請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91870
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴文崧 | zh_TW |
dc.contributor.advisor | Wen-Sung Lai | en |
dc.contributor.author | 陳圓圓 | zh_TW |
dc.contributor.author | Yuan-Yuan Chen | en |
dc.date.accessioned | 2024-02-26T16:12:29Z | - |
dc.date.available | 2024-02-27 | - |
dc.date.copyright | 2024-02-26 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-12-12 | - |
dc.identifier.citation | Adage, T., Trillat, A.-C., Quattropani, A., Perrin, D., Cavarec, L., Shaw, J., Guerassimenko, O., Giachetti, C., Gréco, B., Chumakov, I., Halazy, S., Roach, A., & Zaratin, P. (2008, 2008/03/01/). In vitro and in vivo pharmacological profile of AS057278, a selective d-amino acid oxidase inhibitor with potential anti-psychotic properties. European Neuropsychopharmacology, 18(3), 200-214. https://doi.org/https://doi.org/10.1016/j.euroneuro.2007.06.006
Alkam, T., Hiramatsu, M., Mamiya, T., Aoyama, Y., Nitta, A., Yamada, K., Kim, H.-C., & Nabeshima, T. (2011, 2011/06/20/). Evaluation of object-based attention in mice. Behavioural Brain Research, 220(1), 185-193. https://doi.org/https://doi.org/10.1016/j.bbr.2011.01.039 Andreasen, N. C. (1995). Symptoms of Schizophrenia. Archives of General Psychiatry, 52(5), 341. https://doi.org/10.1001/archpsyc.1995.03950170015003 Arsenault, D., St-Amour, I., Cisbani, G., Rousseau, L.-S., & Cicchetti, F. (2014, 2014/05/01/). The different effects of LPS and poly I:C prenatal immune challenges on the behavior, development and inflammatory responses in pregnant mice and their offspring. Brain, behavior, and immunity, 38, 77-90. https://doi.org/https://doi.org/10.1016/j.bbi.2013.12.016 Balu, D. T. (2016). The NMDA Receptor and Schizophrenia: From Pathophysiology to Treatment. Adv Pharmacol, 76, 351-382. https://doi.org/10.1016/bs.apha.2016.01.006 Balu, D. T., Li, Y., Puhl, M. D., Benneyworth, M. A., Basu, A. C., Takagi, S., Bolshakov, V. Y., & Coyle, J. T. (2013). Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proceedings of the National Academy of Sciences, 110(26), E2400-E2409. https://doi.org/doi:10.1073/pnas.1304308110 Basu, A. C., Tsai, G. E., Ma, C.-L., Ehmsen, J. T., Mustafa, A. K., Han, L., Jiang, Z. I., Benneyworth, M. A., Froimowitz, M. P., & Lange, N. (2009). Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Molecular psychiatry, 14(7), 719-727. Bendikov, I., Nadri, C., Amar, S., Panizzutti, R., De Miranda, J., Wolosker, H., & Agam, G. (2007, Feb). A CSF and postmortem brain study of D-serine metabolic parameters in schizophrenia. Schizophr Res, 90(1-3), 41-51. https://doi.org/10.1016/j.schres.2006.10.010 Biological insights from 108 schizophrenia-associated genetic loci. (2014). Nature, 511(7510), 421-427. https://doi.org/10.1038/nature13595 Bitanihirwe, B. K., Peleg-Raibstein, D., Mouttet, F., Feldon, J., & Meyer, U. (2010, Nov). Late prenatal immune activation in mice leads to behavioral and neurochemical abnormalities relevant to the negative symptoms of schizophrenia. Neuropsychopharmacology, 35(12), 2462-2478. https://doi.org/10.1038/npp.2010.129 Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M., Babulas, V. P., & Susser, E. S. (2004). Serologic Evidence of Prenatal Influenza in the Etiology of Schizophrenia. Archives of General Psychiatry, 61(8), 774. https://doi.org/10.1001/archpsyc.61.8.774 Brown, A. S., & Derkits, E. J. (2010). Prenatal Infection and Schizophrenia: A Review of Epidemiologic and Translational Studies. American Journal of Psychiatry, 167(3), 261-280. https://doi.org/10.1176/appi.ajp.2009.09030361 Carbon, M., & Correll, C. U. (2014). Thinking and acting beyond the positive: the role of the cognitive and negative symptoms in schizophrenia. CNS Spectrums, 19(S1), 35-53. https://doi.org/10.1017/s1092852914000601 Chaiyakunapruk, N., Chong, H. Y., Teoh, S. L., Wu, D. B.-C., Kotirum, S., & Chiou, C.-F. (2016). Global economic burden of schizophrenia: a systematic review. Neuropsychiatric Disease and Treatment, 357. https://doi.org/10.2147/ndt.s96649 Chess, A. C., Landers, A. M., & Bucci, D. J. (2009, 2009/08/12/). L-kynurenine treatment alters contextual fear conditioning and context discrimination but not cue-specific fear conditioning. Behavioural Brain Research, 201(2), 325-331. https://doi.org/https://doi.org/10.1016/j.bbr.2009.03.013 Connor, C. M., Dincer, A., Straubhaar, J., Galler, J. R., Houston, I. B., & Akbarian, S. (2012, 2012/09/01/). Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophrenia Research, 140(1), 175-184. https://doi.org/https://doi.org/10.1016/j.schres.2012.06.037 Coyle, J. T. (2006, Jul-Aug). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol, 26(4-6), 365-384. https://doi.org/10.1007/s10571-006-9062-8 da Silveira, V. T., Medeiros, D. C., Ropke, J., Guidine, P. A., Rezende, G. H., Moraes, M. F., Mendes, E. M., Macedo, D., Moreira, F. A., & de Oliveira, A. C. (2017, May). Effects of early or late prenatal immune activation in mice on behavioral and neuroanatomical abnormalities relevant to schizophrenia in the adulthood. Int J Dev Neurosci, 58, 1-8. https://doi.org/10.1016/j.ijdevneu.2017.01.009 de Bartolomeis, A., Barone, A., Vellucci, L., Mazza, B., Austin, M. C., Iasevoli, F., & Ciccarelli, M. (2022, Oct). Linking Inflammation, Aberrant Glutamate-Dopamine Interaction, and Post-synaptic Changes: Translational Relevance for Schizophrenia and Antipsychotic Treatment: a Systematic Review. Mol Neurobiol, 59(10), 6460-6501. https://doi.org/10.1007/s12035-022-02976-3 Elert, E. (2014, 2014/04/01). Aetiology: Searching for schizophrenia's roots. Nature, 508(7494), S2-S3. https://doi.org/10.1038/508S2a Faludi, G., Dome, P., & Lazary, J. (2011). Origins and perspectives of schizophrenia research. Neuropsychopharmacol Hung, 13(4), 185-192. Feigenson, K. A., Kusnecov, A. W., & Silverstein, S. M. (2014, Jan). Inflammation and the two-hit hypothesis of schizophrenia. Neurosci Biobehav Rev, 38, 72-93. https://doi.org/10.1016/j.neubiorev.2013.11.006 Forrest, C. M., Khalil, O. S., Pisar, M., Smith, R. A., Darlington, L. G., & Stone, T. W. (2012, Jun 9). Prenatal activation of Toll-like receptors-3 by administration of the viral mimetic poly(I:C) changes synaptic proteins, N-methyl-D-aspartate receptors and neurogenesis markers in offspring. Mol Brain, 5, 22. https://doi.org/10.1186/1756-6606-5-22 Friard, O., & Gamba, M. (2016). <scp>BORIS</scp> : a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7(11), 1325-1330. https://doi.org/10.1111/2041-210x.12584 Goldsmith, D. R., Rapaport, M. H., & Miller, B. J. (2016, Dec). A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry, 21(12), 1696-1709. https://doi.org/10.1038/mp.2016.3 Guma, E., Bordignon, P. D. C., Devenyi, G. A., Gallino, D., Anastassiadis, C., Cvetkovska, V., Barry, A., Snook, E., Germann, J., Greenwood, C. M. T., Misic, B., Bagot, R. C., & Chakravarty, M. M. (2021). Early or late gestational exposure to maternal immune activation alters neurodevelopmental trajectories in mice: an integrated neuroimaging, behavioural, and transcriptional study. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2021.03.017 Han, V. X., Patel, S., Jones, H. F., & Dale, R. C. (2021). Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nature Reviews Neurology, 17(9), 564-579. https://doi.org/10.1038/s41582-021-00530-8 Harrison, P. J. (2015, Feb). Recent genetic findings in schizophrenia and their therapeutic relevance. J Psychopharmacol, 29(2), 85-96. https://doi.org/10.1177/0269881114553647 Hartwig, F. P., Borges, M. C., Horta, B. L., Bowden, J., & Davey Smith, G. (2017). Inflammatory Biomarkers and Risk of Schizophrenia: A 2-Sample Mendelian Randomization Study. JAMA Psychiatry, 74(12), 1226-1233. https://doi.org/10.1001/jamapsychiatry.2017.3191 Hashimoto, K., Engberg, G., Shimizu, E., Nordin, C., Lindström, L. H., & Iyo, M. (2005, Jun). Reduced D-serine to total serine ratio in the cerebrospinal fluid of drug naive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry, 29(5), 767-769. https://doi.org/10.1016/j.pnpbp.2005.04.023 Howes, O., McCutcheon, R., & Stone, J. (2015). Glutamate and dopamine in schizophrenia: An update for the 21<sup>st</sup> century. Journal of Psychopharmacology, 29(2), 97-115. https://doi.org/10.1177/0269881114563634 Huang, C.-H., Pei, J.-C., Luo, D.-Z., Chen, C., Chen, Y.-W., & Lai, W.-S. (2015). Investigation of gene effects and epistatic interactions between Akt1 and neuregulin 1 in the regulation of behavioral phenotypes and social functions in genetic mouse models of schizophrenia. Frontiers in Behavioral Neuroscience, 8. https://doi.org/10.3389/fnbeh.2014.00455 Hughes, R. N. (2004, 2004/09/01/). The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neuroscience & Biobehavioral Reviews, 28(5), 497-505. https://doi.org/https://doi.org/10.1016/j.neubiorev.2004.06.006 Jacobi, A. A., Halawani, S., Lynch, D. R., & Lin, H. (2019, 2019/01/23/). Neuronal serine racemase associates with Disrupted-In-Schizophrenia-1 and DISC1 agglomerates: Implications for schizophrenia. Neuroscience Letters, 692, 107-114. https://doi.org/https://doi.org/10.1016/j.neulet.2018.10.055 Janoutová, J., Janácková, P., Sery, O., Zeman, T., Ambroz, P., Kovalová, M., Varechova, K., Hosák, L., Jirik, V., & Janout, V. (2016). Epidemiology and risk factors of schizophrenia. Neuroendocrinology Letters, 37(1), 1-8. Javitt, D. C. (1999, 1999/06/01). Treatment of negative and cognitive symptoms. Current Psychiatry Reports, 1(1), 25-30. https://doi.org/10.1007/s11920-999-0007-z Jorratt, P., Hoschl, C., & Ovsepian, S. V. (2021, 2021/05/01). Endogenous antagonists of N-methyl-d-aspartate receptor in schizophrenia. Alzheimer's & Dementia, 17(5), 888-905. https://doi.org/https://doi.org/10.1002/alz.12244 Kannan, G., Sawa, A., & Pletnikov, M. V. (2013, 2013/09/01/). Mouse models of gene–environment interactions in schizophrenia. Neurobiology of Disease, 57, 5-11. https://doi.org/https://doi.org/10.1016/j.nbd.2013.05.012 Kępińska, A. P., Iyegbe, C. O., Vernon, A. C., Yolken, R., Murray, R. M., & Pollak, T. A. (2020). Schizophrenia and Influenza at the Centenary of the 1918-1919 Spanish Influenza Pandemic: Mechanisms of Psychosis Risk. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00072 Lan, A., Kalimian, M., Amram, B., & Kofman, O. (2017). Prenatal chlorpyrifos leads to autism-like deficits in C57Bl6/J mice. Environmental Health, 16(1). https://doi.org/10.1186/s12940-017-0251-3 Laura, G., & Anthony, J. H. (2007, //). Dissecting Cause and Effect in the Pathogenesis of Psychiatric Disorders: Genes, Environment and Behaviour. Current Molecular Medicine, 7(5), 470-478. https://www.ingentaconnect.com/content/ben/cmm/2007/00000007/00000005/art00004 Lennartz, R. C. (2008, 2008/05/01). The role of extramaze cues in spontaneous alternation in a plus-maze. Learning & Behavior, 36(2), 138-144. https://doi.org/10.3758/LB.36.2.138 Lewis, D. A., & Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci, 25, 409-432. https://doi.org/10.1146/annurev.neuro.25.112701.142754 Lim, J., Lee, S. A., Lam, M., Rapisarda, A., Kraus, M., Keefe, R. S. E., & Lee, J. (2016). The relationship between negative symptom subdomains and cognition. Psychological Medicine, 46(10), 2169-2177. https://doi.org/10.1017/s0033291716000726 Möller, M., Swanepoel, T., & Harvey, B. H. (2015, 2015/07/15). Neurodevelopmental Animal Models Reveal the Convergent Role of Neurotransmitter Systems, Inflammation, and Oxidative Stress as Biomarkers of Schizophrenia: Implications for Novel Drug Development. ACS Chemical Neuroscience, 6(7), 987-1016. https://doi.org/10.1021/cn5003368 Macêdo, D. S., Araújo, D. P., Sampaio, L. R., Vasconcelos, S. M., Sales, P. M., Sousa, F. C., Hallak, J. E., Crippa, J. A., & Carvalho, A. F. (2012, Mar). Animal models of prenatal immune challenge and their contribution to the study of schizophrenia: a systematic review. Braz J Med Biol Res, 45(3), 179-186. https://doi.org/10.1590/s0100-879x2012007500031 MacDowell, K. S., Munarriz-Cuezva, E., Meana, J. J., Leza, J. C., & Ortega, J. E. (2021, 2021-May-13). Paliperidone Reversion of Maternal Immune Activation-Induced Changes on Brain Serotonin and Kynurenine Pathways [Original Research]. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.682602 Madeira, C., Freitas, M. E., Vargas-Lopes, C., Wolosker, H., & Panizzutti, R. (2008, 2008/04/01/). Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophrenia Research, 101(1), 76-83. https://doi.org/https://doi.org/10.1016/j.schres.2008.02.002 Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., & Bethge, M. (2018, 2018/09/01). DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience, 21(9), 1281-1289. https://doi.org/10.1038/s41593-018-0209-y Matveeva, T. M., Pisansky, M. T., Young, A., Miller, R. F., & Gewirtz, J. C. (2019). Sociality deficits in serine racemase knockout mice. Brain and Behavior, 9(10), e01383. https://doi.org/https://doi.org/10.1002/brb3.1383 McCutcheon, R. A., Reis Marques, T., & Howes, O. D. (2020). Schizophrenia—An Overview. JAMA Psychiatry, 77(2), 201-210. https://doi.org/10.1001/jamapsychiatry.2019.3360 Meyer, U. (2014, 2014/02/15/). Prenatal Poly(I:C) Exposure and Other Developmental Immune Activation Models in Rodent Systems. Biological Psychiatry, 75(4), 307-315. https://doi.org/https://doi.org/10.1016/j.biopsych.2013.07.011 Meyer, U., Feldon, J., Schedlowski, M., & Yee, B. K. (2006, 2006/07/01/). Immunological stress at the maternal–foetal interface: A link between neurodevelopment and adult psychopathology. Brain, behavior, and immunity, 20(4), 378-388. https://doi.org/https://doi.org/10.1016/j.bbi.2005.11.003 Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., Yee, B. K., & Feldon, J. (2006a). The Time of Prenatal Immune Challenge Determines the Specificity of Inflammation-Mediated Brain and Behavioral Pathology. The Journal of Neuroscience, 26(18), 4752-4762. https://doi.org/10.1523/jneurosci.0099-06.2006 Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., Yee, B. K., & Feldon, J. (2006b). The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. Journal of Neuroscience, 26(18), 4752-4762. Meyer, U., Nyffeler, M., Yee, B. K., Knuesel, I., & Feldon, J. (2008). Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain, behavior, and immunity, 22(4), 469-486. Moran, P., Stokes, J., Marr, J., Bock, G., Desbonnet, L., Waddington, J., & O'Tuathaigh, C. (2016). Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast, 2016, 2173748. https://doi.org/10.1155/2016/2173748 Morita, Y., Ujike, H., Tanaka, Y., Otani, K., Kishimoto, M., Morio, A., Kotaka, T., Okahisa, Y., Matsushita, M., Morikawa, A., Hamase, K., Zaitsu, K., & Kuroda, S. (2007, May 15). A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry, 61(10), 1200-1203. https://doi.org/10.1016/j.biopsych.2006.07.025 MÜller, N., & Schwarz, M. (2006, 2006/06/01). Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotoxicity Research, 10(2), 131-148. https://doi.org/10.1007/BF03033242 Mustafa, A. K., Ahmad, A. S., Zeynalov, E., Gazi, S. K., Sikka, G., Ehmsen, J. T., Barrow, R. K., Coyle, J. T., Snyder, S. H., & Doré, S. (2010). Serine Racemase Deletion Protects Against Cerebral Ischemia and Excitotoxicity. The Journal of Neuroscience, 30(4), 1413-1416. https://doi.org/10.1523/jneurosci.4297-09.2010 Nakazawa, K., & Sapkota, K. (2020, 2020/01/01/). The origin of NMDA receptor hypofunction in schizophrenia. Pharmacology & Therapeutics, 205, 107426. https://doi.org/https://doi.org/10.1016/j.pharmthera.2019.107426 O’Tuathaigh, C. M. P., Babovic, D., O’Sullivan, G. J., Clifford, J. J., Tighe, O., Croke, D. T., Harvey, R., & Waddington, J. L. (2007, 2007/06/15/). Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’ of the schizophrenia risk gene neuregulin 1. Neuroscience, 147(1), 18-27. https://doi.org/https://doi.org/10.1016/j.neuroscience.2007.03.051 Ohi, K., Sumiyoshi, C., Fujino, H., Yasuda, Y., Yamamori, H., Fujimoto, M., Shiino, T., Sumiyoshi, T., & Hashimoto, R. (2018). Genetic Overlap between General Cognitive Function and Schizophrenia: A Review of Cognitive GWASs. International Journal of Molecular Sciences, 19(12), 3822. https://doi.org/10.3390/ijms19123822 Olmos-Serrano, J. L., Tyler, W. A., Cabral, H. J., & Haydar, T. F. (2016, 2016/05/01/). Longitudinal measures of cognition in the Ts65Dn mouse: Refining windows and defining modalities for therapeutic intervention in Down syndrome. Experimental Neurology, 279, 40-56. https://doi.org/https://doi.org/10.1016/j.expneurol.2016.02.005 Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. The Lancet, 388(10039), 86-97. https://doi.org/10.1016/s0140-6736(15)01121-6 Pei, J.-C., Luo, D.-Z., Gau, S.-S., Chang, C.-Y., & Lai, W.-S. (2021, 2021-October-01). Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia [Review]. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.742058 Pennington, Z. T., Dong, Z., Feng, Y., Vetere, L. M., Page-Harley, L., Shuman, T., & Cai, D. J. (2019, Dec 27). ezTrack: An open-source video analysis pipeline for the investigation of animal behavior. Sci Rep, 9(1), 19979. https://doi.org/10.1038/s41598-019-56408-9 Richetto, J., Calabrese, F., Meyer, U., & Riva, M. A. (2013, 2013/10/01/). Prenatal versus postnatal maternal factors in the development of infection-induced working memory impairments in mice. Brain, behavior, and immunity, 33, 190-200. https://doi.org/https://doi.org/10.1016/j.bbi.2013.07.006 Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A Systematic Review of the Prevalence of Schizophrenia. PLoS Medicine, 2(5), e141. https://doi.org/10.1371/journal.pmed.0020141 Scherr, M., Hamann, M., Schwerthöffer, D., Froböse, T., Vukovich, R., Pitschel-Walz, G., & Bäuml, J. (2012). Environmental risk factors and their impact on the age of onset of schizophrenia: Comparing familial to non-familial schizophrenia. Nordic Journal of Psychiatry, 66(2), 107-114. https://doi.org/10.3109/08039488.2011.605171 Smith, S. E. P., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal Immune Activation Alters Fetal Brain Development through Interleukin-6. The Journal of Neuroscience, 27(40), 10695-10702. https://doi.org/10.1523/jneurosci.2178-07.2007 Stone, J. M., Day, F., Tsagaraki, H., Valli, I., McLean, M. A., Lythgoe, D. J., O'Gorman, R. L., Barker, G. J., & McGuire, P. K. (2009, 2009/09/15/). Glutamate Dysfunction in People with Prodromal Symptoms of Psychosis: Relationship to Gray Matter Volume. Biological Psychiatry, 66(6), 533-539. https://doi.org/https://doi.org/10.1016/j.biopsych.2009.05.006 Upthegrove, R., & Barnes, N. M. (2014). The immune system and schizophrenia: an update for clinicians. Advances in Psychiatric Treatment, 20(2), 83-91. https://doi.org/10.1192/apt.bp.113.011452 Upthegrove, R., & Khandaker, G. M. (2020). Cytokines, Oxidative Stress and Cellular Markers of Inflammation in Schizophrenia. In G. M. Khandaker, U. Meyer, & P. B. Jones (Eds.), Neuroinflammation and Schizophrenia (pp. 49-66). Springer International Publishing. https://doi.org/10.1007/7854_2018_88 van Os, J., Kenis, G., & Rutten, B. P. F. (2010, 2010/11/01). The environment and schizophrenia. Nature, 468(7321), 203-212. https://doi.org/10.1038/nature09563 Verrall, L., Walker, M., Rawlings, N., Benzel, I., Kew, J. N. C., Harrison, P. J., & Burnet, P. W. J. (2007). d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. European Journal of Neuroscience, 26(6), 1657-1669. https://doi.org/https://doi.org/10.1111/j.1460-9568.2007.05769.x Wilk, C. M., Gold, J. M., McMahon, R. P., Humber, K., Iannone, V. N., & Buchanan, R. W. (2005). No, It Is Not Possible to Be Schizophrenic Yet Neuropsychologically Normal. Neuropsychology, 19, 778-786. https://doi.org/10.1037/0894-4105.19.6.778 Wolosker, H., & Radzishevsky, I. (2013). The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration. Biochemical Society Transactions, 41(6), 1546-1550. https://doi.org/10.1042/bst20130220 Wu, Q., Huang, J., & Wu, R. (2021). Drugs Based on NMDAR Hypofunction Hypothesis in Schizophrenia. Front Neurosci, 15, 641047. https://doi.org/10.3389/fnins.2021.641047 Basu, A. C., Tsai, G. E., Ma, C.-L., Ehmsen, J. T., Mustafa, A. K., Han, L., Jiang, Z. I., Benneyworth, M. A., Froimowitz, M. P., & Lange, N. (2009). Targeted disruption of serine racemase affects glutamatergic neurotransmission and behavior. Molecular psychiatry, 14(7), 719-727. Bitanihirwe, B. K., Peleg-Raibstein, D., Mouttet, F., Feldon, J., & Meyer, U. (2010). Late Prenatal Immune Activation in Mice Leads to Behavioral and Neurochemical Abnormalities Relevant to the Negative Symptoms of Schizophrenia. Neuropsychopharmacology, 35(12), 2462-2478. https://doi.org/10.1038/npp.2010.129 Connor, C. M., Dincer, A., Straubhaar, J., Galler, J. R., Houston, I. B., & Akbarian, S. (2012, 2012/09/01/). Maternal immune activation alters behavior in adult offspring, with subtle changes in the cortical transcriptome and epigenome. Schizophrenia Research, 140(1), 175-184. https://doi.org/https://doi.org/10.1016/j.schres.2012.06.037 da Silveira, V. T., Medeiros, D. C., Ropke, J., Guidine, P. A., Rezende, G. H., Moraes, M. F., Mendes, E. M., Macedo, D., Moreira, F. A., & de Oliveira, A. C. (2017, May). Effects of early or late prenatal immune activation in mice on behavioral and neuroanatomical abnormalities relevant to schizophrenia in the adulthood. Int J Dev Neurosci, 58, 1-8. https://doi.org/10.1016/j.ijdevneu.2017.01.009 Luo, D.-Z. (2022). Investigation the Effects of a Novel NMDA Receptor Modulator on Schizophrenia and Multiple System Atrophy: From preclinical Models to Patients Matveeva, T. M., Pisansky, M. T., Young, A., Miller, R. F., & Gewirtz, J. C. (2019). Sociality deficits in serine racemase knockout mice. Brain and Behavior, 9(10). https://doi.org/10.1002/brb3.1383 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91870 | - |
dc.description.abstract | 思覺失調症為一種嚴重的心理疾患,且影響全球約1%的人口,但其致病機轉至今仍尚未被透徹瞭解。過往研究已指出有多種因素可能共同導致思覺失調症,包括遺傳因子和環境因子等等。而思覺失調症的雙重打擊假說提出,遺傳缺損結合早期發展中的環境刺激,最終可能導致思覺失調症發病。在這個前提之下,我們的研究欲以小鼠為模式探討思覺失調症其中之一候選基因─絲氨酸消旋酶(SR)缺損以及產前聚肌胞苷酸(poly(I:C))所導致免疫活化引起的胎兒感染之間可能存在的交互作用。我們的研究共包括了三個實驗,實驗組為SR雜合子孕鼠在懷孕的第17.5天注射一劑聚肌胞苷酸(5mg/kg)之子代,對照組則是予以生理食鹽水。在實驗1中我們發現不論基因型在聚肌胞苷酸注射6小時過後,小鼠胚胎全腦中的三種促炎性細胞因子(IL-6,IL-1β和TNF-α)之蛋白質水平皆有升高。在實驗2中,則是以胚胎時期接受過聚肌胞苷酸或生理食鹽水介入的SR新生小鼠(實驗2.1)和成鼠(實驗2.2)執行一系列的行為測試。在新生期所進行的一組行為測驗包括翻身反射 (P3-7),地性反射(P3-7),抓握反射(P5-7)和開闊場測試(P26)。產前接觸聚肌胞苷酸導致其神經運動功能的發展延遲,特別是在SR同合子新生小鼠。在成年期,相同的小鼠群體被測試以評估其負性和認知功能。我們在成鼠(P80及以上)進行了另一組行為測驗,包括開闊場測試、自發交替探索實驗、新物件辨識測驗、注意力測試、社交測試和痕跡恐懼制約測試。而聚肌胞苷酸影響了特定基因型的SR小鼠,明顯導致其運動活動、長期記憶和情境恐懼記憶的缺失。在實驗3中,我們測試另一個群體的新生期小鼠,以了解一種新型D-氨基酸氧化酶抑制劑(RS-D7)可能的拯救效果。而我們的結果發現,不論基因型,RS-D7有可能改善由聚肌胞苷酸引起的發展延遲。本研究試圖釐清思覺失調症病程中遺傳因素和環境因素複雜的交互作用,提供了有關產前免疫活化和SR基因突變在其中扮演腳色的重要發現。而造成這些行為差異背後的神經機轉仍需更進一步實驗研究生化層次的腦部變化才能更加了解。 | zh_TW |
dc.description.abstract | Schizophrenia is a serious mental disorder that is affecting about 1% of the global population, but its pathophysiology is unknown. Previous studies have identified multiple factors, including genetic and environmental, that make contribution to the pathology of schizophrenia. The two-hit hypothesis of schizophrenia posits that schizophrenic symptoms are caused by a genetic susceptibility as well as early developmental injury. In this context, our study investigates potential epistatic interactions between mutations in the serine racemase (SR) gene, a candidate gene for schizophrenia, and prenatal polyinosinic acid-polycytidylic acid (poly(I:C))-induced immune activation, i.e., gestational infections during early development, using mice as a model. SR heterozygous pregnant dams received either a single injection of poly(I:C) (5 mg/kg) or a vehicle on gestation day 17.5, and three experiments were included. In Exp.1, our results revealed that protein levels of three pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were elevated in fetal brains 6 hours after poly(I:C) injection, regardless of genotypes. In Exp.2, a battery of behavioral tests was conducted on poly(I:C)- or saline-treated SR offspring in neonates (Exp.2.1) and adulthood (Exp.2.2). During the neonatal period, a set of behavioral tests, including righting reflex (P3-7), geotaxis reflex (P3-7), grasping reflex (P5-7), and open field task (P26), was conducted. Prenatal poly(I:C) exposure led to developmental delays in neuromotor functions, particularly in SR HOM mice during the neonatal period. In adulthood, the same cohort of mice was tested to assess their negative and cognitive functions. Another set of behavioral tests was carried out in adult mice (P80 upwards), including the open field test, spontaneous alternation test, novel object recognition test, object-based attention test, 3-chamber social test, and trace fear conditioning test. In adulthood, poly(I:C) challenges notably affect locomotor activity, long-term memory, and contextual fear memory in adult SR mice of specific genotypes, respectively. A separate cohort of poly(I:C)- or saline-treated SR neonates was evaluated to understand the potential rescue effect of a novel D-amino acid oxidase inhibitor (RS-D7) in Exp. 3. Our findings indicated that RS-D7 had the potential to ameliorate developmental delays induced by poly(I:C) exposure, irrespective of genotypes. This study shed light on the intricate interplay of genetic and environmental factors in schizophrenia, offering valuable insights into the role of prenatal immune challenges and SR mutations. To further examine neural mechanisms underlying behavioral alterations, brain alterations at the biochemical level deserved further study. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-26T16:12:29Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-26T16:12:29Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………….i
誌謝 ii 摘要 iii Abstract v List of Tables and Figures xi Chapter 1. Introduction 1 1.1 An overview of schizophrenia 1 1.1.1 Diverse symptomatology in schizophrenia 1 1.1.2 Etiology of schizophrenia 2 1.2 Genetic factors in schizophrenia 5 1.2.1 The implications of NMDAR and D-serine for schizophrenia etiology 5 1.2.2 Role of SR in schizophrenia 6 1.2.3 Animal model with NMDAR deficiency: SR mutant mice 7 1.2.4 Indirect GMS modulators: D-amino acid oxidase inhibitor (DAOI), a novel approach to NMDAR modulation in the treatment of schizophrenia 8 1.3 Early-life infections and Inflammations in schizophrenia 9 1.3.1 Schizophrenia risk factors 9 1.3.2 Maternal immune activation as a risk factor for schizophrenia pathogenesis 10 1.3.3 Modeling maternal immune activation in animal to uncover the underlying neurodevelopmental mechanisms 11 1.3.4 Mouse models of maternal immune activation induced by poly(I:C) 12 1.3.5 The timing of poly(I:C)-induced maternal immune activation determines consequent brain and behavioral phenotypes 14 1.4 Schizophrenia's two-hit theory 15 1.4.1 The genetic and environmental factors interplay in schizophrenia 16 1.5 Modeling schizophrenia in animals 17 1.6 Aims of the current study 18 Chapter 2. Materials and Methods 24 2.1 Animals 24 2.2 Timed mating strategy 25 2.3 Maternal immune activation induced by poly(I:C) injection 25 Exp.1: Examination of pro-inflammatory cytokines to validate the acute effects of poly(I:C) 26 Exp.2: Behavior phenotyping of the offspring from poly(I:C)- or saline-treated mothers 28 Exp. 2.1: Evaluation of sensorimotor developmental milestones in pups 29 Exp. 2.2: To evaluate the adult behavioral phenotypes in SR mutant mice with prenatal immune activation. 31 Exp. 3: To evaluate the potential rescue effect on neuromotor functions with a novel d-amino acid oxidase inhibitor, RS-D7 38 2.4 Statistics and data analyses 40 Chapter 3. Results 41 3.1 Experiment 1: Fetal brain cytokine responses 6 hours after poly(I:C)-induced immune challenge on E17.5 41 3.2 Experiment 2.1: Evaluation of sensorimotor developmental milestones in pups 43 3.3 Experiment 2.2: Behavioral phenotyping in adult mice 50 3.4 Experiment 3: The potential rescue effect on neuromotor development delay with RS-D7 57 Chapter 4. Discussion 61 4.1 Summary of results 61 4.2 Elevation of cytokines induced by poly(I:C) injection 62 4.3 A comparison of behavioral phenotyping results between our current findings and previous studies 63 4.4 Possible convergence of SR and poly(I:C) on NMDAR 66 4.5 Limitations of current study 68 4.6 Contributions and conclusion 69 Table and Figures 71 References 112 | - |
dc.language.iso | en | - |
dc.title | 以思覺失調症小鼠為模式探討聚胞苷酸誘導母體免疫激活和絲氨酸消旋酶缺損間可能的交互作用 | zh_TW |
dc.title | Investigation of possible epistatic interactions between poly(I:C)-induced maternal immune activation and serine racemase mutations in mouse model of schizophrenia | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 詹銘煥;黃憲松;李立仁 | zh_TW |
dc.contributor.oralexamcommittee | Ming-Huan Chan;Hsien-Sung Huang;Li-Jen Lee | en |
dc.subject.keyword | 思覺失調症,絲氨酸消旋酶,聚肌胞苷酸,產前免疫活化,小鼠模式,雙重打擊假說, | zh_TW |
dc.subject.keyword | schizophrenia,serine racemase,poly(I:C),maternal immune activation,mouse model,two-hit hypothesis, | en |
dc.relation.page | 129 | - |
dc.identifier.doi | 10.6342/NTU202304492 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-12-12 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 腦與心智科學研究所 | - |
顯示於系所單位: | 腦與心智科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 8.29 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。