Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏若芳zh_TW
dc.contributor.advisorRuoh-Fang Yenen
dc.contributor.author柯冠吟zh_TW
dc.contributor.authorKuan-Yin Koen
dc.date.accessioned2024-02-26T16:15:07Z-
dc.date.available2024-02-27-
dc.date.copyright2024-02-26-
dc.date.issued2024-
dc.date.submitted2024-01-17-
dc.identifier.citation1.Shaw LJ, Hage FG, Berman DS, Hachamovitch R, Iskandrian A. Prognosis in the era of comparative effectiveness research: where is nuclear cardiology now and where should it be? J Nucl Cardiol 2012;19(5):1026-43. DOI: 10.1007/s12350-012-9593-y.
2.Dorbala S, Di Carli MF, Beanlands RS, et al. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol 2013;61(2):176-84. DOI: 10.1016/j.jacc.2012.09.043.
3.Di Carli MF. Future of Radionuclide Myocardial Perfusion Imaging: Transitioning from SPECT to PET. J Nucl Med 2023;64(Suppl 2):3S-10S. DOI: 10.2967/jnumed.122.264864.
4.Acampa W, Gaemperli O, Gimelli A, et al. Role of risk stratification by SPECT, PET, and hybrid imaging in guiding management of stable patients with ischaemic heart disease: expert panel of the EANM cardiovascular committee and EACVI. Eur Heart J Cardiovasc Imaging 2015;16(12):1289-98. DOI: 10.1093/ehjci/jev093.
5.Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020;41(3):407-477. DOI: 10.1093/eurheartj/ehz425.
6.Mannarino T, Assante R, D'Antonio A, Zampella E, Cuocolo A, Acampa W. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification. Cardiol Clin 2023;41(2):141-150. DOI: 10.1016/j.ccl.2023.01.003.
7.Ruddy TD, Tavoosi A, Taqueti VR. Role of nuclear cardiology in diagnosis and risk stratification of coronary microvascular disease. J Nucl Cardiol 2023;30(4):1327-1340. DOI: 10.1007/s12350-022-03051-z.
8.Zampella E, Acampa W, Assante R, et al. Combined evaluation of regional coronary artery calcium and myocardial perfusion by (82)Rb PET/CT in predicting lesion-related outcome. Eur J Nucl Med Mol Imaging 2020;47(7):1698-1704. DOI: 10.1007/s00259-019-04534-x.
9.Taqueti VR, Di Carli MF. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. J Am Coll Cardiol 2018;72(21):2625-2641. DOI: 10.1016/j.jacc.2018.09.042.
10.Gdowski MA, Murthy VL, Doering M, Monroy-Gonzalez AG, Slart R, Brown DL. Association of Isolated Coronary Microvascular Dysfunction With Mortality and Major Adverse Cardiac Events: A Systematic Review and Meta-Analysis of Aggregate Data. J Am Heart Assoc 2020;9(9):e014954. DOI: 10.1161/JAHA.119.014954.
11.Divakaran S, Caron JP, Zhou W, et al. Coronary vasomotor dysfunction portends worse outcomes in patients with breast cancer. J Nucl Cardiol 2022;29(6):3072-3081. DOI: 10.1007/s12350-021-02825-1.
12.Groarke JD, Divakaran S, Nohria A, et al. Coronary vasomotor dysfunction in cancer survivors treated with thoracic irradiation. J Nucl Cardiol 2021;28(6):2976-2987. DOI: 10.1007/s12350-020-02255-5.
13.Prior JO, Allenbach G, Valenta I, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39(6):1037-47. DOI: 10.1007/s00259-012-2082-3.
14.Renaud JM, DaSilva JN, Beanlands RS, DeKemp RA. Characterizing the normal range of myocardial blood flow with (8)(2)rubidium and (1)(3)N-ammonia PET imaging. J Nucl Cardiol 2013;20(4):578-91. DOI: 10.1007/s12350-013-9721-3.
15.Velleca A, Shullo MA, Dhital K, et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J Heart Lung Transplant 2023;42(5):e1-e141. DOI: 10.1016/j.healun.2022.10.015.
16.Chih S, Wiefels CC, Beanlands RSB. PET Assessment of Cardiac Allograft Vasculopathy. Semin Nucl Med 2021;51(4):349-356. DOI: 10.1053/j.semnuclmed.2020.12.010.
17.Shiraishi S, Sakamoto F, Tsuda N, et al. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera. Circ J 2015;79(3):623-31. DOI: 10.1253/circj.CJ-14-0932.
18.Shiraishi S, Tsuda N, Sakamoto F, et al. Clinical usefulness of quantification of myocardial blood flow and flow reserve using CZT-SPECT for detecting coronary artery disease in patients with normal stress perfusion imaging. J Cardiol 2020;75(4):400-409. DOI: 10.1016/j.jjcc.2019.09.006.
19.Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac Energy Metabolism in Heart Failure. Circ Res 2021;128(10):1487-1513. DOI: 10.1161/CIRCRESAHA.121.318241.
20.Kolwicz SC, Jr., Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013;113(5):603-16. DOI: 10.1161/CIRCRESAHA.113.302095.
21.Shao D, Tian R. Glucose Transporters in Cardiac Metabolism and Hypertrophy. Compr Physiol 2015;6(1):331-51. DOI: 10.1002/cphy.c150016.
22.Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023. DOI: 10.1038/s41569-023-00887-x.
23.Neubauer S. The failing heart--an engine out of fuel. N Engl J Med 2007;356(11):1140-51. DOI: 10.1056/NEJMra063052.
24.Murphy SP, Ibrahim NE, Januzzi JL, Jr. Heart Failure With Reduced Ejection Fraction: A Review. JAMA 2020;324(5):488-504. DOI: 10.1001/jama.2020.10262.
25.Phan TT, Abozguia K, Nallur Shivu G, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol 2009;54(5):402-9. DOI: 10.1016/j.jacc.2009.05.012.
26.Mahmod M, Pal N, Rayner J, et al. The interplay between metabolic alterations, diastolic strain rate and exercise capacity in mild heart failure with preserved ejection fraction: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2018;20(1):88. DOI: 10.1186/s12968-018-0511-6.
27.Burrage MK, Hundertmark M, Valkovic L, et al. Energetic Basis for Exercise-Induced Pulmonary Congestion in Heart Failure With Preserved Ejection Fraction. Circulation 2021;144(21):1664-1678. DOI: 10.1161/CIRCULATIONAHA.121.054858.
28.Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest 2018;128(9):3716-3726. DOI: 10.1172/JCI120849.
29.Goland S, Weinstein JM, Zalik A, et al. Angiogenic Imbalance and Residual Myocardial Injury in Recovered Peripartum Cardiomyopathy Patients. Circ Heart Fail 2016;9(11). DOI: 10.1161/CIRCHEARTFAILURE.116.003349.
30.Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006;20(24):3347-65. DOI: 10.1101/gad.1492806.
31.Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 2006;47(5):887-93. DOI: 10.1161/01.HYP.0000215207.54689.31.
32.Ritterhoff J, Young S, Villet O, et al. Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis. Circ Res 2020;126(2):182-196. DOI: 10.1161/CIRCRESAHA.119.315483.
33.Shao D, Villet O, Zhang Z, et al. Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nat Commun 2018;9(1):2935. DOI: 10.1038/s41467-018-05362-7.
34.Zhou B, Caudal A, Tang X, et al. Upregulation of mitochondrial ATPase inhibitory factor 1 (ATPIF1) mediates increased glycolysis in mouse hearts. J Clin Invest 2022;132(10). DOI: 10.1172/JCI155333.
35.Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 1998;83(10):969-79. DOI: 10.1161/01.res.83.10.969.
36.Lopaschuk GD, Folmes CD, Stanley WC. Cardiac energy metabolism in obesity. Circ Res 2007;101(4):335-47. DOI: 10.1161/CIRCRESAHA.107.150417.
37.McGavock JM, Lingvay I, Zib I, et al. Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 2007;116(10):1170-5. DOI: 10.1161/CIRCULATIONAHA.106.645614.
38.Shao D, Kolwicz SC, Jr., Wang P, et al. Increasing Fatty Acid Oxidation Prevents High-Fat Diet-Induced Cardiomyopathy Through Regulating Parkin-Mediated Mitophagy. Circulation 2020;142(10):983-997. DOI: 10.1161/CIRCULATIONAHA.119.043319.
39.Kolwicz SC, Jr., Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 2012;111(6):728-38. DOI: 10.1161/CIRCRESAHA.112.268128.
40.Gibb AA, Murray EK, Eaton DM, et al. Molecular Signature of HFpEF: Systems Biology in a Cardiac-Centric Large Animal Model. JACC Basic Transl Sci 2021;6(8):650-672. DOI: 10.1016/j.jacbts.2021.07.004.
41.Deng Y, Xie M, Li Q, et al. Targeting Mitochondria-Inflammation Circuit by beta-Hydroxybutyrate Mitigates HFpEF. Circ Res 2021;128(2):232-245. DOI: 10.1161/CIRCRESAHA.120.317933.
42.Tong D, Schiattarella GG, Jiang N, et al. NAD(+) Repletion Reverses Heart Failure With Preserved Ejection Fraction. Circ Res 2021;128(11):1629-1641. DOI: 10.1161/CIRCRESAHA.120.317046.
43.Fillmore N, Levasseur JL, Fukushima A, et al. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med 2018;24(1):3. DOI: 10.1186/s10020-018-0005-x.
44.Evangelista I, Nuti R, Picchioni T, Dotta F, Palazzuoli A. Molecular Dysfunction and Phenotypic Derangement in Diabetic Cardiomyopathy. Int J Mol Sci 2019;20(13). DOI: 10.3390/ijms20133264.
45.Han Q, Yeung SC, Ip MSM, Mak JCW. Dysregulation of cardiac lipid parameters in high-fat high-cholesterol diet-induced rat model. Lipids Health Dis 2018;17(1):255. DOI: 10.1186/s12944-018-0905-3.
46.Xu J, Zhu L, Liu H, et al. Thymoquinone reduces cardiac damage caused by hypercholesterolemia in apolipoprotein E-deficient mice. Lipids Health Dis 2018;17(1):173. DOI: 10.1186/s12944-018-0829-y.
47.Tran DH, Wang ZV. Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. J Am Heart Assoc 2019;8(12):e012673. DOI: 10.1161/JAHA.119.012673.
48.Tersalvi G, Beltrani V, Grubler MR, et al. Positron Emission Tomography in Heart Failure: From Pathophysiology to Clinical Application. J Cardiovasc Dev Dis 2023;10(5). DOI: 10.3390/jcdd10050220.
49.Nakajima K, Nishimura T. J-ACCESS investigation and nuclear cardiology in Japan: implications for heart failure. Ann Nucl Med 2023;37(6):317-327. DOI: 10.1007/s12149-023-01836-x.
50.Tamaki N, Manabe O. Current status and perspectives of nuclear cardiology. Ann Nucl Med 2024;38(1):20-30. DOI: 10.1007/s12149-023-01878-1.
51.Adamo M, Gardner RS, McDonagh TA, Metra M. The 'Ten Commandments' of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2022;43(6):440-441. DOI: 10.1093/eurheartj/ehab853.
52.Liga R, Colli A, Taggart DP, Boden WE, De Caterina R. Myocardial Revascularization in Patients With Ischemic Cardiomyopathy: For Whom and How. J Am Heart Assoc 2023;12(6):e026943. DOI: 10.1161/JAHA.122.026943.
53.Ko KY, Wu YW, Liu CW, Cheng MF, Yen RF, Yang WS. Longitudinal evaluation of myocardial glucose metabolism and contractile function in obese type 2 diabetic db/db mice using small-animal dynamic (18)F-FDG PET and echocardiography. Oncotarget 2017;8(50):87795-87808. DOI: 10.18632/oncotarget.21202.
54.Veniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in Apoe(-/-) and Ldlr(-/-) mice. Arterioscler Thromb Vasc Biol 2001;21(10):1567-70. DOI: 10.1161/hq1001.097780.
55.Zhang SH, Reddick RL, Piedrahita JA, Maeda N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992;258(5081):468-71. DOI: 10.1126/science.1411543.
56.Herzog BA, Husmann L, Valenta I, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol 2009;54(2):150-6. DOI: 10.1016/j.jacc.2009.02.069.
57.DeGrado TR, Hanson MW, Turkington TG, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol 1996;3(6 Pt 1):494-507. DOI: 10.1016/s1071-3581(96)90059-8.
58.Wu YW, Chen YH, Wang SS, et al. PET assessment of myocardial perfusion reserve inversely correlates with intravascular ultrasound findings in angiographically normal cardiac transplant recipients. J Nucl Med 2010;51(6):906-12. DOI: 10.2967/jnumed.109.073833.
59.Bravo PE, Bergmark BA, Vita T, et al. Diagnostic and prognostic value of myocardial blood flow quantification as non-invasive indicator of cardiac allograft vasculopathy. Eur Heart J 2018;39(4):316-323. DOI: 10.1093/eurheartj/ehx683.
60.Mehra MR, Crespo-Leiro MG, Dipchand A, et al. International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. J Heart Lung Transplant 2010;29(7):717-27. DOI: 10.1016/j.healun.2010.05.017.
61.Ko KY, Wang SY, Yen RF, et al. Clinical significance of quantitative assessment of glucose utilization in patients with ischemic cardiomyopathy. J Nucl Cardiol 2020;27(1):269-279. DOI: 10.1007/s12350-018-1395-4.
62.Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37(10):1887-902. DOI: 10.1007/s00259-010-1488-z.
63.Ko CL, Wu YW, Cheng MF, Yen RF, Wu WC, Tzen KY. Data-driven respiratory motion tracking and compensation in CZT cameras: a comprehensive analysis of phantom and human images. J Nucl Cardiol 2015;22(2):308-18. DOI: 10.1007/s12350-014-9963-8.
64.Machac J, Bacharach SL, Bateman TM, et al. Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 2006;13(6):e121-51. DOI: 10.1016/j.nuclcard.2006.08.009.
65.Schoder H, Campisi R, Ohtake T, et al. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 1999;33(5):1328-37. DOI: 10.1016/s0735-1097(99)00010-8.
66.Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23(5):1187-1226. DOI: 10.1007/s12350-016-0522-3.
67.Ha AC, Renaud JM, Dekemp RA, et al. In vivo assessment of myocardial glucose uptake by positron emission tomography in adults with the PRKAG2 cardiac syndrome. Circ Cardiovasc Imaging 2009;2(6):485-91. DOI: 10.1161/CIRCIMAGING.109.853291.
68.Maki M, Luotolahti M, Nuutila P, et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation 1996;93(9):1658-66. DOI: 10.1161/01.cir.93.9.1658.
69.Ben-Haim S, Murthy VL, Breault C, et al. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. J Nucl Med 2013;54(6):873-9. DOI: 10.2967/jnumed.112.109652.
70.Wells RG, Timmins R, Klein R, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014;55(10):1685-91. DOI: 10.2967/jnumed.114.139782.
71.Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977;56(2):188-91. DOI: 10.1161/01.cir.56.2.188.
72.Meleca MJ, McGoron AJ, Gerson MC, et al. Flow versus uptake comparisons of thallium-201 with technetium-99m perfusion tracers in a canine model of myocardial ischemia. J Nucl Med 1997;38(12):1847-56. (https://www.ncbi.nlm.nih.gov/pubmed/9430457).
73.Giubbini R, Bertoli M, Durmo R, et al. Comparison between N(13)NH(3)-PET and (99m)Tc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol 2021;28(5):1906-1918. DOI: 10.1007/s12350-019-01939-x.
74.Konerman MC, Lazarus JJ, Weinberg RL, et al. Reduced Myocardial Flow Reserve by Positron Emission Tomography Predicts Cardiovascular Events After Cardiac Transplantation. Circ Heart Fail 2018;11(6):e004473. DOI: 10.1161/CIRCHEARTFAILURE.117.004473.
75.Miller RJH, Manabe O, Tamarappoo B, et al. Comparative Prognostic and Diagnostic Value of Myocardial Blood Flow and Myocardial Flow Reserve After Cardiac Transplantation. J Nucl Med 2020;61(2):249-255. DOI: 10.2967/jnumed.119.229625.
76.Gould KL, Johnson NP, Bateman TM, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013;62(18):1639-1653. DOI: 10.1016/j.jacc.2013.07.076.
77.Agostini D, Roule V, Nganoa C, et al. First validation of myocardial flow reserve assessed by dynamic (99m)Tc-sestamibi CZT-SPECT camera: head to head comparison with (15)O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45(7):1079-1090. DOI: 10.1007/s00259-018-3958-7.
78.Otaki Y, Manabe O, Miller RJH, et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with (15)O-water PET. J Nucl Cardiol 2021;28(4):1477-1486. DOI: 10.1007/s12350-019-01854-1.
79.Nkoulou R, Fuchs TA, Pazhenkottil AP, et al. Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET. J Nucl Med 2016;57(12):1887-1892. DOI: 10.2967/jnumed.115.165498.
80.Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT Measurement of Myocardial Blood Flow with Corrections for Attenuation, Motion, and Blood Binding Compared with PET. J Nucl Med 2017;58(12):2013-2019. DOI: 10.2967/jnumed.117.191049.
81.Allen-Auerbach M, Schoder H, Johnson J, et al. Relationship between coronary function by positron emission tomography and temporal changes in morphology by intravascular ultrasound (IVUS) in transplant recipients.J Heart Lung Transplant 1999;18(3):211-9. DOI: 10.1016/s1053-2498(98)00037-0.
82.Gewirtz H. Serial PET Measurements of Myocardial Blood Flow for Prognosis Assessment in Heart Transplant Patients: The Forest and the Trees. J Am Coll Cardiol Img 2020;13(1 Pt 1):121-123. DOI: 10.1016/j.jcmg.2018.09.001.
83.Lopaschuk GD, Ussher JR. Evolving Concepts of Myocardial Energy Metabolism: More Than Just Fats and Carbohydrates. Circ Res 2016;119(11):1173-1176. DOI: 10.1161/CIRCRESAHA.116.310078.
84.Koh KK, Quon MJ, Han SH, Lee Y, Kim SJ, Shin EK. Atorvastatin causes insulin resistance and increases ambient glycemia in hypercholesterolemic patients. J Am Coll Cardiol 2010;55(12):1209-1216. DOI: 10.1016/j.jacc.2009.10.053.
85.Vogt AM, Elsasser A, Nef H, Bode C, Kubler W, Schaper J. Increased glycolysis as protective adaptation of energy depleted, degenerating human hibernating myocardium. Mol Cell Biochem 2003;242(1-2):101-7. (https://www.ncbi.nlm.nih.gov/pubmed/12619871).
86.Ingwall JS. Energy metabolism in heart failure and remodelling. Cardiovasc Res 2009;81(3):412-9. DOI: 10.1093/cvr/cvn301.
87.Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 2004;95(2):135-45. DOI: 10.1161/01.RES.0000137170.41939.d9.
88.Bentzon JF, Pasterkamp G, Falk E. Expansive remodeling is a response of the plaque-related vessel wall in aortic roots of apoE-deficient mice: an experiment of nature. Arterioscler Thromb Vasc Biol 2003;23(2):257-62. DOI: 10.1161/01.atv.0000051387.70962.79.
89.Pereira TM, Nogueira BV, Lima LC, et al. Cardiac and vascular changes in elderly atherosclerotic mice: the influence of gender. Lipids Health Dis 2010;9:87. DOI: 10.1186/1476-511X-9-87.
90.Vasquez EC, Peotta VA, Gava AL, Pereira TM, Meyrelles SS. Cardiac and vascular phenotypes in the apolipoprotein E-deficient mouse. J Biomed Sci 2012;19(1):22. DOI: 10.1186/1423-0127-19-22.
91.Chen Z, Ishibashi S, Perrey S, et al. Troglitazone inhibits atherosclerosis in apolipoprotein E-knockout mice: pleiotropic effects on CD36 expression and HDL. Arterioscler Thromb Vasc Biol 2001;21(3):372-7. DOI: 10.1161/01.atv.21.3.372.
92.King VL, Hatch NW, Chan HW, de Beer MC, de Beer FC, Tannock LR. A murine model of obesity with accelerated atherosclerosis. Obesity (Silver Spring) 2010;18(1):35-41. DOI: 10.1038/oby.2009.176.
93.Tang M, Hong L, Li H, et al. Stiffness of aortic arch and carotid arteries increases in ApoE-knockout mice with high-fat diet: evidence from echocardiography. Am J Transl Res 2021;13(3):1352-1364. (https://www.ncbi.nlm.nih.gov/pubmed/33841661).
94.Klein JC, Bleeker MJ, Lutgerink JT, et al. Use of shuttle vectors to study the molecular processing of defined carcinogen-induced DNA damage: mutagenicity of single O4-ethylthymine adducts in HeLa cells. Nucleic Acids Res 1990;18(14):4131-7. DOI: 10.1093/nar/18.14.4131.
95.McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42(36):3599-3726. DOI: 10.1093/eurheartj/ehab368.
96.Heidenreich PA, Bozkurt B, Aguilar D, et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022;145(18):e895-e1032. DOI: 10.1161/CIR.0000000000001063.
97.von Lewinski D, Kolesnik E, Tripolt NJ, et al. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J 2022;43(41):4421-4432. DOI: 10.1093/eurheartj/ehac494.
98.Zhou L, Cryan EV, D'Andrea MR, Belkowski S, Conway BR, Demarest KT. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J Cell Biochem 2003;90(2):339-46. DOI: 10.1002/jcb.10631.
99.Ferrannini E, Baldi S, Frascerra S, et al. Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes 2016;65(5):1190-5. DOI: 10.2337/db15-1356.
100.Daniele G, Xiong J, Solis-Herrera C, et al. Dapagliflozin Enhances Fat Oxidation and Ketone Production in Patients With Type 2 Diabetes. Diabetes Care 2016;39(11):2036-2041. DOI: 10.2337/dc15-2688.
101.Yokono M, Takasu T, Hayashizaki Y, et al. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur J Pharmacol 2014;727:66-74. DOI: 10.1016/j.ejphar.2014.01.040.
102.Hundertmark MJ, Adler A, Antoniades C, et al. Assessment of Cardiac Energy Metabolism, Function, and Physiology in Patients With Heart Failure Taking Empagliflozin: The Randomized, Controlled EMPA-VISION Trial. Circulation 2023;147(22):1654-1669. DOI: 10.1161/CIRCULATIONAHA.122.062021.
103.Hader SN, Zinkevich N, Norwood Toro LE, et al. Detrimental effects of chemotherapy on human coronary microvascular function. Am J Physiol Heart Circ Physiol 2019;317(4):H705-H710. DOI: 10.1152/ajpheart.00370.2019.
104.Jin K. Does coronary microvascular dysfunction have a role in cardiovascular oncology? Eur J Prev Cardiol 2023;30(3):206-208. DOI: 10.1093/eurjpc/zwac229.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91878-
dc.description.abstract前言
心臟灌流和代謝與心臟功能息息相關。在心臟灌流的部分,靜態心肌灌注造影 (myocardial perfusion imaging) 是一非侵入性的核醫影像工具,臨床廣泛應用於冠狀動脈疾病 (coronary artery disease)之診斷和風險分層評估。但對於心臟多條冠狀動脈血管 (multivessel) 或小血管性 (microvascular) 疾病,因平衡式缺血 (balanced ischemia) 易造成偽陰性的檢查結果。近幾年來因CZT cardiac SPECT的引進,提高動態影像擷取應用於心肌血流定量之可行性。

在成年人的心臟代謝中,大多數的三磷酸腺苷 (adenosine triphosphate) 來自長鏈脂肪酸的氧化 (60-90%),10-30%來自葡萄糖的氧化作用。在慢性缺血的狀況下,心臟的脂肪酸氧化減少而葡萄糖的攝取增加。許多證據指出,心臟代謝的重塑與心血管疾病的病程與預後息息相關,許多調控心臟代謝的用藥也應運而生。過去的心肌存活評估,是採用靜態葡萄糖正子造影搭配心肌灌流檢查。然而,動態的葡萄糖正子影像擷取可定量心臟葡萄糖使用率,其臨床的價值過去較少有文獻探討此議題。

研究目的
本研究欲透過核醫動態造影量化心肌血流與心肌葡萄糖代謝,並將此影像工具運用到臨床重要的議題上 : 探討心肌血流定量於心臟移植後之血管病變之應用與心肌葡萄糖攝取於高血脂與缺血性心肌病變之角色。

方法與結果
心臟灌流
本研究納入了接受心臟移植手術後的三十八名患者,並進行了 CZT SPECT 及 13N-NH3 PET 動態掃描。前十九名患者使用 99mTc-sestamibi 進行 CZT SPECT,而其餘患者使用 201Tl-chloride。為了探究動態CZT SPECT 定量之心肌血流是否具有中度至重度心臟移植後血管病變之診斷能力,次族群分析包括了在第二項影像掃描後一年內進行血管攝影檢查之患者。

在 201Tl 和 99mTc 兩組之間,患者臨床特徵沒有顯著差異。無論是整體還是3 個冠狀動脈支配之區域,201Tl 和 99mTc CZT SPECT 定量的壓力態之心肌血流和 心肌血流儲備數值均與 13N-NH3 PET 顯示出良好的相關性。在 CZT SPECT 與 PET 之間,除了壓力態的心肌血流 (201Tl : 0.95 versus 99mTc : 0.80, P=0.03),201Tl 和 99mTc 兩組的 MBF 和 MFR 的相關係數差異不大。201Tl 和 99mTc CZT SPECT 對於檢測 PET MFR < 2.0(201Tl 曲線下面積為 0.92 [0.71–0.99],99mTc曲線下面積為 0.87 [0.64–0.97])以及經血管攝影診斷的中度至嚴重 CAV 均有不錯的診斷效力,且 CZT SPECT 的結果與 13N-NH3 PET 相當(CZT 曲線下面積為 0.90 [0.70–0.99],PET 曲線下面積為 0.86 [0.64–0.97])。

心臟代謝
這個研究分為兩部分,均使用動態FDG PET進行,且利用Patlak plot分析來定量葡萄糖利用率(metabolic rate of glucose, MRGlu)。在人體研究中,動態FDG PET造影納入缺血性心肌病變患者的心肌存活評估流程中。重大心血管不良事件(Major adverse cardiac event, MACE)被定義為死亡、因急性心肌梗塞、非計畫的冠狀動脈介入治療、心臟裝置植入和心臟衰竭而住院之事件。在動物研究中,使用雄性ApoE-/-小鼠,分為一般飼料與高脂飼料組探討高血脂狀態下,心臟葡萄糖攝取的變化;另,採用高脂飼料餵養的ApoE-/-小鼠,探究鈉-葡萄糖協同轉運蛋白2抑制劑 ( SGLT2 inhibitor ) 治療後對心臟代謝的影響。除了動態FDG PET造影外,小鼠均接受血液和心臟超音波檢查。

在人體研究中,MRGlu值與高脂血症的病史和Statin藥物使用呈負相關。在高脂血症次族群分析中,高MRGlu值(≥ 28.3 µmol/min/100 g)(危險比7.7;95%信賴區間2.4-24.6)是MACE事件發生的獨立預測因子。在動物研究中,ApoE-/-小鼠均出現高脂血症和胰島素抵抗。餵養一般飼料的ApoE-/-小鼠觀察到心臟葡萄糖利用率增強,而餵養高脂飼料的小鼠則觀察到較低的心肌葡萄糖利用率。在心臟超音波的檢查中,心臟結構與收縮功能部分,在對照組和ApoE-/-小鼠之間沒有明顯差異。然而,餵養高脂飼料的ApoE-/-小鼠的等容舒張時間延長。犧牲後,對照組和ApoE-/-小鼠的心臟重與體重的比值間沒有統計學上的顯著差異。經過6週的empagliflozin治療後,餵食高脂飼料的ApoE-/-小鼠在治療後心肌葡萄糖代謝下降。

結論及展望
本研究利用核醫動態造影定量心肌灌流與心肌葡萄糖攝取,分別於心臟移植後血管病變與缺血性心肌病變患者提供有價值的診斷與預後資訊。在心臟移植後的病患,使用動態201Tl和99mTc CZT SPECT定量心肌血流和心肌血流儲備數值,與13N-NH3 PET結果相當,且初步展現對於中重度心臟移植後血管病變不錯的診斷能力。未來可以繼續將此影像應用拓展至其他廣泛瀰漫性心臟小血管病變。

使用動態FDG PET來量化心臟葡萄糖攝取的變化,可作為高脂血症相關心臟代謝疾病的早期警示標誌和缺血性心肌病變的預測因子,未來,可以結合多體學的研究,更深入探討心肌代謝機轉與策定個人化的治療策略,以改善早期心臟代謝不平衡也預防或減少產生重大心血管不良事件的發生。
zh_TW
dc.description.abstractIntroduction
Myocardial perfusion and metabolism are closely intertwined with heart function. In the context of cardiac perfusion, static myocardial perfusion imaging is a non-invasive nuclear medicine imaging tool widely used in the diagnosis and risk stratification of coronary artery disease. However, for cases of multi-vessel or microvascular disease in the heart, balanced ischemia can lead to false-negative examination results. In recent years, the introduction of CZT cardiac SPECT has enhanced the feasibility of using dynamic imaging for quantitative assessment of myocardial blood flow.
In the adult heart metabolism, the majority of adenosine triphosphate is derived from the oxidation of long-chain fatty acids (60-90%), with 10-30% coming from glucose oxidation. In the context of chronic ischemia, there is a reduction in the oxidation of fatty acids in the heart, while glucose uptake increases. Previous evidence suggest that the remodeling of cardiac metabolism is closely associated with the progression and prognosis of cardiovascular diseases, leading to the development of medications that regulate cardiac metabolism. In the past, static FDG PET was used in myocardial viability assessment, combined with myocardial perfusion examination. However, there is limited literature exploring the clinical value of dynamic FDG PET in quantifying heart glucose utilization.

Research Objectives
This study aims to quantify myocardial blood flow and myocardial glucose uptake through nuclear medicine dynamic imaging. It seeks to apply this imaging tool to clinically relevant issues: investigating the application of quantitative myocardial blood flow in cardiac allograft vasculopathy (CAV) and the role of quantitative myocardial glucose uptake in hyperlipidemia and ischemic cardiomyopathy.

Methods and Results
Myocardial perfusion
This study included 38 patients with prior heart transplants who underwent CZT SPECT and 13N-NH3 PET dynamic scans. The first 19 patients received CZT SPECT with 99mTc-sestamibi, while the remaining patients were administered 201Tl-chloride. To assess the diagnostic accuracy of moderate-to-severe CAV as determined by angiography, patients who had undergone angiographic examinations within one year of their second scan were included in the analysis. Patient characteristics did not significantly differ between the 201Tl and 99mTc tracer groups. Both 201Tl and 99mTc CZT SPECT yielded stress MBF and MFR values that correlated well with 13N-NH3 PET results, both globally and in the three coronary territories. The 201Tl and 99mTc groups showed similar correlation coefficients between CZT SPECT and PET for MBF and MFR, with the exception of stress MBF (201Tl: 0.95 versus 99mTc: 0.80, p=0.03). Both 201Tl and 99mTc CZT SPECT were effective in identifying PET MFR values less than 2.0 (201Tl area under the curve: 0.92 [0.71–0.99], 99mTc area under the curve: 0.87 [0.64–0.97]), as well as angiographically defined moderate-to-severe CAV. CZT SPECT results were comparable to those of 13N-NH3 PET (CZT area under the curve: 0.90 [0.70–0.99], PET area under the curve: 0.86 [0.64–0.97]).

Myocardial metabolism
A two-part study was conducted using dynamic 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). The metabolic rate of glucose (MRGlu) was derived using Patlak plot analysis. Dynamic FDG-PET was incorporated into viability assessment for ischemic cardiomyopathy in the human study. Major adverse cardiac events (MACE) were defined as a composite of death, hospitalization for acute myocardial infarction, late coronary intervention, device implantation, and heart failure. Male ApoE-/- mice that were fed a chow or high-fat diet and male wild-type C57BL mice underwent blood examinations and echocardiography in the animal study. The MRGlu values were negatively correlated with a history of hyperlipidemia and statin use in the human study. A high global MRGlu value ( ≥ 28.3 µmol/min/100 g) (hazard ratio 7.7; 95% confidence interval 2.4–24.6) was an independent predictor of MACE in the hyperlipidemia subgroup. The ApoE-/- mice developed hyperlipidemia and insulin resistance. Enhanced myocardial glucose utilization was observed in the ApoE-/- mice that were fed a chow diet, whereas reduced utilization was observed in those that were fed a high-fat diet. Systolic function did not differ significantly between the control and ApoE-/- mice. However, the isovolumetric relaxation time was prolonged in the ApoE-/- mice that were fed a high-fat diet. Besides, APOE KO fed with high fat diet reduced their myocardial glucose metabolism after 6-week empagliflozin treatment.

Conclusion and Perspective
This study utilized nuclear medicine dynamic imaging to quantitate myocardial perfusion and myocardial glucose uptake, providing valuable diagnostic and prognostic information for patients with CAV and ischemic cardiomyopathy, respectively. In post-heart transplant patients, the use of dynamic 201Tl and 99mTc CZT SPECT for quantifying myocardial blood flow and myocardial flow reserve values demonstrated results comparable to those of 13N-NH3 PET, showing promising diagnostic capabilities for moderate-to-severe CAV. Future applications of this imaging technique may extend to other extensive diffuse coronary microvascular pathologies.
The utilization of dynamic FDG PET to quantify changes in myocardial glucose uptake can serve as an early warning sign for cardiometabolic disorders associated with hyperlipidemia and as a predictive factor for ischemic cardiomyopathy. In the future, combining multi-omics research can further delve into molecular mechanisms and develop personalized treatment strategies to improve early cardiac metabolic imbalances and prevent or reduce the occurrence of adverse cardiovascular events.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:15:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-26T16:15:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 1
英文摘要 4
第一章 前言 11
第一節 心臟灌流 11
1.1 心肌血流定量於心肌灌注掃描之重要性 11
1.2 心肌血流定量於心臟移植後之血管病變應用 13
第二節 心臟代謝 13
2.1 正常生理之心臟代謝 13
2.2 病理狀況下之心肌代謝轉換: 心臟衰竭與高血脂症 14
2.3 葡萄糖正子斷層掃描於心肌代謝之應用 15
2.3.1 心肌存活評估 15
2.3.2 心臟衰竭與心肌葡萄糖利用率 15
2.3.4 心血管代謝疾病與心肌葡萄糖利用率 16
第三節 研究目的 16
第二章 材料與方法 17
第一節 心臟灌流研究:心臟移植後血管病變 17
1.1 研究族群 17
1.2 動態CZT SPECT 造影及影像分析 18
1.3 13N-NH3 PET 19
1.4 冠狀動脈攝影 19
1.5 統計分析 19
第二節 心臟代謝研究: 慢性缺血性心肌病變 20
2.1 第一部份: 臨床研究 20
2.1.1 研究族群 20
2.1.2 心肌存活評估: 201Tl CZT SPECT 和dynamic FDG PET 20
2.1.3 心肌灌流與代謝型態 21
2.1.4 心肌葡萄糖利用之量化 21
2.1.5 臨床資訊與追蹤 22
2.2 第二部份: 動物研究 22
2.2.1 實驗動物 22
2.2.2 血液物質濃度 23
2.2.3 心臟超音波 23
2.2.4 動態正子造影 23
2.2.5 動物犧牲 24
2.3 統計分析 24
第三章 研究結果 25
第一節 心臟灌流研究:心臟移植後血管病變 25
第二節 心臟代謝研究 : 慢性缺血性心肌病變 26
2.1 臨床研究 26
2.2 動物研究 27
第四章 討論 28
第一節 心臟灌流研究:心臟移植後血管病變 28
1.1 研究限制 30
第二節 心臟代謝研究 : 慢性缺血性心肌病變 31
2.1 研究限制 33
第五章 結論與展望 34
圖 36
表格 53
參考文獻 70
附錄 86
-
dc.language.isozh_TW-
dc.subject心臟灌流zh_TW
dc.subject心臟代謝zh_TW
dc.subject動態造影zh_TW
dc.subject碲鋅鎘單光子斷層掃描zh_TW
dc.subject氟化去氧葡萄糖正子斷層掃描zh_TW
dc.subjectmyocardial metabolismen
dc.subjectmyocardial perfusionen
dc.subjectFDG PETen
dc.subjectCZT SPECTen
dc.subjectdynamic acquisitionen
dc.title核子醫學動態造影於心臟灌流及代謝之應用zh_TW
dc.titleThe Applications of Dynamic Acquisition in Nuclear Medicine Imaging for Cardiac Perfusion and Metabolismen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.coadvisor陳文彬zh_TW
dc.contributor.coadvisorWen-Pin Chenen
dc.contributor.oralexamcommittee楊偉勛;林家齊;吳彥雯;高潘福zh_TW
dc.contributor.oralexamcommitteeWei-Shiung Yang;Chia-Chi Lin;Yen-Wen Wu;Pan-Fu Kaoen
dc.subject.keyword心臟灌流,心臟代謝,動態造影,碲鋅鎘單光子斷層掃描,氟化去氧葡萄糖正子斷層掃描,zh_TW
dc.subject.keywordmyocardial perfusion,myocardial metabolism,dynamic acquisition,CZT SPECT,FDG PET,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202400112-
dc.rights.note未授權-
dc.date.accepted2024-01-18-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
5.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved