Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91859
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉懷勝zh_TW
dc.contributor.advisorHwai-Shen Liuen
dc.contributor.author陳昱嘉zh_TW
dc.contributor.authorYu-Chia Chenen
dc.date.accessioned2024-02-23T16:19:44Z-
dc.date.available2024-02-24-
dc.date.copyright2024-02-23-
dc.date.issued2023-
dc.date.submitted2023-07-05-
dc.identifier.citationArenas, C., Ricaurte, L., Figueredo, M., & Cobo, M. (2014). CO2 capture via barium carbonate formation after its absorption with ammonia in a pilot scale column. Chemical Engineering Journal, 254, 220-229.
Aroonwilas, A., & Tontiwachwuthikul, P. (1997). High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP). Separation and Purification Technology, 12(1), 67-79.
Baird R., Eaton A. and Rice E.: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association & Water Pollution Control Federation, , 23th ed., Method 4500 –SO_4^(2-)E, pp.4 - 199 ~ 4 – 200, APHA, Washington, D.C., USA,2017.
Bury, C., & Redd, R. (1933). 272. The system sodium carbonate–calcium carbonate–water. Journal of the Chemical Society (Resumed), 1160-1162.
Camp, T. R. (1936). A study of the rational design of settling tanks. Sewage Works Journal, 742-758.
Chakravarti, S., Gupta, A., & Hunek, B. (2001). Advanced technology for the capture of carbon dioxide from flue gases. First National Conference on Carbon Sequestration, Washington, DC,
Chen, Y.-H. H. (2013). Non-nuclear, low-carbon, or both? The case of Taiwan. Energy Economics, 39, 53-65.
Cheng, H.-H., & Tan, C.-S. (2009). Carbon dioxide capture by blended alkanolamines in rotating packed bed. Energy Procedia, 1(1), 925-932.
Cortes Garcia, G. E., van der Schaaf, J., & Kiss, A. A. (2017). A review on process intensification in HiGee distillation. Journal of Chemical Technology & Biotechnology, 92(6), 1136-1156.
Dashti, M. S. A., & Abolhasani, M. (2020). Intensification of CO₂ capture by monoethanolamine solution containing TiO2 nanoparticles in a rotating packed bed. International Journal of Greenhouse Gas Control, 94, 102933.
de Riva, J., Suarez-Reyes, J., Moreno, D., Díaz, I., Ferro, V., & Palomar, J. (2017). Ionic liquids for post-combustion CO2 capture by physical absorption: Thermodynamic, kinetic and process analysis. International Journal of Greenhouse Gas Control, 61, 61-70.
Goel, C., Mohan, S., & Dinesha, P. (2021). CO2 capture by adsorption on biomass-derived activated char: A review. Science of The Total Environment, 798, 149296.
Guo, F., Zheng, C., Guo, K., Feng, Y., & Gardner, N. C. (1997). Hydrodynamics and mass transfer in cross-flow rotating packed bed. Chemical Engineering Science, 52(21-22), 3853-3859.
Jassim, M. S., Rochelle, G., Eimer, D., & Ramshaw, C. (2007). Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Industrial & engineering chemistry research, 46(9), 2823-2833.
Krauβ, M., & Rzehak, R. (2017). Reactive absorption of CO2 in NaOH: Detailed study of enhancement factor models. Chemical Engineering Science, 166, 193-209.
Levenspiel O.: Chemical Reaction Engineering. John Wiley & Sons, 3rd ed, 1999, 257~266
Lin, C.-C., & Chen, B.-C. (2007). Carbon dioxide absorption into NaOH solution in a cross-flow rotating packed bed. Journal of Industrial and Engineering Chemistry, 13(7), 1083-1090.
Lin, C.-C., & Chen, B.-C. (2011). Carbon dioxide absorption in a cross-flow rotating packed bed. Chemical engineering research and design, 89(9), 1722-1729.
Lin, C.-C., Chen, B.-C., Chen, Y.-S., & Hsu, S.-K. (2008). Feasibility of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams. Separation and Purification Technology, 62(3), 507-512.
Lin, C.-C., Liu, W.-T., & Tan, C.-S. (2003). Removal of carbon dioxide by absorption in a rotating packed bed. Industrial & engineering chemistry research, 42(11), 2381-2386.
Littman, F., & Gaspari, H. (1956). Causticization of carbonate solutions. Industrial & Engineering Chemistry, 48(3), 408-410.
Liu, H., & Azimi, G. (2022a). Method for producing high-purity LiOH⋅ H2O using Ba (OH)2. In Rare metal technology 2022 (pp. 289-296). Springer.
Liu, H., & Azimi, G. (2022b). Production of Battery Grade Lithium Hydroxide Monohydrate Using Barium Hydroxide Causticizing Agent. Resources, Conservation and Recycling, 179, 106115.
McCabe W., Smith J. and Harriott P.: Unit Operations of Chemical Engineering. McGraw Hill Education, 7th ed, 2004, 172
Mondal, M. K., Balsora, H. K., & Varshney, P. (2012). Progress and trends in CO2 capture/separation technologies: A review. Energy, 46(1), 431-441.
Neumann, K., Gladyszewski, K., Groß, K., Qammar, H., Wenzel, D., Górak, A., & Skiborowski, M. (2018). A guide on the industrial application of rotating packed beds. Chemical engineering research and design, 134, 443-462.
Nohlgren, I. (2004). Non-conventional causticization technology: a review. Nordic Pulp & Paper Research Journal, 19(4), 470-480.
Olsen, J. C., & Direnga, O. G. (1941). Settling rate of calcium carbonate in the causticizing of soda ash. Industrial & Engineering Chemistry, 33(2), 204-218.
Oschatz, M., & Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents. Energy & Environmental Science, 11(1), 57-70.
Perry R.: Perry’s Chemical Engineers’ Handbook. McGraw-Hill, 7th ed, 1997.
Podbielniak WJ. Centrifugal countercurrent contact apparatus. US Patent 2,004,011 (1935).
Rumble J.: CRC Handbook of Chemistry and Physics. CRC Press, 87th ed, 2006, 8-118
Shen, M., Tong, L., Yin, S., Liu, C., Wang, L., Feng, W., & Ding, Y. (2022). Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review. Separation and Purification Technology, 121734.
Shkol’nikov, E. (2004). Thermodynamic calculation of the solubility of solid hydroxides M(OH)2 in water and alkaline media. Russian journal of applied chemistry, 77, 1255-1258.
Tan, C.-S., & Chen, J.-E. (2006). Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and Purification Technology, 49(2), 174-180.
Wang, M., Lawal, A., Stephenson, P., Sidders, J., & Ramshaw, C. (2011). Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chemical engineering research and design, 89(9), 1609-1624.
Yagi, H., Nagashima, S., & Hikita, H. (1988). Semibatch precipitation accompanying gas-liquid reaction. Chemical Engineering Communications, 65(1), 109-119.
Yoo, M., Han, S.-J., & Wee, J.-H. (2013). Carbon dioxide capture capacity of sodium hydroxide aqueous solution. Journal of environmental management, 114, 512-519.
Yu, C.-H., Cheng, H.-H., & Tan, C.-S. (2012). CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. International Journal of Greenhouse Gas Control, 9, 136-147.
Yu, C.-H., Huang, C.-H., & Tan, C.-S. (2012). A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research, 12(5), 745-769.
黃微雅 (2020). 旋轉填充床中氫氧化鈉/氫氧化鈣吸收二氧化碳之程序-原位吸收劑再生及循環. 臺灣大學化學工程學研究所學位論文
經濟部能源局(2022). 110年度我國燃料燃燒二氧化碳排放統計與分析
蔡宗熹 (2021). 旋轉填充床中以氫氧化鈉吸收二氧化碳及吸收劑再生.臺灣大學化學工程學研究所學位論文
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91859-
dc.description.abstract面對如何減少化石燃料所排放的溫室氣體問題及達成碳中和的目標,如何在火力發電過程中捕捉二氧化碳以及減少其排放量為近年來最重要的課題之一。本研究方向內容為選用氫氧化鈉水溶液作為吸收劑來吸收二氧化碳,結合超重力旋轉填充床之技術,進一步提升質傳以及吸收效果,同時透過連續添加氫氧化鋇於進料桶的方式進行吸收劑再生之程序,並利用碳酸鋇與水密度差大的特性,透過增設整流牆及導流牆於沉降槽中,有效將循環系統中的固體顆粒與吸收劑分離,使得吸收劑再次流入旋轉填充床中不因固體顆粒含量過高而造成吸收程序中斷。

實驗結果顯示,碳酸根濃度為影響吸收及再生之最不利因素,因此可透過縮短添加再生劑時間間隔、降低液體流量來掌控在進料桶的滯留時間、添加過量再生劑及預先溶解再生劑等方式來提升再生效果。

本研究目前得到RPB循環系統的最適化的操作條件分別為: 設定進料桶與沉降槽體積各為2 L、吸收劑濃度為0.7 M情況下,操作時需每隔10分中添加0.064 M (過量24%)預先溶解的Ba(OH)_2於進料桶中即可有效消除碳酸根及延長系統操作時間。而當系統pH值大於13.74時調高液體流量至200 mL/min,可得較好的吸收效果;當系統pH值小於13.74時可調低液體流量至100 mL/min,會有較好的再生效果進而延長吸收時間。
zh_TW
dc.description.abstractAiming at the target of carbon neutrality and net zero emission, the process of reducing and capturing carbon dioxide remains a crucial issue in recent years. This research used sodium hydroxide as an absorbent in a rotating packed bed (RPB) of high mass transfer to absorb carbon dioxide; simultaneously, adding barium hydroxide periodically in the feeding tank to regenerate sodium hydroxide by transforming carbonate ion into barium carbonate. With proper baffle design in the sedimentation tank, the precipitate(barium carbonate) could be separated from the process.

According to the results of the experiment, sodium carbonate is considered an adverse effect on both absorption and regeneration. Therefore, this research investigated several possible improvements, such as shorter the regenerant additional time intervals, lower the liquid flow rate to ensure enough residence time for regeneration, an excess amount of regenerant, and adding the regenerant in an aqueous state.

The optimal operating method of this RPB circulating system in this research was found to be a 2 L feeding tank connected with a 2 L sedimentation tank, the initial concentration of the absorber is 0.7 M, adding pre-dissolved 0.064 M of Ba(OH)_2 in the feeding tank per 10 minutes. When the concentration of hydroxide ion was more than 0.55 M, the liquid flow rate was set to 200 mL/min for better absorbance; when the concentration of hydroxide ion was less than 0.55 M, set the liquid flow rate to 100 mL/min for better regeneration.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:19:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-23T16:19:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
摘要 II
ABSTRACT III
目 錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
第二章 文獻回顧 2
2-1 二氧化碳捕捉技術 2
2-1.1 物理吸收 2
2-1.2 化學吸收 3
2-1.3 物理吸附 4
2-1.4 低溫冷凝 4
2-1.5 薄膜技術 4
2-1.6 強鹼吸收二氧化碳反應機制 6
2-2 旋轉填充床 8
2-2.1 旋轉填充床之構造與設計 9
2-2.2 旋轉填充床中以化學吸收二氧化碳 10
2-3 苛化反應 16
2-3.1 苛化反應的平衡常數 17
2-3.2 碳酸根對苛化反應的影響 20
2-3.3 氫氧化鋇在苛化反應中的應用 22
2-3.4 RPB循環系統-原位再生 27
2-3.5 RPB循環系統-異地再生 29
第三章 實驗設備與分析方法 34
3-1 實驗裝置 34
3-1.1 旋轉填充床 34
3-1.2 沉降槽 35
3-2 實驗藥品、儀器與實驗流程 36
3-2.1 實驗藥品 36
3-2.2 實驗儀器 36
3-2.3 實驗流程 37
3-3 化學反應 40
3-4 實驗分析 42
3-4.1 吸收百分比Abs (absorption percentage) 42
3-4.2 吸收百分比A (absorbance) 42
3-4.3 轉化率 43
3-5 物性資料 44
第四章 實驗結果與討論 45
4-1 固體顆粒分離 46
4-1.1 固體顆粒含量校正曲線 46
4-1.2 沉降槽設計 49
4-1.3 分離效果 50
4-2 循環系統操作條件對再生效果的影響 52
4-2.1 碳酸根濃度對再生效果的影響 53
4-2.2 再生劑添加頻率對RPB循環系統再生效果之影響 54
4-2.3 進料桶體積對RPB循環系統再生效果之影響 56
4-2.4 液體流量對RPB循環系統再生效果之影響 61
4-2.5 再生劑添加量對RPB循環系統再生效果之影響 66
4-2.6 再生劑之添加方式對RPB循環系統再生效果之影響 72
4-3 RPB循環系統最適化操作的選擇 75
4-3.1 再生劑添加策略的選擇 76
4-3.2 吸收劑初始濃度的選擇 80
第五章 結論 83
參考文獻 86
符號說明 91
附錄A 以數學推導碳酸根對再生反應轉化率的影響 94
附錄B 以Python模擬循環系統中不同再生劑添加頻率對再生效果的影響 97
附錄C 以Python模擬循環系統中不同再生劑添加量對再生效果的影響 103
-
dc.language.isozh_TW-
dc.subject二氧化碳吸收zh_TW
dc.subject沉降槽zh_TW
dc.subject旋轉填充床zh_TW
dc.subject苛化反應zh_TW
dc.subject氫氧化鋇zh_TW
dc.subjectCO2 absorptionen
dc.subjectsedimentation tanken
dc.subjectbarium hydroxideen
dc.subjectcausticizationen
dc.subjectrotating packed beden
dc.title旋轉填充床中以氫氧化鈉吸收二氧化碳 -氫氧化鋇再生及碳酸鋇分離程序zh_TW
dc.titleCarbon Dioxide Capture by Sodium Hydroxide in a Rotating Packed Bed – Barium Hydroxide Causticizing and Barium Carbonate Separationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳昱劭;江佳穎zh_TW
dc.contributor.oralexamcommitteeYu-Shao Chen;Chia-Ying Chiangen
dc.subject.keyword旋轉填充床,二氧化碳吸收,苛化反應,氫氧化鋇,沉降槽,zh_TW
dc.subject.keywordrotating packed bed,CO2 absorption,causticization,barium hydroxide,,sedimentation tank,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202300980-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2028-07-03-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
4.79 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved