiba, T., Hirakata, H., Iseki, K., Kubota, M., Kuriyama, S., Komatsu, Y., Suzuki, M., Nakai, S., Hattori, M., Babazono, T., Hiramatsu, M., Yamamoto, H., Bessho, M., & Akizawa, T. (2010). 2008 Japanese Society for Dialysis Therapy: guidelines for renal anemia in chronic kidney disease. Ther Apher Dial, 14(3), 240-275. https://doi.org/10.1111/j.1744-9987.2010.00836.x
Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Vitalii, P., Andrii, H., & Yevheniia, H. (2020). Stand-Alone Software as a Medical Device: Qualification and Liability Issues. Wiad Lek, 73(10), 2282-2288. https://www.ncbi.nlm.nih.gov/pubmed/33310964
Will, E. J., Richardson, D., Tolman, C., & Bartlett, C. (2007). Development and exploitation of a clinical decision support system for the management of renal anaemia. Nephrol Dial Transplant, 22 Suppl 4, iv31-iv36. https://doi.org/10.1093/ndt/gfm163
Winkelmayer, W. C. (2011). Potential effects of the new Medicare Prospective Payment System on drug prescription in end-stage renal disease care. Blood Purif, 31(1-3), 66-69. https://doi.org/10.1159/000321856
Yusof, M. M., Kuljis, J., Papazafeiropoulou, A., & Stergioulas, L. K. (2008). An evaluation framework for Health Information Systems: human, organization and technology-fit factors (HOT-fit). Int J Med Inform, 77(6), 386-398. https://doi.org/10.1016/j.ijmedinf.2007.08.011
Zhu, X., & Perazella, M. A. (2006). Nonhematologic complications of erythropoietin therapy. Semin Dial, 19(4), 279-284. https://doi.org/10.1111/j.1525-139X.2006.00173.x
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91895-
dc.description.abstract研究背景: 臨床決策支援系統(Clinical Decision Support System, CDSS)是基於專家經驗或數據研發的電腦演算流程,用在臨床情境以改善照護流程或病人預後,但約一半的CDSS無法達到預期的效果,最重要的因素是臨床人員對CDSS的接受度不足。亞東紀念醫院針對血液透析病患的貧血處置,於2019年設置了個人化貧血處置的CDSS,希望能協助改善血液透析病患血色素(Hb)達標率過低的現象。過去文獻報告透析患者貧血處置CDSS介入後的效果評估,大多直接比較介入前後的差異,沒有考慮臨床醫師對CDSS的接受度。
研究目的:本研究利用量性與質性分析,評估腎臟科醫師對透析患者貧血處置CDSS的接受度,探討影響臨床醫師對CDSS接受度的因素。
研究方法: 量性研究部分,分析2016~2020年間亞東醫院血液透析資料,按年代分為CDSS介入前期(2016~2018)、過度期(2019)及介入後期(2020)三個時期,比較三個時期貧血治療相關指標的變化趨勢,並探討此變化是否受CDSS接受度的影響。質性部分,邀請17位長期在亞東醫院血液透析室工作的腎臟科醫師,進行半結構式(semi-structured)的深度訪談(in-depth interview),探討臨床醫師對CDSS的看法與顧慮。
研究結果: 量性分析納入717名患者共36,091次Hb量測。在多變數模型中,CDSS介入後的Hb升高(0.17 g/dL;95%信賴區間[CI]:CI 0.14–0.21 g/dL),造血激素(ESA)的使用量增加(264U/week; 95CI: 158-371U/week),達標率下降(勝算比為0.71倍,95% CI:0.66–0.75),超標率增加(勝算比為1.81倍,95% CI:3.1–3.6),而失敗率在校正後沒有顯著改變(勝算比為0.92倍,95% CI:0.84–1.01)。醫囑更改跟醫矚與建議的一致性的比例都增加(更改勝算比為2.55倍,95% CI:2.39–2.73;一致勝算比為3.37倍,95% CI:3.15–3.60)。路徑分析顯示,介入後血色素增加、ESA使用量增加、達標率下降、超標率增加、醫囑更改率增加,都有部分效果是經由醫囑與CDSS建議的一致性所中介。質性研究共訪談了十七名腎臟科醫師,所有腎臟科醫師一致認為CDSS對臨床工作有助益的。其中十四名醫師認為CDSS可以加速工作,節省了數據評估的時間;八名醫師稱讚了CDSS的提醒功能。十六名醫師提到了CDSS的各種限制,例如無法根據患者情況進行個性化、無法處理罕見或突發情況、參考時間過短等。沒有醫師認為CDSS會影響專業判斷或專業自主性。相反,有十一名醫師提到CDSS可以為臨床判斷提供有益的參考。值得注意的是,多達十二名醫師表達了對醫師依賴CDSS的擔憂。
結論: CDSS的介入確實會影響醫師處方行為,影響貧血控制,且醫師處方與CDSS建議的一致性,為CDSS介入效果的中介因素。臨床醫師一致認為CDSS能減輕工作負擔,且不認為會威脅醫師的專業,但擔憂有能會有依賴CDSS的風險。我們的研究強調了在設計和介入CDSS時,優化醫師對CDSS的接受度,減少醫師對CDSS的顧慮,才能達到CDSS的效果。
zh_TW
dc.description.abstractBackground: Clinical decision support systems (CDSS) are developed based on algorithms in attempts to improve healthcare implementation or patient outcomes. The most important factor that hinders the successful implementation of CDSS is the acceptance of physicians. There remain gaps in the optimal ways to evaluate the performance of CDSS. One practical example resides in the CDSS-guided clinical management of anemia in patients on hemodialysis (HD).
Objective: This study evaluated the CDSS performance in anemia management in HD patients, the impact of physician compliance on CDSS efficacy and the relevant factors associated with physician acceptance.
Methods: We conducted a mixed method study. We extracted the electronic health records of HD patients in Far Eastern Memorial Hospital (FEMH) between 2016 to 2020. The CDSS program was implemented in 2019, thus we divided data into two phases: Pre-CDSS phase (2016-2018) and Post-CDSS phase (2020). We compared the managements of anemia between the two phases using random intercept models. Physician compliance was defined as the concordance of erythropoietin-stimulating agent (ESA) doses between the CDSS recommendations and the actual prescriptions. For qualitative part, we invited nephrologists with more than 3 months experience of caring HD patients at FEMH to participate in a semi-structured in-depth interview. We particularly explored nephrologists’ concerns on CDSS.
Results: We included 717 patients with a total of 36,091 hemoglobin (Hb) measurements. In the adjusted random intercept model, the post-CDSS phase showed an increased hemoglobin level (by 0.17 g/dL; 95% confidence interval [CI]: CI 0.14–0.21 g/dL), an increased ESA dosage (264U/week, 95CI: 158-371), a reduced on-target rate (OR 0.71, 95% CI:0.66-0.75), an increased over-target rate (OR 1.81, 95% CI:1.68-1.95), an increased prescription rate (OR 2.55, 95% CI:2.39-2.73) and an increased concordance rate (OR 3.37, 95% CI: 3.15–3.60). Path analysis revealed that the concordance rate significantly mediated the effects of CDSS. For qualitative part, a total of seventeen nephrologists were interviewed. All interveiwees concurred that CDSS was beneficial to clinical care. Fourteen (4/17) nephrologists believed CDSS could expedite the work and saved the time in interpretation of data. Eight physicians praised reminder functions of CDSS. Sixteen physicians mentioned about limitations of CDSS. No physician thought CDSS would influence professional autonomy. In contrast, eleven physicians mentioned that CDSS could provide beneficial inputs for clinical judgement. Of note, up to twelve physicians expressed concerns of physicians’ dependence on CDSS.
Conclusions: Our findings confirmed that CDSS had effects on anemia management of HD patients and physician compliance was a significant intermediate factor for the CDSS efficacy. Nephrologists concurred that CDSS could lessen workload, but expressed concerns about over-dependency on CDSS. Our study highlights the importance of optimizing physician compliance while designing and implementing CDSSs to improve the healthcare outcomes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:20:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:20:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT V
第 壹 章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究重要性 4
第 貳 章 文獻探討 6
第一節 透析患者的貧血 6
第二節 臨床決策支援系統 10
第三節 運用臨床決策支援系統協助透析患者貧血治療 19
第四節 文獻總結與知識缺口 24
第 參 章 研究方法 33
第一節 研究設計與架構 33
第二節 研究假說 34
第三節 研究對象 34
第四節 資料來源與處理流程 35
第五節 研究變項與操作型定義 38
第六節 統計分析方法 41
第七節 質性訪談 42
第 肆 章 研究結果 47
第一節 量性分析 47
第二節 質性訪談 69
第 伍 章 討論 83
第一節 量性分析 83
第二節 質性訪談 85
第三節 綜合討論 87
第四節 研究限制 89
第五節 未來研究方向 92
參考文獻 94
附 表 105
附 件 107
-
dc.language.isozh_TW-
dc.subject臨床決策支援系統zh_TW
dc.subject血液透析zh_TW
dc.subject貧血zh_TW
dc.subject一致性zh_TW
dc.subject接受度zh_TW
dc.subject顧慮zh_TW
dc.subject專業自主性zh_TW
dc.subject倚賴zh_TW
dc.subjectProfessional autonomyen
dc.subjectClinical decision support systemsen
dc.subjectDependenceen
dc.subjectHemodialysisen
dc.subjectAnemiaen
dc.subjectConsistencyen
dc.subjectAcceptanceen
dc.subjectConcernen
dc.title探討醫師對臨床決策支援系統的接受度--以透析患者貧血治療為例zh_TW
dc.titleAssessing Physicians' Acceptance of a Clinical Decision Support System: A Focus on Anemia Management for Hemodialysis Patientsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.coadvisor鄭守夏zh_TW
dc.contributor.coadvisorShou-Hsia Chengen
dc.contributor.oralexamcommittee楊銘欽;官晨怡;劉德明;林寬佳zh_TW
dc.contributor.oralexamcommitteeMing-Chin Yang;Chen-I Kuan;Der-Ming Liou;Kuan-Chia Linen
dc.subject.keyword臨床決策支援系統,血液透析,貧血,一致性,接受度,顧慮,專業自主性,倚賴,zh_TW
dc.subject.keywordClinical decision support systems,Hemodialysis,Anemia,Consistency,Acceptance,Concern,Professional autonomy,Dependence,en
dc.relation.page108-
dc.identifier.doi10.6342/NTU202400153-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-22-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept健康政策與管理研究所-
dc.date.embargo-lift2024-11-20-
顯示於系所單位:健康政策與管理研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved