Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91880
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor程蘊菁zh_TW
dc.contributor.advisorYen-Ching Chenen
dc.contributor.author謝青宙zh_TW
dc.contributor.authorChing-Jow Hsiehen
dc.date.accessioned2024-02-26T16:15:44Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2023-
dc.date.submitted2024-01-05-
dc.identifier.citation1. Ferri, C.P., et al., Global prevalence of dementia: a Delphi consensus study. Lancet, 2005. 366(9503): p. 2112-7.
2. Liu, C.K., et al., Prevalence of dementia in an urban area in taiwan. J Formos Med Assoc, 1996. 95(10): p. 762-8.
3. Sun, Y., et al., A nationwide survey of mild cognitive impairment and dementia, including very mild dementia, in Taiwan. PLoS One, 2014. 9(6): p. e100303.
4. Wolters, F.J., et al., Twenty-seven-year time trends in dementia incidence in Europe and the United States: The Alzheimer Cohorts Consortium. Neurology, 2020. 95(5): p. e519-e531.
5. Hampel, H. and S. Lista, Dementia: The rising global tide of cognitive impairment. Nat Rev Neurol, 2016. 12(3): p. 131-2.
6. Chen, Y.F., et al., Upregulation of Cisd2 attenuates Alzheimer's-related neuronal loss in mice. J Pathol, 2020. 250(3): p. 299-311.
7. Nobili, A., P. Krashia, and M. D'Amelio, Cisd2: a promising new target in Alzheimer's disease(dagger). J Pathol, 2020. 251(2): p. 113-116.
8. Palmer, K., et al., Neuropsychiatric predictors of progression from amnestic-mild cognitive impairment to Alzheimer's disease: the role of depression and apathy. J Alzheimers Dis, 2010. 20(1): p. 175-83.
9. Diniz, B.S., et al., Late-life depression and risk of vascular dementia and Alzheimer's disease: systematic review and meta-analysis of community-based cohort studies. Br J Psychiatry, 2013. 202(5): p. 329-35.
10. Gao, Y., et al., Depression as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Int J Geriatr Psychiatry, 2013. 28(5): p. 441-9.
11. Rosenberg, P.B., et al., The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer disease. Am J Geriatr Psychiatry, 2013. 21(7): p. 685-95.
12. Peters, M.E., et al., Neuropsychiatric symptoms as risk factors for progression from CIND to dementia: the Cache County Study. Am J Geriatr Psychiatry, 2013. 21(11): p. 1116-24.
13. Chi, S., et al., The prevalence of depression in Alzheimer's disease: a systematic review and meta-analysis. Curr Alzheimer Res, 2015. 12(2): p. 189-98.
14. Di Iulio, F., et al., Occurrence of neuropsychiatric symptoms and psychiatric disorders in mild Alzheimer's disease and mild cognitive impairment subtypes. Int Psychogeriatr, 2010. 22(4): p. 629-40.
15. Spalletta, G., et al., Neuropsychiatric symptoms and syndromes in a large cohort of newly diagnosed, untreated patients with Alzheimer disease. Am J Geriatr Psychiatry, 2010. 18(11): p. 1026-35.
16. Wang, C. and D.M. Holtzman, Bidirectional relationship between sleep and Alzheimer's disease: role of amyloid, tau, and other factors. Neuropsychopharmacology, 2020. 45(1): p. 104-120.
17. Yuen, K., et al., Association between Sleep Disturbances and Medial Temporal Lobe Volume in Older Adults with Mild Cognitive Impairment Free of Lifetime History of Depression. J Alzheimers Dis, 2019. 69(2): p. 413-421.
18. Krell-Roesch, J., et al., Cortical beta-amyloid burden, neuropsychiatric symptoms, and cognitive status: the Mayo Clinic Study of Aging. Transl Psychiatry, 2019. 9(1): p. 123.
19. Brookmeyer, R., et al., Forecasting the global burden of Alzheimer's disease. Alzheimers Dement, 2007. 3(3): p. 186-91.
20. Chen, Y.F., et al., Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev, 2009. 23(10): p. 1183-94.
21. Vermulst, M., et al., DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet, 2008. 40(4): p. 392-4.
22. Kujoth, G.C., et al., Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 2005. 309(5733): p. 481-4.
23. Liao, H.Y., B. Liao, and H.H. Zhang, CISD2 plays a role in age-related diseases and cancer. Biomed Pharmacother, 2021. 138: p. 111472.
24. Querfurth, H.W. and F.M. LaFerla, Alzheimer's disease. N Engl J Med, 2010. 362(4): p. 329-44.
25. Yeh, C.H., et al., Hesperetin promotes longevity and delays aging via activation of Cisd2 in naturally aged mice. J Biomed Sci, 2022. 29(1): p. 53.
26. Chui, H.C., et al., Vascular risk factors and Alzheimer's disease: are these risk factors for plaques and tangles or for concomitant vascular pathology that increases the likelihood of dementia? An evidence-based review. Alzheimers Res Ther, 2012. 4(1): p. 1.
27. Folstein, M.F., S.E. Folstein, and P.R. McHugh, "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 1975. 12(3): p. 189-98.
28. McKhann, G., et al., Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 1984. 34(7): p. 939-44.
29. Pfeiffer, E., A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J Am Geriatr Soc, 1975. 23(10): p. 433-41.
30. Gabriel, S.B., et al., The structure of haplotype blocks in the human genome. Science, 2002. 296(5576): p. 2225-9.
31. Stram, D.O., et al., Modeling and E-M estimation of haplotype-specific relative risks from genotype data for a case-control study of unrelated individuals. Hum Hered, 2003. 55(4): p. 179-90.
32. Chapman, J., et al., A simple and efficient method for apolipoprotein E genotype determination. Neurology, 1996. 46(5): p. 1484-5.
33. de la Torre, J.C., The vascular hypothesis of Alzheimer's disease: bench to bedside and beyond. Neurodegener Dis, 2010. 7(1-3): p. 116-21.
34. Guan, J.W., et al., No association between hypertension and risk for Alzheimer's disease: a meta-analysis of longitudinal studies. J Alzheimers Dis, 2011. 27(4): p. 799-807.
35. Hajjar, I.M., et al., Angiotensin converting enzyme inhibitors and cognitive and functional decline in patients with Alzheimer's disease: an observational study. Am J Alzheimers Dis Other Demen, 2008. 23(1): p. 77-83.
36. Gauthreaux, K., et al., Concordance of Clinical Alzheimer Diagnosis and Neuropathological Features at Autopsy. J Neuropathol Exp Neurol, 2020. 79(5): p. 465-473.
37. Jie, C., et al., Tauvid: The First FDA-Approved PET Tracer for Imaging Tau Pathology in Alzheimer's Disease. Pharmaceuticals (Basel), 2021. 14(2).
38. Blacker, D., et al., Reliability and validity of NINCDS-ADRDA criteria for Alzheimer's disease. The National Institute of Mental Health Genetics Initiative. Arch Neurol, 1994. 51(12): p. 1198-204.
39. Freedman, M.L., et al., Assessing the impact of population stratification on genetic association studies. Nat Genet, 2004. 36(4): p. 388-93.
40. El Fakiri, F., M.A. Bruijnzeels, and A.W. Hoes, No evidence for marked ethnic differences in accuracy of self-reported diabetes, hypertension, and hypercholesterolemia. J Clin Epidemiol, 2007. 60(12): p. 1271-9.
41. Deschaintre, Y., et al., Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology, 2009. 73(9): p. 674-80.
42. Gauderman, W.J., Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol, 2002. 155(5): p. 478-84.
43. Erkinjuntti, T., et al., Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J Am Geriatr Soc, 1987. 35(5): p. 412-6.
44. Nasreddine, Z.S., et al., The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 2005. 53(4): p. 695-9.
45. Brayne, C., Interpretation of dementia diagnosis and treatment trends in the UK over time. Lancet Public Health, 2017. 2(3): p. e128-e129.
46. Hebert, L.E., et al., Annual incidence of Alzheimer disease in the United States projected to the years 2000 through 2050. Alzheimer Dis Assoc Disord, 2001. 15(4): p. 169-73.
47. Cherbuin, N., S. Kim, and K.J. Anstey, Dementia risk estimates associated with measures of depression: a systematic review and meta-analysis. BMJ Open, 2015. 5(12): p. e008853.
48. Petersen, R.C., et al., Mild cognitive impairment: clinical characterization and outcome. Arch Neurol, 1999. 56(3): p. 303-8.
49. Sperling, R.A., et al., Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 2011. 7(3): p. 280-92.
50. Sachdev, P.S., et al., The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration. PLoS One, 2015. 10(11): p. e0142388.
51. Cardinali, D.P., et al., Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegener Dis, 2012. 1(3): p. 280-91.
52. Petersen, R.C., Mild cognitive impairment as a diagnostic entity. J Intern Med, 2004. 256(3): p. 183-94.
53. Panza, F., et al., Impact of depressive symptoms on the rate of progression to dementia in patients affected by mild cognitive impairment. The Italian Longitudinal Study on Aging. Int J Geriatr Psychiatry, 2008. 23(7): p. 726-34.
54. Ravaglia, G., et al., Prevalent depressive symptoms as a risk factor for conversion to mild cognitive impairment in an elderly Italian cohort. Am J Geriatr Psychiatry, 2008. 16(10): p. 834-43.
55. Mourao, R.J., et al., Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: systematic review and meta-analysis. Int J Geriatr Psychiatry, 2016. 31(8): p. 905-11.
56. Makizako, H., et al., Comorbid Mild Cognitive Impairment and Depressive Symptoms Predict Future Dementia in Community Older Adults: A 24-Month Follow-Up Longitudinal Study. J Alzheimers Dis, 2016. 54(4): p. 1473-1482.
57. Modrego, P.J. and J. Ferrandez, Depression in patients with mild cognitive impairment increases the risk of developing dementia of Alzheimer type: a prospective cohort study. Arch Neurol, 2004. 61(8): p. 1290-3.
58. Vaughan, L., A.L. Corbin, and J.S. Goveas, Depression and frailty in later life: a systematic review. Clin Interv Aging, 2015. 10: p. 1947-58.
59. Blazer, D.G., Depression in late life: review and commentary. J Gerontol A Biol Sci Med Sci, 2003. 58(3): p. 249-65.
60. Ismail, Z., et al., Prevalence of Depression in Patients With Mild Cognitive Impairment: A Systematic Review and Meta-analysis. JAMA Psychiatry, 2017. 74(1): p. 58-67.
61. Krell-Roesch, J., et al., Association Between Neuropsychiatric Symptoms and Functional Change in Older Non-Demented Adults: Mayo Clinic Study of Aging. J Alzheimers Dis, 2020. 78(3): p. 911-917.
62. Bateman, R.J., et al., Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med, 2012. 367(9): p. 795-804.
63. Dubois, B., et al., Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement, 2016. 12(3): p. 292-323.
64. Jack, C.R., Jr., et al., NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement, 2018. 14(4): p. 535-562.
65. Mormino, E.C., et al., Early and late change on the preclinical Alzheimer's cognitive composite in clinically normal older individuals with elevated amyloid beta. Alzheimers Dement, 2017. 13(9): p. 1004-1012.
66. Gatchel, J.R., et al., Depressive Symptoms and Tau Accumulation in the Inferior Temporal Lobe and Entorhinal Cortex in Cognitively Normal Older Adults: A Pilot Study. J Alzheimers Dis, 2017. 59(3): p. 975-985.
67. Donovan, N.J., et al., Longitudinal Association of Amyloid Beta and Anxious-Depressive Symptoms in Cognitively Normal Older Adults. Am J Psychiatry, 2018. 175(6): p. 530-537.
68. Reynolds, G.P., et al., 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol, 1995. 114(5): p. 993-8.
69. Arjona, A.A., et al., Effect of a 5-HT(2C) serotonin agonist, dexnorfenfluramine, on amyloid precursor protein metabolism in guinea pigs. Brain Res, 2002. 951(1): p. 135-40.
70. Sheline, Y.I., et al., Reply to comment on "An antidepressant decreases CSF Abeta production in healthy individuals and in transgenic AD mice". Sci Transl Med, 2014. 6(268): p. 268lr4.
71. Madeira, C., et al., Blood Levels of Glutamate and Glutamine in Recent Onset and Chronic Schizophrenia. Front Psychiatry, 2018. 9: p. 713.
72. Steenland, K., et al., Late-life depression as a risk factor for mild cognitive impairment or Alzheimer's disease in 30 US Alzheimer's disease centers. J Alzheimers Dis, 2012. 31(2): p. 265-75.
73. Hermida, A.P., et al., The association between late-life depression, mild cognitive impairment and dementia: is inflammation the missing link? Expert Rev Neurother, 2012. 12(11): p. 1339-50.
74. Hashem, A.H., et al., Late versus Early Onset Depression in Elderly Patients: Vascular Risk and Cognitive Impairment. Curr Aging Sci, 2017. 10(3): p. 211-216.
75. Sutter, C., et al., Sleep quality and cognitive function in healthy old age: the moderating role of subclinical depression. Neuropsychology, 2012. 26(6): p. 768-75.
76. Cuijpers, P., et al., Psychotherapy for subclinical depression: meta-analysis. Br J Psychiatry, 2014. 205(4): p. 268-74.
77. Kuhn, E., et al., Cross-sectional and longitudinal characterization of SCD patients recruited from the community versus from a memory clinic: subjective cognitive decline, psychoaffective factors, cognitive performances, and atrophy progression over time. Alzheimers Res Ther, 2019. 11(1): p. 61.
78. Prado, C.E., S. Watt, and S.F. Crowe, A meta-analysis of the effects of antidepressants on cognitive functioning in depressed and non-depressed samples. Neuropsychol Rev, 2018. 28(1): p. 32-72.
79. Bonnin, C.M., et al., Restoring functioning in bipolar disorder: functional remediation. Harv Rev Psychiatry, 2014. 22(6): p. 326-30.
80. Volkert, J., et al., Evidence for cognitive subgroups in bipolar disorder and the influence of subclinical depression and sleep disturbances. Eur Neuropsychopharmacol, 2015. 25(2): p. 192-202.
81. Perrotin, A., et al., Subjective cognitive decline in cognitively normal elders from the community or from a memory clinic: Differential affective and imaging correlates. Alzheimers Dement, 2017. 13(5): p. 550-560.
82. Artero, S., et al., Risk profiles for mild cognitive impairment and progression to dementia are gender specific. J Neurol Neurosurg Psychiatry, 2008. 79(9): p. 979-84.
83. Wolkove, N., et al., Sleep and aging: 1. Sleep disorders commonly found in older people. CMAJ, 2007. 176(9): p. 1299-304.
84. Yaffe, K., C.M. Falvey, and T. Hoang, Connections between sleep and cognition in older adults. Lancet Neurol, 2014. 13(10): p. 1017-28.
85. Sivertsen, B., et al., Insomnia as a risk factor for ill health: results from the large population-based prospective HUNT Study in Norway. J Sleep Res, 2014. 23(2): p. 124-32.
86. Yannakoulia, M., M. Kontogianni, and N. Scarmeas, Cognitive health and Mediterranean diet: just diet or lifestyle pattern? Ageing Res Rev, 2015. 20: p. 74-8.
87. Stickgold, R., Sleep-dependent memory consolidation. Nature, 2005. 437(7063): p. 1272-8.
88. Havekes, R., C.G. Vecsey, and T. Abel, The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal, 2012. 24(6): p. 1251-60.
89. Kang, J.E., et al., Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science, 2009. 326(5955): p. 1005-7.
90. Holth, J.K., et al., The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science, 2019. 363(6429): p. 880-884.
91. Yulug, B., L. Hanoglu, and E. Kilic, Does sleep disturbance affect the amyloid clearance mechanisms in Alzheimer's disease? Psychiatry Clin Neurosci, 2017. 71(10): p. 673-677.
92. Spinedi, E. and D.P. Cardinali, Neuroendocrine-Metabolic Dysfunction and Sleep Disturbances in Neurodegenerative Disorders: Focus on Alzheimer's Disease and Melatonin. Neuroendocrinology, 2019. 108(4): p. 354-364.
93. Ju, Y.E., B.P. Lucey, and D.M. Holtzman, Sleep and Alzheimer disease pathology--a bidirectional relationship. Nat Rev Neurol, 2014. 10(2): p. 115-9.
94. Kim, K., et al., Relationships of Physical Activity, Depression, and Sleep with Cognitive Function in Community-Dwelling Older Adults. Int J Environ Res Public Health, 2022. 19(23).
95. Bao, Y.P., et al., Cooccurrence and bidirectional prediction of sleep disturbances and depression in older adults: Meta-analysis and systematic review. Neurosci Biobehav Rev, 2017. 75: p. 257-273.
96. Fang, H., et al., Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J Cell Mol Med, 2019. 23(4): p. 2324-2332.
97. Chen, P.L., et al., Risk of dementia in patients with insomnia and long-term use of hypnotics: a population-based retrospective cohort study. PLoS One, 2012. 7(11): p. e49113.
98. Spira, A.P., et al., Self-reported sleep and beta-amyloid deposition in community-dwelling older adults. JAMA Neurol, 2013. 70(12): p. 1537-43.
99. Christensen, H., et al., Age differences in depression and anxiety symptoms: a structural equation modelling analysis of data from a general population sample. Psychol Med, 1999. 29(2): p. 325-39.
100. Cole, M.G. and N. Dendukuri, Risk factors for depression among elderly community subjects: a systematic review and meta-analysis. Am J Psychiatry, 2003. 160(6): p. 1147-56.
101. Perlis, M.L., et al., Insomnia as a risk factor for onset of depression in the elderly. Behav Sleep Med, 2006. 4(2): p. 104-13.
102. Fjell, A.M., et al., Neuroinflammation and Tau Interact with Amyloid in Predicting Sleep Problems in Aging Independently of Atrophy. Cereb Cortex, 2018. 28(8): p. 2775-2785.
103. Butters, M.A., et al., Executive functioning, illness course, and relapse/recurrence in continuation and maintenance treatment of late-life depression: is there a relationship? Am J Geriatr Psychiatry, 2004. 12(4): p. 387-94.
104. Ganguli, M., et al., How much do depressive symptoms affect cognition at the population level? The Monongahela-Youghiogheny Healthy Aging Team (MYHAT) study. Int J Geriatr Psychiatry, 2009. 24(11): p. 1277-84.
105. Gatchel, J.R., et al., Longitudinal Association of Depression Symptoms With Cognition and Cortical Amyloid Among Community-Dwelling Older Adults. JAMA Netw Open, 2019. 2(8): p. e198964.
106. Tsai, C.F., et al., Psychometrics of the Montreal Cognitive Assessment (MoCA) and its subscales: validation of the Taiwanese version of the MoCA and an item response theory analysis. Int Psychogeriatr, 2012. 24(4): p. 651-8.
107. Radloff, L.S. and D.S. Rae, Susceptibility and precipitating factors in depression: sex differences and similarities. J Abnorm Psychol, 1979. 88(2): p. 174-81.
108. Lee, J.S., et al., Persistent mild cognitive impairment in geriatric depression. Int Psychogeriatr, 2007. 19(1): p. 125-35.
109. Reischies, F.M. and P. Neu, Comorbidity of mild cognitive disorder and depression--a neuropsychological analysis. Eur Arch Psychiatry Clin Neurosci, 2000. 250(4): p. 186-93.
110. Sink, K.M., et al., Effect of a 24-Month Physical Activity Intervention vs Health Education on Cognitive Outcomes in Sedentary Older Adults: The LIFE Randomized Trial. JAMA, 2015. 314(8): p. 781-90.
111. Dearborn-Tomazos, J.L., et al., Association of Dietary Patterns in Midlife and Cognitive Function in Later Life in US Adults Without Dementia. JAMA Netw Open, 2019. 2(12): p. e1916641.
112. Hanseeuw, B.J., et al., Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol, 2019. 76(8): p. 915-924.
113. Buysse, D.J., et al., The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res, 1989. 28(2): p. 193-213.
114. Johns, M.W., A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep, 1991. 14(6): p. 540-5.
115. Ghebranious, N., et al., Detection of ApoE E2, E3 and E4 alleles using MALDI-TOF mass spectrometry and the homogeneous mass-extend technology. Nucleic Acids Res, 2005. 33(17): p. e149.
116. Enderami, A., M. Zarghami, and H. Darvishi-Khezri, The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review. Neurol Sci, 2018. 39(10): p. 1667-1675.
117. Kim, J.M., et al., Folate, vitamin b(12), and homocysteine as risk factors for cognitive decline in the elderly. Psychiatry Investig, 2008. 5(1): p. 36-40.
118. Tsolaki, M., et al., Prevalence of Dementia, Depression, and Mild Cognitive Impairment in a Rural Area of the Island of Crete, Greece. Am J Alzheimers Dis Other Demen, 2017. 32(5): p. 252-264.
119. Nie, H., et al., The prevalence of mild cognitive impairment about elderly population in China: a meta-analysis. Int J Geriatr Psychiatry, 2011. 26(6): p. 558-63.
120. Butters, M.A., et al., The nature and determinants of neuropsychological functioning in late-life depression. Arch Gen Psychiatry, 2004. 61(6): p. 587-95.
121. O'Shea, D.M., et al., Examining the association between late-life depressive symptoms, cognitive function, and brain volumes in the context of cognitive reserve. Int J Geriatr Psychiatry, 2015. 30(6): p. 614-22.
122. McLaren, M.E., et al., Impact of Education on Memory Deficits in Subclinical Depression. Arch Clin Neuropsychol, 2015. 30(5): p. 387-93.
123. Gonzales, M.M., et al., Cortical Atrophy is Associated with Accelerated Cognitive Decline in Mild Cognitive Impairment with Subsyndromal Depression. Am J Geriatr Psychiatry, 2017. 25(9): p. 980-991.
124. Chuang, Y.F., et al., Urban-rural differences in the prevalence and correlates of mild cognitive impairment in community-dwelling older adults in Taiwan: The EMCIT study. J Formos Med Assoc, 2021. 120(9): p. 1749-1757.
125. Ramos, A.R., et al., Association between sleep duration and the mini-mental score: the Northern Manhattan study. J Clin Sleep Med, 2013. 9(7): p. 669-73.
126. Blackwell, T., et al., Association of sleep characteristics and cognition in older community-dwelling men: the MrOS sleep study. Sleep, 2011. 34(10): p. 1347-56.
127. Winer, J.R., et al., Association of Short and Long Sleep Duration With Amyloid-beta Burden and Cognition in Aging. JAMA Neurol, 2021. 78(10): p. 1187-1196.
128. Kyle, S.D., et al., Sleep and cognitive performance: cross-sectional associations in the UK Biobank. Sleep Med, 2017. 38: p. 85-91.
129. Lucey, B.P., et al., Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer's disease. Brain, 2021. 144(9): p. 2852-2862.
130. Lucey, B.P. and R.J. Bateman, Amyloid-beta diurnal pattern: possible role of sleep in Alzheimer's disease pathogenesis. Neurobiol Aging, 2014. 35 Suppl 2: p. S29-34.
131. Saez-Fonseca, J.A., L. Lee, and Z. Walker, Long-term outcome of depressive pseudodementia in the elderly. J Affect Disord, 2007. 101(1-3): p. 123-9.
132. Kobayashi, T. and S. Kato, Depression-dementia medius: between depression and the manifestation of dementia symptoms. Psychogeriatrics, 2011. 11(3): p. 177-82.
133. Porter, V.R., W.G. Buxton, and A.Y. Avidan, Sleep, Cognition and Dementia. Curr Psychiatry Rep, 2015. 17(12): p. 97.
134. Carvalho, D.Z., et al., Association of Excessive Daytime Sleepiness With Longitudinal beta-Amyloid Accumulation in Elderly Persons Without Dementia. JAMA Neurol, 2018. 75(6): p. 672-680.
135. Smagula, S.F., et al., Trajectories of daytime sleepiness and their associations with dementia incidence. J Sleep Res, 2020. 29(6): p. e12952.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91880-
dc.description.abstract目的
這篇論文包含兩部分。第一部分(即論文第二章)的研究旨在探討CISD2 (CDGSH iron sulfur domain 2) 基因的多型性變異與罹患阿茲海默症 (Alzheimer's disease, AD) 風險之間的關聯。
第二部分(即論文第三章)的研究旨在探討居住在社區的臺灣老年人的憂鬱和睡眠與認知之間的關係。

方法
第一部分:這是一項病例對照研究。於2007年至2010年期間,從臺灣三所教學醫院總共招募了276名AD患者;同期從老年健檢和醫院志工中招募460名對照者。所有參與者年齡均在60歲或以上。從CISD2基因中選擇兩個單倍型標記的單核苷酸多型性 (haplotype-tagging single nucleotide polymorphism, htSNP) (rs223330和rs223331),以檢視它們的多型性與失智風險之間的關聯,以及探究脂蛋白酶元 (apolipoprotein E, APOE) ε4狀態、性別、高血壓和第二型糖尿病如何影響其關聯。
第二部分:這個為期四年的前瞻性世代研究 (2015-2019) 包括379名65歲或以上的參與者,這些參與者來自台大醫院的年度老年健康檢查,之後每兩年進行一次追蹤。使用經過驗證的神經心理學測驗評估整體和領域認知功能。自變項部分,使用流行病學研究中心憂鬱 (CES-D) 量表評估憂鬱症狀,以匹茲堡睡眠品質指數 (PSQI) 評估睡眠品質,採用Epworth嗜睡量表 (ESS) 評估白天過度嗜睡。廣義線性混合模型用於探索亞臨床憂鬱症狀和睡眠與認知的關聯,並調整重要的共變項。並依睡眠變項進行分層分析。

結果
第一部分:rs223330 變異與AD風險無關 [TT 比 CC:調整勝算比 (AOR)=0.98,95% 信賴區間 (CI)=0.59-1.62;TC 比 CC:AOR=0.72,95% CI=0.47-1.11]。 rs223331 也觀察到類似的結果(AA 比 TT:AOR=1.12;AT 比 TT:AOR=0.99)。此外,高血壓顯著影響了rs223331與AD風險之間的關聯(P=0.005)。CISD2有三種常見的單倍型 (TT,CA,CT) (累積頻率=99.8%)。而CISD2常見單倍型與AD風險無關。
第二部分:隨著時間的推移,兩年後追蹤,發現亞臨床憂鬱症狀與整體認知 (β = -1.25, P=0.007) 和執行功能 (Trail Making Test A: β = -0.35, P=0.007; Trail Making Test B: β = -0.46, P=0.006) 表現不佳相關。睡眠品質差(PSQI分數較高)與記憶力差相關 (β = -0.04, P=0.04)。白天過度嗜睡 (ESS分數較高)與記憶力 (β = -0.03, P=0.02) 和執行功能 (β = -0.02, P=0.002) 表現不佳有關。在基線時較好的睡眠品質和白天沒有過度嗜睡,與較好的記憶力相關。

結論
第一部分:我們的研究結果顯示CISD2 單倍型標記的單核苷酸多型性與AD風險無關。
第二部分:亞臨床憂鬱症狀、較差的睡眠品質量和白天過度嗜睡,與認知領域 (主要是記憶和執行功能) 的障礙相關。本研究的結果對預防和治療策略具有公共衛生意義,可以治療亞臨床憂鬱症狀以預防認知功能的下降,以及使用適當的認知功能測驗來篩檢處於失智症臨床前階段有睡眠障礙之老年人。

總結
第一部分的研究結果並未如期待地與研究假說相符。第二部分的研究結果與我們的研究假設相符。
第一部分研究的貢獻在於發現CISD2多型性可能並未參與阿茲海默症的致病機轉。第二部分研究結果的貢獻在於對認知功能障礙的預防和治療具有公共衛生意涵,可以治療亞臨床憂鬱症狀以預防認知功能的下降,以及使用適當的認知功能測驗來篩檢處於失智症臨床前階段有睡眠障礙之老年人。
第一部分研究的主要局限性在於樣本數較小;因此,未來需要更大規模的研究來確認我們的發現。第二部分世代研究的局限性可能是樣本數相對較小;但與全世界過去相似議題的研究相比,本研究的參與者已明顯相對較多。且此世代也仍在追蹤中,可利於未來後續研究。
zh_TW
dc.description.abstractObjectives
This dissertation includes two parts. Part 1 (i.e., chapter 2 in the dissertation) aimed to
explore the association between sequence variants of the CISD2 (CDGSH iron sulfur domain 2) gene and risk for Alzheimer’s disease (AD). Part 2 (i.e., chapter 3 in the dissertation) aimed to explore the association of subclinical depressive symptoms and sleep with cognition in community-dwelling Taiwanese older adults.

Methods
Part 1: This was a case-control study. A total of 276 AD patients were recruited from three teaching hospitals in Taiwan from 2007 to 2010; 460 controls were recruited from elderly health checkups and volunteers of the hospital during the same period of time. All participants aged 60 and older. Two haplotype-tagging single nucleotide polymorphisms (htSNPs), rs223330 and rs223331, were selected from the CISD2 gene to test the association between their polymorphisms and the risk of dementia, and how APOE ε4 status, gender, hypertension and type 2 diabetes mellitus modify this association.
Part 2: This four-year prospective cohort study (2015-2019) included 379 participants aged 65 years or older from the annual senior health checkup program at National Taiwan University Hospital who were followed up two years later. Global and domain cognitive functions were assessed using validated neuropsychological tests. Depressive symptoms were evaluated using the Center for Epidemiologic Studies Depression (CES-D) Scale. Sleep quality was evaluated using the Pittsburg Sleep Quality Index (PSQI). Excessive daytime sleepiness was assessed using the Epworth Sleepiness Scale (ESS). Generalized linear mixed models were used to explore the associations of subclinical depressive symptoms and sleep variables with cognition, adjusting for important covariates. Stratification analyses were performed using the sleep variables.

Results
Part 1: The rs223330 variant carriers were not associated with the risk of AD [TT vs. CC: adjusted odds ratio (AOR)=0.98, 95% confidence interval (CI)=0.59-1.62; TC vs. CC: AOR=0.72, 95% CI=0.47-1.11]. Similar findings was observed for rs223331 (AA vs. TT: AOR=1.12; AT vs. TT: AOR=0.99). In addition, hypertension significantly modified the association between rs223331 and the risk of AD (P=0.005).Three common haplotypes (frequency=99.8%) were observed for CISD2. CISD2 common haplotypes were not associated with the risk of AD.
Part 2: Over time, depressive symptoms were associated with poor performance of global cognition (β = -1.25, P=0.007) and executive function (Trail Making Test A: β = -0.35, P=0.007; Trail Making Test B: β = -0.46, P=0.006). Poor sleep quality (elevated PSQI score) was associated with poor memory performance (β = -0.04, P=0.04). Excessive daytime sleepiness (elevated ESS score) was associated with poor performance of memory (β = -0.03, P=0.02) and executive function (β = -0.02, P=0.002). At baseline, better sleep quality and no excessive daytime sleepiness were associated with better memory performance.

Conclusions
Part 1: The findings suggested that CISD2 htSNPs were not associated with AD risk. Part 2: Subclinical depressive symptoms, worse sleep quality, and excessive daytime sleepiness were differentially associated with impairment of cognitive domains.

Summary
The results of Part 1 were not consistent with the research hypotheses as expected. The contribution of Part 1 is that CISD2 polymorphism may not be involved in the pathogenesis of AD. The limitation of Part 1 is the small sample size; therefore, future larger studies are needed to confirm our findings.
The results of Part 2 were consistent with our hypotheses. The contribution of Part 2 is public health implications for the prevention of cognitive decline by treatment of subclinical depression, and the use of cognitive tests suitable for screening for older adults with sleep disturbances in the preclinical stage of dementia. The limitation of Part 2 may be that the sample size is relatively small; however, compared with previous studies on similar topics around the world, the number of participants in this study is significantly large. This cohort is still being followed up, which can benefit future research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:15:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:15:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書
誌謝……………………………………………………………………………………..i
中文摘要.........................................................................................................................ii
英文摘要…………………………………………………………………………………..v
目次…………..............................................................................................................viii
圖次….............................................................................................................................x
表次…............................................................................................................................xi
第一章 緒論……..…………………………………………………………………….1
第二章 CISD2基因的多型性變異與罹患阿茲海默症的風險………………...……3
第一節 簡介………...................................................................................................4
第二節 材料與方法...................................................................................................6
2.1 研究設計和參與者.............................................................................................6
2.2 阿茲海默症的評估.............................................................................................6
2.3 單核苷酸多型性的選擇和基因型檢測.............................................................7
2.4 統計分析.............................................................................................................8
第三節 結果...............................................................................................................9
3.1 研究群體特徵.....................................................................................................9
3.2 單倍型標記單核苷酸多型性………………………………………………….9
3.3 CISD2的單倍型標記單核苷酸多型性與阿茲海默症的關聯..........................9
3.4 CISD2的常見單倍型與阿茲海默症的關聯…………………………………10
3.5 分層分析……………………………………………………………….…..…10
第四節 討論.............................................................................................................11
第五節 結論.............................................................................................................13
第三章 老年人的憂鬱和睡眠與認知之間的關聯……………………………….…14
第一節 簡介………….............................................................................................15
1.1 人口老化與失智症...........................................................................................15
1.2 輕度認知障礙及失智症的預防.......................................................................15
1.3 老年憂鬱和認知障礙.......................................................................................16
1.4 睡眠障礙與認知障礙.......................................................................................17
1.5 聯結睡眠與認知之間的潛在機制...................................................................18
1.6 憂鬱和睡眠為與Aβ相關的認知退化之潛在可改變因素............................18
1.7 老年人的憂鬱與睡眠.......................................................................................19
1.8 研究缺口...........................................................................................................19
1.9 研究目的...........................................................................................................19
第二節 材料與方法.................................................................................................20
2.1 研究設計和參與者...........................................................................................20
2.2 認知功能的測量...............................................................................................20
2.3 憂鬱症狀的測量...............................................................................................21
2.4 睡眠品質和白天過度嗜睡的評估...................................................................21
2.5 基因型檢測.......................................................................................................22
2.6 共變項...............................................................................................................22
2.7統計分析............................................................................................................23
第三節 結果............................................................................................................24
3.1 研究群體特徵...................................................................................................24
3.2 憂鬱相關變項、睡眠變項和認知變項之間的相關性...................................25
3.3 憂鬱症狀與認知功能的關聯...........................................................................25
3.4 睡眠相關變項與認知表現之間的關聯...........................................................26
3.5 依睡眠相關變項進行分層分析……………………………………………...28
第四節 討論............................................................................................................29
第五節 結論............................................................................................................33
第四章 總結................................................................................................................34
圖..................................................................................................................................35
表..................................................................................................................................37
參考文獻......................................................................................................................55
附錄..............................................................................................................................65
-
dc.language.isozh_TW-
dc.subject單倍型zh_TW
dc.subject阿茲海默症zh_TW
dc.subject睡眠zh_TW
dc.subject亞臨床憂鬱症狀zh_TW
dc.subject認知zh_TW
dc.subject單核苷酸多型性zh_TW
dc.subjectsleepen
dc.subjectAlzheimer’s diseaseen
dc.subjectCISD2en
dc.subjecthaplotypeen
dc.subjectsingle nucleotide polymorphismen
dc.subjectcognitionen
dc.subjectsubclinical depressive symptomsen
dc.title老年人基因多型性、憂鬱、睡眠與認知間的關聯性研究zh_TW
dc.titleAssociation of Genetic Polymorphisms, Depression, and Sleep with Cognition in the Older Adultsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳人豪;丘政民;黃宗正;曾翎威zh_TW
dc.contributor.oralexamcommitteeJen-Hau Chen;Jeng-Min Chiou;Tzung-Jeng Hwang;Ling-Wei Chenen
dc.subject.keyword阿茲海默症,單核苷酸多型性,單倍型,認知,亞臨床憂鬱症狀,睡眠,zh_TW
dc.subject.keywordAlzheimer’s disease,CISD2,haplotype,single nucleotide polymorphism,cognition,subclinical depressive symptoms,sleep,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202304556-
dc.rights.note未授權-
dc.date.accepted2024-01-05-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved