Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91894
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖國偉zh_TW
dc.contributor.author梁筱柔zh_TW
dc.contributor.authorHsiao-Jou Liangen
dc.date.accessioned2024-02-26T16:19:57Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2022-
dc.date.submitted2002-01-01-
dc.identifier.citation1. 尹立中、劉哲欣、吳亭燁(2013),「降雨引致淺層崩塌物理模式分析尺度探討-以高屏溪美輪山子集水區為例」,社團法人中華水土保持學會102年度年會。
2. 王安翔、張智昌、林聖琪、柯明淳、林李耀(2010),「雷達降雨估計於防災科技之應用」,天氣分析與預報研討會。
3. 朱芳儀、吳亭燁(2018),「應用KRID觀測降雨資料於崩塌潛勢評估」,天氣分析與預報研討會。
4. 李欣輯、吳亭燁、陳麒文、鄭兆尊、童裕翔(2018),「暖化情境下極端颱洪災事件之坡地災害衝擊評估:以大漢溪及新店溪集水區為例」,國家災害防救科技中心技術報告,NCDR 106-T09。
5. 李品倫(2020),「GPM衛星降雨於台灣本島之評比分析」,國立中興大學土木工程學系所碩士論文。
6. 李錫堤、黃健政(2005),「區域性山坡穩定分析之回顧與展望」,地工技術,104:33-52。
7. 林仙蕓(2008),「降雨引發坡地淺崩塌之區域性風險分析研究」,國立交通大學土木工程系所碩士論文。
8. 林書豪、蔡易達、連惠邦(2019),「山坡地保育治理於石門水庫集水區對土砂流失與生產之抑制成效分析」,水保技術,13(1):36-49。
9. 國家災害防救科技中心(2017),「臺灣氣候變遷科學報告2017–物理現象與機制」。
10. 張石角(1989),「陽明山國家公園環境敏感區及潛在災害地區之調查研究」。
11. 張瑜晏、吳嘉偉、劉明怡、薛強(2010),「結構可靠度分析方法之適用性研究」,中興工程,109:19-29。
12. 許振崑、蕭震洋、陳俊愷、林伯勳、黃光賢、張綸纖、李膺讚(2014),「石門水庫集水區白石大崩塌治理評估」,台灣林業,40(6):36-44。
13. 陳弘恩(2005),「降雨引發坡地淺崩塌模式之建立與探討」,國立交通大學土木工程系所碩士論文。
14. 陳本康(2004),「石門水庫集水區崩塌特性及潛勢評估研究」,國立中興大學水土保持學系博士論文。
15. 陳宜清、陳俊宏(2006),「探討於生態風險評估之不確定性」,科學與工程技術期刊,2(1):49-60。
16. 陳則佑(2011),「應用點估法與TRIGRS程式分析奧萬大道路邊坡之破壞機率」,國立中興大學水土保持學系所碩士論文。
17. 陳嬑璇(2002),「溪頭地區山崩潛感圖製作研究」,國立臺灣大學土木工程學研究所碩士論文。
18. 陳嬑璇、譚志豪、冀樹勇(2011),「不同廣域降雨促崩分析模式於山崩預警應用之探討」,第十四屆大地工程學術研討會。
19. 陳樹群、吳俊毅(2018),「以地文內在因子及水文外在因子建構國有林地崩塌潛勢警戒模式」,中華水土保持學報,49(2):89-97。
20. 童慶斌、劉子明、林嘉佑、曹榮軒、李明旭(2015),「氣候變遷水資源風險評估與調適決策之探討」,土木水利,42(4):30-45。
21. 馮正一、張育瑄、葉柳青(2009),「應用點估法及決策樹輔助邊坡整治之風險分析」,水土保持學報,41(4):371-387。
22. 黃翰林、徐義人、余家慶(1997),「河堤溢流之風險分析」,農業工程學報,43(1):36-48。
23. 楊明德、黃奕達、黃凱翔、張益祥(2012),「利用崩塌潛勢圖作風險評估之應用-以陳有蘭溪流域為例」,中華水土保持學報,43(1):1-11。
24. 楊錦釧(2008),「石門水庫集水區崩塌與庫區淤積風險評估研究」,經濟部水利署。
25. 經濟部水資源局(2001),「水文設計應用手冊」。
26. 劉沁潔(2020),「氣候變遷調適風險溝通-以新北市烏來區坡地災害為例」,國立臺灣大學生物環境系統工程學研究所碩士論文。
27. 劉緁玲(2012)「數種不確定性分析方法於降雨引發坡地淺崩塌模式之比較研究」,國立交通大學土木工程學系碩士論文。
28. 蔡呈奇(2002),「應用地域分析與地理資訊系統繪製土壤圖:以臺灣北部火山灰土壤為例」,國立臺灣大學農業化學研究所博士論文。
29. 鄧源昌(2018),「廣域山崩即時預報系統之研究」,國立中央大學土木工程學系博士論文。
30. 鍾明劍、譚志豪、冀樹勇(2011),「不同尺度分析模式於崩塌潛勢評估之整合應用-以莫拉克颱風事件為例」,中興工程,111:47-59。
31. 鍾欣翰(2008),「考慮水文模式的地形穩定分析-以匹亞溪集水區為例」,國立中央大學應用地質研究所碩士論文。
32. 譚志豪、呂昱達、冀樹勇、費立沅(2011),「集水區降雨促崩潛勢分析」,地工技術,129:63-74。
33. 蘇歆婷(2007),「降雨引發坡地淺崩塌風險評估模式之建立與應用」,國立交通大學土木工程系所碩士論文。
34. 鐘意晴(2009),「區域性山崩潛感分析方法探討-以石門水庫集水區為例」,國立中央大學地球物理研究所碩士論文。
35. A. El-Sawy, Z. Hendawy and M. El-Shorbagy. (2013). Reference Point Based TR-PSO for Multi-Objective Environmental/Economic Dispatch. Applied Mathematics, Vol. 4 No. 5, 803-813.
36. Alonso E. E. (1976) Risk analysis of slopes and its application to slopes in Canadian sensitive clays. Géotechnique, 26:3, 453-472.
37. Babu, G.L.S., Mukesh, M.D. (2003). Risk analysis of landslides – A case study. Geotechnical and Geological Engineering 21, 113-127.
38. Baecher, G.B. (1986). Geotechnical Error Analysis. Transportation Research Record, No.1105, 23-31.
39. Baum, R.L., Savage, W.Z., and Godt, J.W., (2008) TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0, U.S. Geological Survey, Open-File Report 2008–1159.
40. Chen, CY., Chen, TC., Yu, FC. and Lin, SC. (2005). Analysis of time-varying rainfall infiltration induced landslide. Environmental Geology, 48, 466-479.
41. Chen, CY., Lin, LY., Yu, FC. et al. (2007). Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Natural Hazards 40, 447-461.
42. Chen, JC., Jan, CD. and Lee, MH. (2007) Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length: theorem. Environmental Geology 51, 1239-1248.
43. Christian, J.T., Ladd, C.C., and Baecher, G.B. (1994). Reliability Applied to Slope Stability Analysis. Journal of Geotechnical Engineering, 120(12), 2180-2207.
44. Chung, C., and Fabbri, A.G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65, 1389-1400.
45. Ciurleo, M., Cascini, L., and Calvello, M. (2017). A Comparison of Statistical and Deterministic Methods for Shallow Landslide Susceptibility Zoning in Clayey Soils. Engineering Geology. 223, 71-81.
46. Dietrich, W.E., Reiss, R., Hsu, M.-L. and Montgomery, D.R. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes. 9, 383-400.
47. Domínguez-Cuesta M.J., Jiménez-Sánchez M., Berrezueta E. (2007) Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology. 89:358-369.
48. Field, C. B., Barros, V. R., Mastrandrea, M. D., Mach, K. J., Abdrabo, M. K., Adger, N. et al. (IPCC, 2014). Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change, 1-32.
49. García-Aristizábal, E.F., Aristizábal Giraldo, E.V., Marín Sánchez, R.J., and Guzmán Martínez, J.C. (2019). Implementación del modelo TRIGRS con análisis de confiabilidad para la evaluación de la amenaza a movimientos en masa superficiales detonados por lluvia. TecnoLógicas. 22(44), 112-130.
50. Heimsath, A., Dietrich, W., Nishiizumi, K. et al. (1997) The soil production function and landscape equilibrium. Nature 388, 358–361.
51. Kirkby, M.J. (1971). Hillslope Process-Response Models Based on the Continuity Equation. Slopes Form & Process: London, Institute of British Geographers, Special Publication 3, 15-30.
52. Kirschbaum, D., and Stanley, T. (2018). Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness. Earths Future, 6, 505-523.
53. Liu, CN., Wu, CC. (2008) Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environmental Geology 55, 907-915.
54. Malkawi AIH, Hassan WF, and Abdulla FA (2000) Uncertainty and reliability analysis applied to slope stability. Structural Safety 22:161–187.
55. Pellicani, R., Frattini, P. and Spilotro, G. (2014) Landslide susceptibility assessment in Apulian Southern Apennine: heuristic vs. statistical methods. Environmental Earth Sciences 72, 1097-1108.
56. Pörtner, H.-O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A. et al. (IPCC, 2022). Summary for Policymakers. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
57. Salciarini, D., Godt, J.W., Savage, W.Z. et al. (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3, 181.
58. Tsai, TL., Yang, JC. (2006) Modeling of rainfall-triggered shallow landslide. Environmental Geology 50, 525-534.
59. van Vuuren, D.P., Edmonds, J., Kainuma, M. et al. (2011) The representative concentration pathways: an overview. Climatic Change, 109, 5.
60. Vessia, G., Cherubini, C., Pieczyńska, J. and Puła, W. (2009). Application of Random Finite Element Method to Bearing Capacity Design of Strip Footing. Journal of GeoEngineering, 4(3), 103-112.
61. Weidner, L., Oommen, T., Escobar-Wolf, R. et al. (2018) Regional-scale back-analysis using TRIGRS: an approach to advance landslide hazard modeling and prediction in sparse data regions. Landslides 15, 2343-2356.
62. Wittwer, J.W., "Monte Carlo Simulation Basics" From Vertex42.com, June 1, 2004, https://www.vertex42.com/ExcelArticles/mc/MonteCarloSimulation.html
63. Zhou G, Esaki T, Mitani Y, Xie M, and Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Engineering Geology 68(3):373–386.
64. Zimmermann, H.J. (2000). An application-oriented view of modeling uncertainty. European Journal of Operational Research 122 (2), 190-198.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91894-
dc.description.abstract近年來極端降雨事件頻繁發生,在全球氣候變遷的影響之下,可預期邊坡崩塌發生頻率及崩塌規模將增加,所造成之坡地災害風險亦增加,為了能在有限的資源下辨識高風險地區,故建置廣域崩塌潛勢分析模型。傳統邊坡穩定性評估多假設參數為單一數值,採用定值法進行分析,以安全係數考量各參數對邊坡穩定性的影響;然而實際上因分析模式、資料量測之不確定性及自然環境之隨機性,使參數具有不確定性。故本研究將以機率模式取代定率模式,藉由可靠度分析降低安全係數無法反應系統不確定性之缺點,並辨別邊坡失效機率較高的區位、評估可能的崩塌規模,藉以了解整體邊坡穩定性的變化。
在此研究中以石門水庫上游的薩克亞金溪集水區為例,基於美國地質調查所(USGS)開發之暫態降雨入滲邊坡網格穩定分析模式(TRIGRS)建立集水區崩塌潛勢模型,其中利用最佳化技術,以粒子群演算法(PSO)率定土壤參數。比較兩場降雨事件的模擬結果與實際崩塌資料後,山崩正確率皆大於70%、AUC值亦皆大於0.8,說明此模型的正確性符合工程接受範圍,且能良好預測降雨誘發之山崩區位。
經由敏感度分析,確認土壤凝聚力、摩擦角及飽和水力傳導係數之不確定性具有關鍵影響,並以失效機率評估降雨誘發邊坡可靠度的變化。在此研究設計之兩個不同變異度的案例中,皆證實一階二次矩法(FOSM)中泰勒展開式以平均值為展開點且以0.1倍平均值為參數變動量計算偏導數之方法可應用於估算失效機率。一階二次矩法推估之失效機率與蒙地卡羅模擬(MCS)結果的相對誤差只有在高變異度的案例中坡度約25°處在降雨初期相對誤差可能增加至30%,其餘網格在降雨期間失效機率的相對誤差多在20%以內。由於FOSM分析效率高於MCS,故結合FOSM與TRIGRS評估降雨期間邊坡失效機率的變化。此外,定率模式中安全係數小於1視為邊坡破壞,但從模擬結果可知安全係數皆為1的網格可能會有不同的失效機率值,故機率模式相較於定率模式能較好地反應邊坡穩定性。
研究中利用NASA全球衛星觀測降雨計畫(GPM)的降雨數據推估現況2、5、10、25、50、100年重現期降雨下的邊坡失效機率。薩克亞金溪集水區中,高崩塌潛勢區多為坡度30°~50°之邊坡,且當中越陡峭的邊坡越易受到降雨誘發而破壞,而較緩的邊坡則可忍受較高強度的降雨。此外,隨著重現期距加大,邊坡失效機率將增加,以低變異度現況為例,100年重現期失效機率大於0.6之累積面積比2年重現期增加約1.36%;雖然不同變異度推估之機率值不同,但皆可應用FOSM評估邊坡穩定性、判別相對高潛勢之區位。
藉由GPM繁衍之基期及近未來氣象資料,比較兩者在各重現期下的失效機率差異,評估氣候變遷對薩克亞金溪集水區邊坡穩定性的影響。結果顯示高失效機率的邊坡區位與現況大致相符,且可預期邊坡崩塌有變嚴重之趨勢,但在短期內(2021至2040年)差異不算劇烈。此外,研究中以邊坡失效機率產製之崩塌潛勢圖可作為氣候變遷風險分析之危害因子,其結果可供氣候變遷風險評估及治山防災參考之用。
zh_TW
dc.description.abstractIn recent years, extreme rainfall events have occurred recurrently. Under the influence of global climate change, an escalation in frequency and magnitude of slope collapse could be foreseen, risking an enlargement of possibility for a disaster. In order to distinguish the regions with higher risks with limited resources, a regional landslide susceptibility analysis model is built. Considering the uncertainty of the parameters, we will replace the deterministic model with the probabilistic model in this study, and use the reliability assessment to locate the region of high failure probability and also to estimate the possible collapse magnitude to understand the changes in the overall slope stability.
Taking the Sakayachin creek watershed in the upper reaches of Shimen Reservoir as an example, Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) is adopted to establish a landslide susceptibility model. The Particle Swarm Optimization (PSO) is used to calibrate soil parameters. Comparing the simulated results with the recorded landslide data of two rainfall events, the landslide prediction accuracy are greater than 70% and the AUC value are greater than 0.8. This indicates that the accuracy of this model is in line with the engineering acceptance range and can therefore, is used to predict the location of rainfall-induced landslides.
Through the sensitivity analysis, soil cohesion, friction angle, and saturated hydraulic conductivity are identified as random variables to assess rainfall-induced changes in slope reliability. In the two cases with different degrees of variability designed in this study, it is confirmed that when Taylor's expansion uses the mean value as the expansion point and 0.1 times the mean value as the parameter variation to calculate the partial derivative, the relative error between the first-order second-moment method (FOSM) and Monte Carlo simulation (MCS) is within 20%, and the analysis efficiency of FOSM is higher than that of MCS. In addition, the factor of safety less than 1 is considered as slope failure in the deterministic model, but the simulation results indicate that the grid with factor of safety equal to 1 may have different failure probability values, so the probabilistic model can better reflect the slope stability compared with the deterministic model.
In the study, data from NASA's Global Precipitation Measurement (GPM) is used to estimate the slope failure probability for the current rainfall return periods of 2, 5, 10, 25, 50, and 100 years, respectively. The results show that the high landslide potential areas are mostly with slopes of 30°~50°. In addition, as the rainfall return period increases, the slope failure probability becomes greater. Taking the 2-year return period and 100-year return period of low variability as examples, the cumulative percentage of area with failure probability greater than 0.6 increases by about 1.36%.Although the estimated probability values are different, applying FOSM to evaluate the stability of the slope in two cases with different variances can identify the area of relatively high potential.
Observing the impact of climate change on the slope stability in the Sakayachin creek watershed, the region of high failure probability is generally consistent with the basiline situation. The study shows that slope failures are expected to become more severe, but the changes are not significant in the short term (2021 to 2040). Moreover, the landslide susceptibility map generated by the slope failure probability in this study can be utilized as a hazard factor for climate change risk analysis, and the results can be used as a reference for climate change risk assessment and disaster prevention.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:19:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:19:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT IV
目錄 VI
圖目錄 VIII
表目錄 XI
第一章、緒論 1
1.1研究動機 1
1.2研究流程 2
1.3論文架構 3
第二章、文獻回顧 5
2.1崩塌潛勢 5
2.2土壤參數最佳化 8
2.3土壤厚度 9
2.4 KRID與GPM降雨數據 11
2.5不確定性分析 13
2.6氣候變遷 15
第三章、研究方法 19
3.1 TRIGRS模式 19
3.2最佳化 22
3.3模型評估 27
3.4設計暴雨 29
3.5敏感度分析 31
3.6不確定性分析 32
第四章、研究區域資料蒐集與處理 41
4.1研究區域概況 41
4.2 TRIGRS參數 42
4.3歷史崩塌目錄 46
4.4降雨 47
4.5氣候變遷雨量 52
第五章、結果與討論 54
5.1 TRIGRS模型評估 54
5.2敏感度分析 57
5.3不確定性分析評估 62
5.4邊坡穩定性分析 73
5.5氣候變遷 85
第六章、結論與建議 92
6.1結論 92
6.2建議 94
參考文獻 95
-
dc.language.isozh_TW-
dc.subjectTRIGRSzh_TW
dc.subject氣候變遷zh_TW
dc.subject失效機率zh_TW
dc.subject一階二次矩法zh_TW
dc.subject不確定性zh_TW
dc.subject邊坡穩定zh_TW
dc.subjectSlope Stabilityen
dc.subjectClimate Changeen
dc.subjectFailure Probabilityen
dc.subjectFirst-order Second-moment Methoden
dc.subjectUncertaintyen
dc.subjectTRIGRSen
dc.title基於TRIGRS之邊坡可靠度評估-以薩克亞金溪集水區為例zh_TW
dc.titleSlope reliability assessment based on TRIGRS-A Case Study in Sakayachin creek watersheden
dc.typeThesis-
dc.date.schoolyear110-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee童慶斌;白朝金zh_TW
dc.contributor.oralexamcommittee;;en
dc.subject.keywordTRIGRS,邊坡穩定,不確定性,一階二次矩法,失效機率,氣候變遷,zh_TW
dc.subject.keywordTRIGRS,Slope Stability,Uncertainty,First-order Second-moment Method,Failure Probability,Climate Change,en
dc.relation.page101-
dc.identifier.doi10.6342/NTU202201682-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2022-07-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2024-07-31-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-110-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved