請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳志傑 | zh_TW |
| dc.contributor.advisor | Chih-Chieh Chen | en |
| dc.contributor.author | 邱瀞儀 | zh_TW |
| dc.contributor.author | Ching-Yi Chiu | en |
| dc.date.accessioned | 2024-02-26T16:16:19Z | - |
| dc.date.available | 2024-02-27 | - |
| dc.date.copyright | 2024-02-26 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-15 | - |
| dc.identifier.citation | Anderson, N. J., Cassidy, P. E., Janssen, L. L., & Dengel, D. R. (2006). Peak inspiratory flows of adults exercising at light, moderate and heavy workloads. Journal of the International Society for Respiratory Protection, 23, 53-63.
Asadi, S., Wexler, A. S., Cappa, C. D., Barreda, S., Bouvier, N. M., & Ristenpart, W. D. (2019). Aerosol emission and superemission during human speech increase with voice loudness. Scientific reports, 9(1), 1-10. Bahl, P., Doolan, C., De Silva, C., Chughtai, A. A., Bourouiba, L., & MacIntyre, C. R. (2022). Airborne or droplet precautions for health workers treating coronavirus disease 2019? The Journal of infectious diseases, 225(9), 1561-1568. Chao, C. Y. H., Wan, M. P., Morawska, L., Johnson, G. R., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., & Xie, X. (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of aerosol science, 40(2), 122-133. Chughtai, A. A., Seale, H., & Macintyre, C. R. (2020). Effectiveness of cloth masks for protection against severe acute respiratory syndrome coronavirus 2. Emerging infectious diseases, 26(10). Davies, A., Thompson, K.-A., Giri, K., Kafatos, G., Walker, J., & Bennett, A. (2013). Testing the efficacy of homemade masks: would they protect in an influenza pandemic? Disaster medicine and public health preparedness, 7(4), 413-418. Dhand, R., & Li, J. (2020). Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. American journal of respiratory and critical care medicine, 202(5), 651-659. Fabian, P., Brain, J., Houseman, E. A., Gern, J., & Milton, D. K. (2011). Origin of exhaled breath particles from healthy and human rhinovirus-infected subjects. Journal of aerosol medicine and pulmonary drug delivery, 24(3), 137-147. Gossweiler, O. (2013). Breath responsive filter blower respirator system. In: Google Patents. Guo, Z.-D., Wang, Z.-Y., Zhang, S.-F., Li, X., Li, L., Li, C., Cui, Y., Fu, R.-B., Dong, Y.-Z., & Chi, X.-Y. (2020). Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerging infectious diseases, 26(7), 1586. Gupta, J. K., Lin, C. H., & Chen, Q. (2010). Characterizing exhaled airflow from breathing and talking. Indoor air, 20(1), 31-39. Han, Z., Weng, W., & Huang, Q. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of the Royal Society Interface, 10(88), 20130560. Janssen, L., Anderson, N., Cassidy, P., Weber, R., & Nelson, T. (2005). Interpretation of inhalation airflow measurements for respirator design and testing. Journal-International Society For Respiratory Protection, 22(3/4), 122. Jayan, V., Ajan, A., Mohan, H., Manikutty, G., Sasi, D., Kappanayil, M., Vijayaraghavan, S., & Rao, R. B. (2020). Design and development of a low-cost powered air-purifying respirator for frontline medical workers for COVID-19 response. 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC), Jones, R. M., & Brosseau, L. M. (2015). Aerosol transmission of infectious disease. Journal of occupational and environmental medicine, 57(5), 501-508. Kothakonda, A., Atta, L., Plana, D., Ward, F., Davis, C., Cramer, A., Moran, R., Freake, J., Tian, E., & Mazor, O. (2021). De novo powered air-purifying respirator design and fabrication for pandemic response. Frontiers in Bioengineering and Biotechnology, 9, 690905. Li, C., Lin, Q., Ding, X., & Ye, X. (2016). Performance, aeroacoustics and feature extraction of an axial flow fan with abnormal blade angle. Energy, 103, 322-339. Licina, A., Silvers, A., & Stuart, R. L. (2020). Use of powered air-purifying respirator (PAPR) by healthcare workers for preventing highly infectious viral diseases—a systematic review of evidence. Systematic reviews, 9, 1-13. Lindsley, W. G., Noti, J. D., Blachere, F. M., Thewlis, R. E., Martin, S. B., Othumpangat, S., Noorbakhsh, B., Goldsmith, W. T., Vishnu, A., & Palmer, J. E. (2015). Viable influenza A virus in airborne particles from human coughs. Journal of occupational and environmental hygiene, 12(2), 107-113. Lindsley, W. G., Pearce, T. A., Hudnall, J. B., Davis, K. A., Davis, S. M., Fisher, M. A., Khakoo, R., Palmer, J. E., Clark, K. E., & Celik, I. (2012). Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. Journal of occupational and environmental hygiene, 9(7), 443-449. Morawska, L., Johnson, G., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C. Y. H., Li, Y., & Katoshevski, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of aerosol science, 40(3), 256-269. MY FACE MASK: 3D printed face Mask with a replaceable filter. https://www.3dwasp.com/en/3d-printed-mask-from-3d-scanning/ Owen, M., Ensor, D., & Sparks, L. (1992). Airborne particle sizes and sources found in indoor air. Atmospheric Environment. Part A. General Topics, 26(12), 2149-2162. Setiawan, P. A., & Yuwono, T. (2018). The effect of inner fan blade angle to the ventilation rate of the turbine ventilator. Jurnal Rekayasa Mesin, 9(3), 227-233. Stadnytskyi, V., Anfinrud, P., & Bax, A. (2021). Breathing, speaking, coughing or sneezing: What drives transmission of SARS‐CoV‐2? Journal of Internal Medicine, 290(5), 1010-1027. Tcharkhtchi, A., Abbasnezhad, N., Seydani, M. Z., Zirak, N., Farzaneh, S., & Shirinbayan, M. (2021). An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioactive materials, 6(1), 106-122. Wang, C. C., Prather, K. A., Sznitman, J., Jimenez, J. L., Lakdawala, S. S., Tufekci, Z., & Marr, L. C. (2021). Airborne transmission of respiratory viruses. Science, 373(6558), eabd9149. Wang, J., & Du, G. (2020). COVID-19 may transmit through aerosol. Irish Journal of Medical Science (1971-), 189, 1143-1144. Wilson, N., Norton, A., Young, F., & Collins, D. (2020). Airborne transmission of severe acute respiratory syndrome coronavirus‐2 to healthcare workers: a narrative review. Anaesthesia, 75(8), 1086-1095. Xie, X., Li, Y., Sun, H., & Liu, L. (2009). Exhaled droplets due to talking and coughing. Journal of the Royal Society Interface, 6(suppl_6), S703-S714. Zhang, L., Liang, S., & Hu, C. (2014). Flow and noise characteristics of centrifugal fan under different stall conditions. Mathematical Problems in Engineering, 2014. 許政行, 張清泉, 孔光源, & 陳柏壯. (2008). 風扇性能曲線之整合性研究. 中正嶺學報, 36, 41-55. 陳婕菱. (2022). 個人呼出微粒捕集器. 葉星語. (2022). 呼吸回饋動力淨氣式呼吸防護具性能測試與研發. 勞動部勞動及職業安全衛生研究所. (2016a). 人體計測資料庫簡介及重要計測值. 勞動部勞動及職業安全衛生研究所. (2016b). 台灣地區靜態二維頭部尺寸資料庫(樣本1073人). 勞動部勞動及職業安全衛生研究所. (2017) 我國勞工人體計測調查研究 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91882 | - |
| dc.description.abstract | 氣膠傳播(Aerosol transmission)為呼吸道傳染疾病包含嚴重特殊傳染性肺炎(COVID-19)主要之傳播途徑。病毒附著於氣膠微粒表面,隨染疫者之呼吸活動如呼吸、咳嗽、打噴嚏等傳播至環境中。健康個體因吸入或接觸後食入含有病毒之氣膠微粒而被感染。目前針對氣膠微粒的危害控制方式主要為將染疫者隔離、拉長社交距離以及佩戴個人防護具。分別為源頭控制、傳播途徑控制及接收者控制。其中又以源頭控制效益最大,因微粒剛生成濃度較高,須處理的體積較小,移除效益最高。而目前源頭控制最常使用的方式為佩戴口罩,佩戴口罩雖對粒徑大之微粒捕集效能佳。然而,一般情形下口罩多被用於保護健康個體,此時口罩須過濾之微粒粒徑較小,此情形下口罩與臉部之密合度將成關鍵,且隨佩戴過濾級數越高尤其重要。在2022年已有研究團隊研發出一款個人呼出微粒捕集器(Personal Exhaled Breath Aerosol Receiver, PEBAR),透過風扇及濾材,將人體呼出微粒過濾後排回環境中,在一定的使用範圍內能不受面體佩戴密合度之影響。然而PEBAR實際運作時可能使佩戴者吸氣負擔、眼睛黏膜乾澀或是濾材及電池使用週期短等問題可進行改善。因此,本研究將以PEBAR作為雛形,加入呼吸回饋功能,使風扇之抽氣流量能隨佩戴者不同呼吸型態而變動,風扇於佩戴者吸氣時減少抽氣量、於呼氣時增加抽氣量,且以維持面體內最小負壓值為最終目標。如此不僅能減輕佩戴者吸氣負擔,延長濾材及電池的使用週期。
呼吸回饋功能之個人呼出微粒捕集氣罩(Breath-Responsive Personal Exhaled Breath Aerosol Receiver, BR-PEBAR)之運作受各元件影響,因此研究中針對壓力感測元件、抽氣管、濾材、抽氣扇及回饋程式等建立量測系統,評估各元件及參數之性能對BR-PEBAR帶來的影響,並挑選最能發揮BR-PEBAR運作效能之種類及參數。經過各項參數測試後,針對BR-PEBAR之捕集效率、能源消耗及噪音產生量進行評估。在進氣孔面積為1 cm2的情形下,BR-PEBAR最大能於呼吸流量每分鐘32 L情形下,維持捕集效率大於99.99%。此外,於一般成人呼吸流量12-15 L/min下BR-PEBAR所耗能量為100 watt/min。噪音峰值落在65-70 dB間。另外經測試瞭解,設有預存空間之面體能用於更高之呼吸流量。在未來,若想增加BR-PEBAR使用範圍,除擴大預存空間增加氣體滯留空間,增加抽氣流量如改變風扇扇葉構型及降低系統阻抗如移除抽氣管等方式亦能有效提高抽氣流量。使用時間則可藉由增加電池組數或挑選容量較大之種類,以延長BR-PEBAR運作時間。 最後是BR-PEBAR的輕量化設計,本研究所研發之BR-PEBAR為風機與濾材整合為一透過腰帶固定,並以抽氣管連接至面體。對需要長時間佩戴之個體將成負擔,可能導致其行動受限,因此未來可參考市面上直結式呼吸防護具設計,將面體、風扇及濾材三者合而為一,並盡可能減輕重量,透過頭帶固定,使BR-PEBAR應用之情境更加靈活,如無塵室、空間較狹窄之環境等。 | zh_TW |
| dc.description.abstract | Aerosol transmission has emerged as a primary mode of respiratory infectious disease, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this situation, viruses attach to aerosol particles expelled during respiratory activities such as breathing, coughing, and sneezing, spreading into the environment. Healthy individuals are susceptible to infection through inhalation or ingestion of virus-containing aerosol particles after exposure. Currently, strategies for aerosol particle control involve a negative pressure isolation ward, maintaining social distancing, using personal protective equipment, focusing on source control, transmission pathway control, and recipient control. Source control, particularly through the timely removal of generated particles, has proven most effective in minimizing exposure.
To address this problem, face masks are commonly used for source control, effectively capturing larger particles (environmental protection). However, in scenarios where masks are worn for personal protection, the filtration of smaller particle sizes becomes critical, emphasizing the importance of a secure mask fit, especially with higher filtration levels. A recent development, the Personal Exhaled Breath Aerosol Receiver (PEBAR), utilizes a constant suction flow rate and filter to capture exhaled particles, demonstrating effectiveness within a specific range and regardless of the face seal. Nevertheless, operational challenges such as increased respiratory burden, dry eyes, and short filter and battery lifespans. This study introduces the concept of a Breath-Responsive Personal Exhaled Breath Aerosol Receiver (BR-PEBAR) by breath-responsive feedback system. This innovation allows the fan''s suction flow rate to adjust based on the wearer''s different breathing patterns, reducing suction during inhalation and increasing it during exhalation to maintain minimal negative pressure within the mask that we set. This not only reduce the wearer''s respiratory burden but also extends the lifespan of filters and batteries. The operation of BR-PEBAR is influenced by various components, including pressure sensors, connecting tubes, filters, suction fans, and a breath-responsive feedback system. A comprehensive measurement system was established to assess the performance of each component and parameter, selecting those that optimize the operation of BR-PEBAR. Performance testing included capture efficiency, energy consumption, and noise level. Under conditions of a 1 cm² intake area, BR-PEBAR achieved a capture efficiency exceeding 99.99% when breathing flow rate under 32 L/min. Energy consumption was measured at 100 watts/min for adult breathing flow rates of 12-15 L/min, with a noise peak ranging from 65-70 dB. Additionally, the addition of reservoir space in the facepiece was found to broaden the BR-PEBAR usage range. For future enhancements and expanded usability, increasing the storage space, increasing suction flow rates by altering fan blade configurations, and reducing system requirements by removing the connecting tube are recommended. The use time can be extended by installing more batteries or selecting higher-capacity batteries. Finally, a conceptual lightweight design for BR-PEBAR is proposed. Recognizing the potential burden for prolonged wear, future designs may draw inspiration from direct-connected respiratory protective devices available in the market, combining the face mask, fan, and filter into a single unit, minimizing weight and offering flexibility through headband fixation. This design could find more applications in environments, such as cleanrooms or narrow spaces. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:16:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-26T16:16:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii ABSTRACT v 目 次 viii 表 次 x 圖 次 xi 第一章 研究緣起及目的 1 第二章 文獻探討 3 2-1 人體產生微粒的機制及特性 3 2-2 口罩保護效能的探討 5 2-3 呼吸回饋技術探討 6 2-4 風扇的選用及評估 7 2-5 濾材特性對捕集氣罩的影響 8 第三章 研究材料與方法 8 3-1 呼吸回饋式個人呼出微粒捕集氣罩(BR-PEBAR)之設計 8 3-2 呼吸回饋設計 15 3-3 呼吸回饋式個人呼出微粒捕集氣罩(BR-PEBAR)效能評估與測試 16 第四章 結果與討論 19 4-1 進氣孔的形態及尺寸對面罩內壓力及風扇抽氣流量的影響 19 4-2 連接壓力感測器管路尺寸對壓力感測器反應時間影響 21 4-3 面罩上壓力量測點之選擇 21 4-4 使用不同連接管尺寸對系統阻抗及風扇效能影響之探討 22 4-5 扇葉厚度對風扇抽氣流量及反應時間的影響 22 4-6 回饋程式參數最佳設定值探討 23 4-7 BR-PEBAR之面罩內壓力測試 24 4-8 BR-PEBAR之捕集效率測試 25 4-9 BR-PEBAR之耗電量評估、噪音量測及正壓警示燈號 26 第五章 結論與建議 27 參考文獻 28 附錄-符號表 31 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 抽氣面罩 | zh_TW |
| dc.subject | 個人防護具 | zh_TW |
| dc.subject | 源頭管制 | zh_TW |
| dc.subject | 呼吸回饋 | zh_TW |
| dc.subject | Personal Protective Equipment | en |
| dc.subject | Source control | en |
| dc.subject | Suction device | en |
| dc.subject | Breath-responsive | en |
| dc.title | 呼吸回饋式個人呼出微粒捕集氣罩研發與測試 | zh_TW |
| dc.title | Development and Testing of a Breath-Responsive Personal Exhaled Breath Aerosol Receiver (BR-PEBAR) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃盛修;林志威;林文印;黃榮芳 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Hsiu Huang;Chih-Wei Lin;Wen-Yinn Lin;Rong-Fung Huang | en |
| dc.subject.keyword | 抽氣面罩,個人防護具,源頭管制,呼吸回饋, | zh_TW |
| dc.subject.keyword | Suction device,Personal Protective Equipment,Source control,Breath-responsive, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202400089 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-01-15 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 3.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
