請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91856完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余家利 | zh_TW |
| dc.contributor.advisor | Chia-Li Yu | en |
| dc.contributor.author | 沈玠妤 | zh_TW |
| dc.contributor.author | Chieh-Yu Shen | en |
| dc.date.accessioned | 2024-02-23T16:18:55Z | - |
| dc.date.available | 2024-02-24 | - |
| dc.date.copyright | 2024-02-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-01 | - |
| dc.identifier.citation | Reference
[1] C. Franceschi, M. Bonafe, S. Valensin, F. Olivieri, M. De Luca, E. Ottaviani, G. De Benedictis, Inflamm-aging. An evolutionary perspective on immunosenescence, Ann N Y Acad Sci, 908 (2000) 244-254, https://doi.org/10.1111/j.1749-6632.2000.tb06651.x [2] B.K. Kennedy, S.L. Berger, A. Brunet, J. Campisi, A.M. Cuervo, E.S. Epel, C. Franceschi, G.J. Lithgow, R.I. Morimoto, J.E. Pessin, T.A. Rando, A. Richardson, E.E. Schadt, T. Wyss-Coray, F. Sierra, Geroscience: linking aging to chronic disease, Cell, 159 (2014) 709-713, https://doi.org/10.1016/j.cell.2014.10.039 [3] C. Franceschi, P. Garagnani, P. Parini, C. Giuliani, A. Santoro, Inflammaging: a new immune-metabolic viewpoint for age-related diseases, Nat Rev Endocrinol, 14 (2018) 576-590, https://doi.org/10.1038/s41574-018-0059-4 [4] C. Lopez-Otin, M.A. Blasco, L. Partridge, M. Serrano, G. Kroemer, The hallmarks of aging, Cell, 153 (2013) 1194-1217, https://doi.org/10.1016/j.cell.2013.05.039 [5] S. Lopes-Paciencia, E. Saint-Germain, M.C. Rowell, A.F. Ruiz, P. Kalegari, G. Ferbeyre, The senescence-associated secretory phenotype and its regulation, Cytokine, 117 (2019) 15-22, https://doi.org/10.1016/j.cyto.2019.01.013 [6] H. Nakagami, Cellular senescence and senescence-associated T cells as a potential therapeutic target, Geriatr Gerontol Int, 20 (2020) 97-100, https://doi.org/10.1111/ggi.13851 [7] K. Shimatani, Y. Nakashima, M. Hattori, Y. Hamazaki, N. Minato, PD-1+ memory phenotype CD4+ T cells expressing C/EBPalpha underlie T cell immunodepression in senescence and leukemia, Proc Natl Acad Sci U S A, 106 (2009) 15807-15812, https://doi.org/10.1073/pnas.0908805106 [8] T. Tchkonia, Y. Zhu, J. van Deursen, J. Campisi, J.L. Kirkland, Cellular senescence and the senescent secretory phenotype: therapeutic opportunities, J Clin Invest, 123 (2013) 966-972, https://doi.org/10.1172/JCI64098 [9] S. He, N.E. Sharpless, Senescence in Health and Disease, Cell, 169 (2017) 1000-1011, https://doi.org/10.1016/j.cell.2017.05.015 [10] N.E. Sharpless, C.J. Sherr, Forging a signature of in vivo senescence, Nat Rev Cancer, 15 (2015) 397-408, https://doi.org/10.1038/nrc3960 [11] K. Korybalska, E. Kawka, A. Kusch, F. Aregger, D. Dragun, A. Jorres, A. Breborowicz, J. Witowski, Recovery of senescent endothelial cells from injury, J Gerontol A Biol Sci Med Sci, 68 (2013) 250-257, https://doi.org/10.1093/gerona/gls169 [12] B.Y. Lee, J.A. Han, J.S. Im, A. Morrone, K. Johung, E.C. Goodwin, W.J. Kleijer, D. DiMaio, E.S. Hwang, Senescence-associated beta-galactosidase is lysosomal beta-galactosidase, Aging Cell, 5 (2006) 187-195, https://doi.org/10.1111/j.1474-9726.2006.00199.x [13] P.D. Uchil, A. Nagarajan, P. Kumar, beta-Galactosidase, Cold Spring Harb Protoc, 2017 (2017) pdb top096198, https://doi.org/10.1101/pdb.top096198 [14] G.P. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E.E. Medrano, M. Linskens, I. Rubelj, O. Pereira-Smith, et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc Natl Acad Sci U S A, 92 (1995) 9363-9367, https://doi.org/10.1073/pnas.92.20.9363 [15] V. Bassaneze, A.A. Miyakawa, J.E. Krieger, A quantitative chemiluminescent method for studying replicative and stress-induced premature senescence in cell cultures, Anal Biochem, 372 (2008) 198-203, https://doi.org/10.1016/j.ab.2007.08.016 [16] R.K. Gary, S.M. Kindell, Quantitative assay of senescence-associated beta-galactosidase activity in mammalian cell extracts, Anal Biochem, 343 (2005) 329-334, https://doi.org/10.1016/j.ab.2005.06.003 [17] D. Chakravarti, K.A. LaBella, R.A. DePinho, Telomeres: history, health, and hallmarks of aging, Cell, 184 (2021) 306-322, https://doi.org/10.1016/j.cell.2020.12.028 [18] M.A. Giardini, M. Segatto, M.S. da Silva, V.S. Nunes, M.I. Cano, Telomere and telomerase biology, Prog Mol Biol Transl Sci, 125 (2014) 1-40, https://doi.org/10.1016/B978-0-12-397898-1.00001-3 [19] J.W. Shay, Role of Telomeres and Telomerase in Aging and Cancer, Cancer Discov, 6 (2016) 584-593, https://doi.org/10.1158/2159-8290.CD-16-0062 [20] K. Hu, M. Ghandi, F.W. Huang, Integrated evaluation of telomerase activation and telomere maintenance across cancer cell lines, Elife, 10 (2021) https://doi.org/10.7554/eLife.66198 [21] J. Li, Z. Cai, L.P. Vaites, N. Shen, D.C. Mitchell, E.L. Huttlin, J.A. Paulo, B.L. Harry, S.P. Gygi, Proteome-wide mapping of short-lived proteins in human cells, Mol Cell, 81 (2021) 4722-4735 e4725, https://doi.org/10.1016/j.molcel.2021.09.015 [22] E. Jaul, J. Barron, Age-Related Diseases and Clinical and Public Health Implications for the 85 Years Old and Over Population, Front Public Health, 5 (2017) 335, https://doi.org/10.3389/fpubh.2017.00335 [23] J. Guo, X. Huang, L. Dou, M. Yan, T. Shen, W. Tang, J. Li, Aging and aging-related diseases: from molecular mechanisms to interventions and treatments, Signal Transduct Target Ther, 7 (2022) 391, https://doi.org/10.1038/s41392-022-01251-0 [24] S.K. Mallipattu, J. Uribarri, Advanced glycation end product accumulation: a new enemy to target in chronic kidney disease?, Curr Opin Nephrol Hypertens, 23 (2014) 547-554, https://doi.org/10.1097/MNH.0000000000000062 [25] H. Vlassara, M.R. Palace, Diabetes and advanced glycation endproducts, J Intern Med, 251 (2002) 87-101, https://doi.org/10.1046/j.1365-2796.2002.00932.x [26] H. Vlassara, G.E. Striker, Advanced glycation endproducts in diabetes and diabetic complications, Endocrinol Metab Clin North Am, 42 (2013) 697-719, https://doi.org/10.1016/j.ecl.2013.07.005 [27] R. Singh, A. Barden, T. Mori, L. Beilin, Advanced glycation end-products: a review, Diabetologia, 44 (2001) 129-146, https://doi.org/10.1007/s001250051591 [28] J. Xu, L.J. Chen, J. Yu, H.J. Wang, F. Zhang, Q. Liu, J. Wu, Involvement of Advanced Glycation End Products in the Pathogenesis of Diabetic Retinopathy, Cell Physiol Biochem, 48 (2018) 705-717, https://doi.org/10.1159/000491897 [29] S. Yamagishi, Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes, Exp Gerontol, 46 (2011) 217-224, https://doi.org/10.1016/j.exger.2010.11.007 [30] A. Stirban, T. Gawlowski, M. Roden, Vascular effects of advanced glycation endproducts: Clinical effects and molecular mechanisms, Mol Metab, 3 (2014) 94-108, https://doi.org/10.1016/j.molmet.2013.11.006 [31] S. Del Turco, G. Basta, An update on advanced glycation endproducts and atherosclerosis, Biofactors, 38 (2012) 266-274, https://doi.org/10.1002/biof.1018 [32] P. Acharya, R.R. Talahalli, Aging and Hyperglycemia Intensify Dyslipidemia-Induced Oxidative Stress and Inflammation in Rats: Assessment of Restorative Potentials of ALA and EPA + DHA, Inflammation, 42 (2019) 946-952, https://doi.org/10.1007/s10753-018-0949-6 [33] T. Fulop, G. Dupuis, J.M. Witkowski, A. Larbi, The Role of Immunosenescence in the Development of Age-Related Diseases, Rev Invest Clin, 68 (2016) 84-91, https://www.ncbi.nlm.nih.gov/pubmed/27103044 [34] J. Li, D. Liu, L. Sun, Y. Lu, Z. Zhang, Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective, J Neurol Sci, 317 (2012) 1-5, https://doi.org/10.1016/j.jns.2012.02.018 [35] M.A. Grillo, S. Colombatto, Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases, Amino Acids, 35 (2008) 29-36, https://doi.org/10.1007/s00726-007-0606-0 [36] N. Sasaki, R. Fukatsu, K. Tsuzuki, Y. Hayashi, T. Yoshida, N. Fujii, T. Koike, I. Wakayama, R. Yanagihara, R. Garruto, N. Amano, Z. Makita, Advanced glycation end products in Alzheimer''s disease and other neurodegenerative diseases, Am J Pathol, 153 (1998) 1149-1155, https://doi.org/10.1016/S0002-9440(10)65659-3 [37] A. Chambers, J.J. Bury, T. Minett, C.D. Richardson, C. Brayne, P.G. Ince, P.J. Shaw, C.J. Garwood, P.R. Heath, J.E. Simpson, F.E. Matthews, S.B. Wharton, Advanced Glycation End Product Formation in Human Cerebral Cortex Increases With Alzheimer-Type Neuropathologic Changes but Is Not Independently Associated With Dementia in a Population-Derived Aging Brain Cohort, J Neuropathol Exp Neurol, 79 (2020) 950-958, https://doi.org/10.1093/jnen/nlaa064 [38] J. Dai, H. Chen, Y. Chai, Advanced Glycation End Products (AGEs) Induce Apoptosis of Fibroblasts by Activation of NLRP3 Inflammasome via Reactive Oxygen Species (ROS) Signaling Pathway, Med Sci Monit, 25 (2019) 7499-7508, https://doi.org/10.12659/MSM.915806 [39] M. Negrean, A. Stirban, B. Stratmann, T. Gawlowski, T. Horstmann, C. Gotting, K. Kleesiek, M. Mueller-Roesel, T. Koschinsky, J. Uribarri, H. Vlassara, D. Tschoepe, Effects of low- and high-advanced glycation endproduct meals on macro- and microvascular endothelial function and oxidative stress in patients with type 2 diabetes mellitus, Am J Clin Nutr, 85 (2007) 1236-1243, https://doi.org/10.1093/ajcn/85.5.1236 [40] S. Yamagishi, K. Fukami, T. Matsui, Crosstalk between advanced glycation end products (AGEs)-receptor RAGE axis and dipeptidyl peptidase-4-incretin system in diabetic vascular complications, Cardiovasc Diabetol, 14 (2015) 2, https://doi.org/10.1186/s12933-015-0176-5 [41] K. AnandBabu, P. Sen, N. Angayarkanni, Oxidized LDL, homocysteine, homocysteine thiolactone and advanced glycation end products act as pro-oxidant metabolites inducing cytokine release, macrophage infiltration and pro-angiogenic effect in ARPE-19 cells, PLoS One, 14 (2019) e0216899, https://doi.org/10.1371/journal.pone.0216899 [42] C.Y. Shen, C.H. Lu, C.H. Wu, K.J. Li, Y.M. Kuo, S.C. Hsieh, C.L. Yu, The Development of Maillard Reaction, and Advanced Glycation End Product (AGE)-Receptor for AGE (RAGE) Signaling Inhibitors as Novel Therapeutic Strategies for Patients with AGE-Related Diseases, Molecules, 25 (2020) https://doi.org/10.3390/molecules25235591 [43] H. Vlassara, J. Uribarri, W. Cai, G. Striker, Advanced glycation end product homeostasis: exogenous oxidants and innate defenses, Ann N Y Acad Sci, 1126 (2008) 46-52, https://doi.org/10.1196/annals.1433.055 [44] S. Drinda, S. Franke, C.C. Canet, P. Petrow, R. Brauer, C. Huttich, G. Stein, G. Hein, Identification of the advanced glycation end products N(epsilon)-carboxymethyllysine in the synovial tissue of patients with rheumatoid arthritis, Ann Rheum Dis, 61 (2002) 488-492, https://doi.org/10.1136/ard.61.6.488 [45] R. Vytasek, L. Sedova, V. Vilim, Increased concentration of two different advanced glycation end-products detected by enzyme immunoassays with new monoclonal antibodies in sera of patients with rheumatoid arthritis, BMC Musculoskelet Disord, 11 (2010) 83, https://doi.org/10.1186/1471-2474-11-83 [46] L. Carroll, S. Hannawi, T. Marwick, R. Thomas, Rheumatoid arthritis: links with cardiovascular disease and the receptor for advanced glycation end products, Wien Med Wochenschr, 156 (2006) 42-52, https://doi.org/10.1007/s10354-005-0242-9 [47] L.S. Tam, Q. Shang, E.K. Li, S. Wong, R.J. Li, K.L. Lee, Y.Y. Leung, K.Y. Ying, C.W. Yim, E.W. Kun, M.H. Leung, M. Li, T.K. Li, T.Y. Zhu, R.K. Chui, L. Tseung, S.L. Yu, W.P. Kuan, C.M. Yu, Serum soluble receptor for advanced glycation end products levels and aortic augmentation index in early rheumatoid arthritis--a prospective study, Semin Arthritis Rheum, 42 (2013) 333-345, https://doi.org/10.1016/j.semarthrit.2012.07.002 [48] D.Y. Chen, Y.M. Chen, C.C. Lin, C.W. Hsieh, Y.C. Wu, W.T. Hung, H.H. Chen, J.L. Lan, The potential role of advanced glycation end products (AGEs) and soluble receptors for AGEs (sRAGE) in the pathogenesis of adult-onset still''s disease, BMC Musculoskelet Disord, 16 (2015) 111, https://doi.org/10.1186/s12891-015-0569-3 [49] S.L. Yu, C.K. Wong, C.C. Szeto, E.K. Li, Z. Cai, L.S. Tam, Members of the receptor for advanced glycation end products axis as potential therapeutic targets in patients with lupus nephritis, Lupus, 24 (2015) 675-686, https://doi.org/10.1177/0961203314559631 [50] H.A. Martens, H.L. Nienhuis, S. Gross, G. van der Steege, E. Brouwer, J.H. Berden, R.G. de Sevaux, R.H. Derksen, A.E. Voskuyl, S.P. Berger, G.J. Navis, I.M. Nolte, C.G. Kallenberg, M. Bijl, Receptor for advanced glycation end products (RAGE) polymorphisms are associated with systemic lupus erythematosus and disease severity in lupus nephritis, Lupus, 21 (2012) 959-968, https://doi.org/10.1177/0961203312444495 [51] D. Bobek, D. Grcevic, N. Kovacic, I.K. Lukic, M. Jelusic, The presence of high mobility group box-1 and soluble receptor for advanced glycation end-products in juvenile idiopathic arthritis and juvenile systemic lupus erythematosus, Pediatr Rheumatol Online J, 12 (2014) 50, https://doi.org/10.1186/1546-0096-12-50 [52] C.Y. Ma, J.L. Ma, Y.L. Jiao, J.F. Li, L.C. Wang, Q.R. Yang, L. You, B. Cui, Z.J. Chen, Y.R. Zhao, The plasma level of soluble receptor for advanced glycation end products is decreased in patients with systemic lupus erythematosus, Scand J Immunol, 75 (2012) 614-622, https://doi.org/10.1111/j.1365-3083.2012.02691.x [53] L. Lan, F. Han, X. Lang, J. Chen, Monocyte Chemotactic Protein-1, Fractalkine, and Receptor for Advanced Glycation End Products in Different Pathological Types of Lupus Nephritis and Their Value in Different Treatment Prognoses, PLoS One, 11 (2016) e0159964, https://doi.org/10.1371/journal.pone.0159964 [54] C.Y. Tsai, C.Y. Shen, H.T. Liao, K.J. Li, H.T. Lee, C.S. Lu, C.H. Wu, Y.M. Kuo, S.C. Hsieh, C.L. Yu, Molecular and Cellular Bases of Immunosenescence, Inflammation, and Cardiovascular Complications Mimicking "Inflammaging" in Patients with Systemic Lupus Erythematosus, Int J Mol Sci, 20 (2019) https://doi.org/10.3390/ijms20163878 [55] K. de Leeuw, R. Graaff, R. de Vries, R.P. Dullaart, A.J. Smit, C.G. Kallenberg, M. Bijl, Accumulation of advanced glycation endproducts in patients with systemic lupus erythematosus, Rheumatology (Oxford), 46 (2007) 1551-1556, https://doi.org/10.1093/rheumatology/kem215 [56] R.M. Ruggeri, M.C. Barbalace, M.T. Cristani, A. Alibrandi, S. Giovinazzo, G. Giuffrida, F. Trimarchi, S. Cannavo, A. Campenni, Serum levels of advanced glycation end products (AGEs) are increased and their soluble receptor (sRAGE) reduced in Hashimoto''s thyroiditis, J Endocrinol Invest, 43 (2020) 1337-1342, https://doi.org/10.1007/s40618-020-01231-7 [57] R.M. Ruggeri, T.M. Vicchio, M. Cristani, R. Certo, D. Caccamo, A. Alibrandi, S. Giovinazzo, A. Saija, A. Campenni, F. Trimarchi, S. Gangemi, Oxidative Stress and Advanced Glycation End Products in Hashimoto''s Thyroiditis, Thyroid, 26 (2016) 504-511, https://doi.org/10.1089/thy.2015.0592 [58] A. Hatzioannou, I. Kanistras, E. Mantzou, E. Anastasiou, M. Peppa, V. Sarantopoulou, P. Lymberi, M. Alevizaki, Effect of Advanced Glycation End Products on Human Thyroglobulin''s Antigenicity as Identified by the Use of Sera from Patients with Hashimoto''s Thyroiditis and Gestational Diabetes Mellitus, Int J Endocrinol, 2015 (2015) 849615, https://doi.org/10.1155/2015/849615 [59] K. Kopec-Pyciarz, I. Makulska, D. Zwolinska, L. Laczmanski, W. Baran, Skin Autofluorescence, as a Measure of AGE Accumulation in Individuals Suffering from Chronic Plaque Psoriasis, Mediators Inflamm, 2018 (2018) 4016939, https://doi.org/10.1155/2018/4016939 [60] L.C. Maillard, The action of amino acids on sugar; The formation of melanoidin by a methodic route., Cr Hebd Acad Sci, 154 (1912) 66-68, <Go to ISI>://WOS:000200951300022 [61] C. Luevano-Contreras, K. Chapman-Novakofski, Dietary advanced glycation end products and aging, Nutrients, 2 (2010) 1247-1265, https://doi.org/10.3390/nu2121247 [62] M.W. Poulsen, R.V. Hedegaard, J.M. Andersen, B. de Courten, S. Bugel, J. Nielsen, L.H. Skibsted, L.O. Dragsted, Advanced glycation endproducts in food and their effects on health, Food Chem Toxicol, 60 (2013) 10-37, https://doi.org/10.1016/j.fct.2013.06.052 [63] C. Luevano-Contreras, K. Chapman-Novakofski, Dietary Advanced Glycation End Products and Aging, Nutrients, 2 (2010) 1247-1265, https://doi.org/10.3390/nu2121247 [64] M.W. Poulsen, R.V. Hedegaard, J.M. Andersen, B. de Courten, S. Bugel, J. Nielsen, L.H. Skibsted, L.O. Dragsted, Advanced glycation endproducts in food and their effects on health, Food Chem Toxicol, 60 (2013) 10-37, https://doi.org/10.1016/j.fct.2013.06.052 [65] H. Vlassara, J. Uribarri, W.J. Cai, G. Striker, Advanced glycation end product homeostasis - Exogenous oxidants and innate defenses, Ann Ny Acad Sci, 1126 (2008) 46-52, https://doi.org/10.1196/annals.1433.055 [66] C. Ott, K. Jacobs, E. Haucke, A.N. Santos, T. Grune, A. Simm, Role of advanced glycation end products in cellular signaling, Redox Biol, 2 (2014) 411-429, https://doi.org/10.1016/j.redox.2013.12.016 [67] A. Gugliucci, Formation of Fructose-Mediated Advanced Glycation End Products and Their Roles in Metabolic and Inflammatory Diseases, Adv Nutr, 8 (2017) 54-62, https://doi.org/10.3945/an.116.013912 [68] J.W. Baynes, The Maillard Reaction: Chemistry, Biochemistry and Implications By Harry Nursten (The University of Reading, Reading, U.K.). Royal Society of Chemistry: Cambridge. 2005. xii + 214 pp. $199.00. ISBN 0-85404-964-9, Journal of the American Chemical Society, 127 (2005) 14527-14528, https://doi.org/10.1021/ja059794d [69] S.R. Thorpe, J.W. Baynes, Maillard reaction products in tissue proteins: New products and new perspectives, Amino Acids, 25 (2003) 275-281, https://doi.org/10.1007/s00726-003-0017-9 [70] K. Byun, Y. Yoo, M. Son, J. Lee, G.B. Jeong, Y.M. Park, G.H. Salekdeh, B. Lee, Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases, Pharmacol Ther, 177 (2017) 44-55, https://doi.org/10.1016/j.pharmthera.2017.02.030 [71] N.C. Chilelli, S. Burlina, A. Lapolla, AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view, Nutr Metab Cardiovasc Dis, 23 (2013) 913-919, https://doi.org/10.1016/j.numecd.2013.04.004 [72] N. Nakamura, G. Hasegawa, H. Obayashi, M. Yamazaki, M. Ogata, K. Nakano, T. Yoshikawa, A. Watanabe, S. Kinoshita, A. Fujinami, M. Ohta, Y. Imamura, T. Ikeda, Increased concentration of pentosidine, an advanced glycation end product, and interleukin-6 in the vitreous of patients with proliferative diabetic retinopathy, Diabetes Res Clin Pract, 61 (2003) 93-101, https://www.ncbi.nlm.nih.gov/pubmed/12951277 [73] N. Katakami, Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus, J Atheroscler Thromb, 25 (2018) 27-39, https://doi.org/10.5551/jat.RV17014 [74] B.I. Hudson, Y.P. Moon, A.Z. Kalea, M. Khatri, C. Marquez, A.M. Schmidt, M.C. Paik, M. Yoshita, R.L. Sacco, C. DeCarli, C.B. Wright, M.S. Elkind, Association of serum soluble receptor for advanced glycation end-products with subclinical cerebrovascular disease: the Northern Manhattan Study (NOMAS), Atherosclerosis, 216 (2011) 192-198, https://doi.org/10.1016/j.atherosclerosis.2011.01.024 [75] F. Zeng, Y. Liu, W. Huang, H. Qing, T. Kadowaki, H. Kashiwazaki, J. Ni, Z. Wu, Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid beta accumulation after Porphyromonas gingivalis infection, J Neurochem, 10.1111/jnc.15096 (2020) https://doi.org/10.1111/jnc.15096 [76] T. Kislinger, N. Tanji, T. Wendt, W. Qu, Y. Lu, L.J. Ferran, Jr., A. Taguchi, K. Olson, L. Bucciarelli, M. Goova, M.A. Hofmann, G. Cataldegirmen, V. D''Agati, M. Pischetsrieder, D.M. Stern, A.M. Schmidt, Receptor for advanced glycation end products mediates inflammation and enhanced expression of tissue factor in vasculature of diabetic apolipoprotein E-null mice, Arterioscler Thromb Vasc Biol, 21 (2001) 905-910, https://doi.org/10.1161/01.atv.21.6.905 [77] S. Del Turco, G. Basta, An update on advanced glycation endproducts and atherosclerosis, Biofactors, 38 (2012) 266-274, https://doi.org/10.1002/biof.1018 [78] S. Horiuchi, Y. Sakamoto, M. Sakai, Scavenger receptors for oxidized and glycated proteins, Amino Acids, 25 (2003) 283-292, https://doi.org/10.1007/s00726-003-0029-5 [79] W.J. Cai, J.C. He, L. Zhu, X. Chen, G.E. Striker, H. Vlassara, AGE-receptor-1 counteracts cellular oxidant stress induced by AGEs via negative regulation of p66(shc)-dependent FKHRL1 phosphorylation, Am J Physiol-Cell Ph, 294 (2008) C145-C152, https://doi.org/10.1152/ajpcell.00350.2007 [80] L.M. Senatus, A.M. Schmidt, The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases, Front Genet, 8 (2017) https://doi.org/ARTN 187 10.3389/fgene.2017.00187 [81] G. Sorci, F. Riuzzi, I. Giambanco, R. Donato, RAGE in tissue homeostasis, repair and regeneration, Bba-Mol Cell Res, 1833 (2013) 101-109, https://doi.org/10.1016/j.bbamcr.2012.10.021 [82] D. Sanajou, A.G. Haghjo, H. Argani, S. Aslani, AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions, European Journal of Pharmacology, 833 (2018) 158-164, https://doi.org/10.1016/j.ejphar.2018.06.001 [83] A. Gupta, A.K. Tripathi, R.L. Tripathi, S.V. Madhu, B.D. Banerjee, Advanced glycosylated end products-mediated activation of polymorphonuclear neutrophils in diabetes mellitus and associated oxidative stress, Indian J Biochem Bio, 44 (2007) 373-378, <Go to ISI>://WOS:000253137500015 [84] S. Bansal, M. Siddarth, D. Chawla, B.D. Banerjee, S.V. Madhu, A.K. Tripathi, Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro, Mol Cell Biochem, 361 (2012) 289-296, https://doi.org/10.1007/s11010-011-1114-9 [85] H. Lu, S. Xu, X. Liang, Y. Dai, Z. Huang, Y. Ren, J. Lin, X. Liu, Advanced Glycated End Products Alter Neutrophil Effect on Regulation of CD4+ T Cell Differentiation Through Induction of Myeloperoxidase and Neutrophil Elastase Activities, Inflammation, 42 (2019) 559-571, https://doi.org/10.1007/s10753-018-0913-5 [86] K. Nonaka, Y. Kajiura, M. Bando, E. Sakamoto, Y. Inagaki, J.H. Lew, K. Naruishi, T. Ikuta, K. Yoshida, T. Kobayashi, H. Yoshie, T. Nagata, J. Kido, Advanced glycation end-products increase IL-6 and ICAM-1 expression via RAGE, MAPK and NF-kappaB pathways in human gingival fibroblasts, J Periodontal Res, 53 (2018) 334-344, https://doi.org/10.1111/jre.12518 [87] T. van der Lugt, A.R. Weseler, W.A. Gebbink, M.F. Vrolijk, A. Opperhuizen, A. Bast, Dietary Advanced Glycation Endproducts Induce an Inflammatory Response in Human Macrophages in Vitro, Nutrients, 10 (2018) https://doi.org/10.3390/nu10121868 [88] C.Y. Shen, C.H. Wu, C.H. Lu, Y.M. Kuo, K.J. Li, S.C. Hsieh, C.L. Yu, Advanced Glycation End Products of Bovine Serum Albumin Suppressed Th1/Th2 Cytokine but Enhanced Monocyte IL-6 Gene Expression via MAPK-ERK and MyD88 Transduced NF-kappaB p50 Signaling Pathways, Molecules, 24 (2019) https://doi.org/10.3390/molecules24132461 [89] C. Aldecoa, J.V. Llau, X. Nuvials, A. Artigas, Role of albumin in the preservation of endothelial glycocalyx integrity and the microcirculation: a review, Ann Intensive Care, 10 (2020) 85, https://doi.org/10.1186/s13613-020-00697-1 [90] S. Bihari, J. Bannard-Smith, R. Bellomo, Albumin as a drug: its biological effects beyond volume expansion, Crit Care Resusc, 22 (2020) 257-265, <Go to ISI>://WOS:000612535300013 [91] H. Zoellner, M. Hofler, R. Beckmann, P. Hufnagl, E. Vanyek, E. Bielek, J. Wojta, A. Fabry, S. Lockie, B.R. Binder, Serum albumin is a specific inhibitor of apoptosis in human endothelial cells, J Cell Sci, 109 (1996) 2571-2580, <Go to ISI>://WOS:A1996VQ25100016 [92] Y. Ishima, Albumin-Based Nitric Oxide Traffic System for the Treatment of Intractable Cancers, Biol Pharm Bull, 40 (2017) 128-134, https://doi.org/DOI 10.1248/bpb.b16-00867 [93] W.A. Nasif, M.H. Mukhtar, H.M. El-Emshaty, A.H. Alwazna, Redox State of Human Serum Albumin and Inflammatory Biomarkers in Hemodialysis Patients with Secondary Hyperparathyroidism During Oral Calcitriol Supplementation for Vitamin D, Open Med Chem J, 12 (2018) 98-110, https://doi.org/10.2174/1874104501812010098 [94] F.G. Zampieri, J.A. Kellum, M. Park, O.T. Ranzani, H.V. Barbeiro, H.P. de Souza, L.M.D. Neto, F.P. da Silva, Relationship between acid-base status and inflammation in the critically ill, Crit Care, 18 (2014) https://doi.org/ARTN R154 10.1186/cc13993 [95] W.J. Zhang, B. Frei, Albumin selectively inhibits TNF alpha-induced expression of vascular cell adhesion molecule-1 in human aortic endothelial cells, Cardiovasc Res, 55 (2002) 820-829, https://doi.org/Pii S0008-6363(02)00492-3 Doi 10.1016/S0008-6363(02)00492-3 [96] P.A. Stewart, Modern Quantitative Acid-Base Chemistry, Can J Physiol Pharm, 61 (1983) 1444-1461, https://doi.org/DOI 10.1139/y83-207 [97] K. Yamasaki, S. Hyodo, K. Taguchi, K. Nishi, N. Yamaotsu, S. Hirono, V.T.G. Chuang, H. Seo, T. Maruyama, M. Otagiri, Long chain fatty acids alter the interactive binding of ligands to the two principal drug binding sites of human serum albumin, Plos One, 12 (2017) https://doi.org/ARTN e0180404 10.1371/journal.pone.0180404 [98] J. Ramirezvick, F.F. Vargas, Albumin Modulation of Paracellular Permeability of Pig Vena-Caval Endothelium Shows Specificity for Pig Albumin, Am J Physiol, 264 (1993) H1382-H1387, <Go to ISI>://WOS:A1993LD34700007 [99] R.G. Hahn, M. Zdolsek, E. Hasselgren, J. Zdolsek, H. Bjorne, Fluid volume kinetics of 20% albumin, Brit J Clin Pharmaco, 85 (2019) 1303-1311, https://doi.org/10.1111/bcp.13897 [100] M. Zdolsek, R.G. Hahn, J.H. Zdolsek, Recruitment of extravascular fluid by hyperoncotic albumin, Acta Anaesth Scand, 62 (2018) 1255-1260, https://doi.org/10.1111/aas.13150 [101] K.A. Majorek, P.J. Porebski, A. Dayal, M.D. Zimmerman, K. Jablonska, A.J. Stewart, M. Chruszcz, W. Minor, Structural and immunologic characterization of bovine, horse, and rabbit serum albumins, Mol Immunol, 52 (2012) 174-182, https://doi.org/10.1016/j.molimm.2012.05.011 [102] A. Lapolla, D. Fedele, R. Reitano, N.C. Arico, R. Seraglia, P. Traldi, E. Marotta, R. Tonani, Enzymatic digestion and mass spectrometry in the study of advanced glycation end products/peptides, J Am Soc Mass Spectrom, 15 (2004) 496-509, https://doi.org/10.1016/j.jasms.2003.11.014 [103] A.E. Koch, S.L. Kunkel, J.C. Burrows, H.L. Evanoff, G.K. Haines, R.M. Pope, R.M. Strieter, Synovial tissue macrophage as a source of the chemotactic cytokine IL-8, J Immunol, 147 (1991) 2187-2195, https://www.ncbi.nlm.nih.gov/pubmed/1918955 [104] W. Xu, Y. Wu, W. Liu, A. Anwaier, X. Tian, J. Su, H. Huang, G. Wei, Y. Qu, H. Zhang, D. Ye, Tumor-associated macrophage-derived chemokine CCL5 facilitates the progression and immunosuppressive tumor microenvironment of clear cell renal cell carcinoma, Int J Biol Sci, 18 (2022) 4884-4900, https://doi.org/10.7150/ijbs.74647 [105] H.T.T. Gander-Bui, J. Schlafli, J. Baumgartner, S. Walthert, V. Genitsch, G. van Geest, J.A. Galvan, C. Cardozo, C. Graham Martinez, M. Grans, S. Muth, R. Bruggmann, H.C. Probst, C. Gabay, S. Freigang, Targeted removal of macrophage-secreted interleukin-1 receptor antagonist protects against lethal Candida albicans sepsis, Immunity, 56 (2023) 1743-1760 e1749, https://doi.org/10.1016/j.immuni.2023.06.023 [106] V. Videm, M. Albrigtsen, Soluble ICAM-1 and VCAM-1 as markers of endothelial activation, Scand J Immunol, 67 (2008) 523-531, https://doi.org/10.1111/j.1365-3083.2008.02029.x [107] A.E.D. Ilse Timmerman, Jeffrey Kroon, Jaap D. van Buul, Chapter Five - Leukocytes Crossing the Endothelium: A Matter of Communication, in: K.W. Jeon (Ed.) International Review of Cell and Molecular Biology, Academic Press2016, pp. 281-329. [108] A.P. Davenport, K.A. Hyndman, N. Dhaun, C. Southan, D.E. Kohan, J.S. Pollock, D.M. Pollock, D.J. Webb, J.J. Maguire, Endothelin, Pharmacol Rev, 68 (2016) 357-418, https://doi.org/10.1124/pr.115.011833 [109] A. van de Stolpe, P.T. van der Saag, Intercellular adhesion molecule-1, J Mol Med (Berl), 74 (1996) 13-33, https://doi.org/10.1007/BF00202069 [110] H. Benachour, J. Leroy-Dudal, R. Agniel, J. Wilson, M. Briand, F. Carreiras, O. Gallet, Vitronectin (Vn) glycosylation patterned by lectin affinity assays-A potent glycoproteomic tool to discriminate plasma Vn from cancer ascites Vn, J Mol Recognit, 31 (2018) e2690, https://doi.org/10.1002/jmr.2690 [111] J.R. Wisniewski, A. Zougman, N. Nagaraj, M. Mann, Universal sample preparation method for proteome analysis, Nat Methods, 6 (2009) 359-362, https://doi.org/10.1038/nmeth.1322 [112] B. Schilling, M.J. Rardin, B.X. MacLean, A.M. Zawadzka, B.E. Frewen, M.P. Cusack, D.J. Sorensen, M.S. Bereman, E. Jing, C.C. Wu, E. Verdin, C.R. Kahn, M.J. Maccoss, B.W. Gibson, Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline: application to protein acetylation and phosphorylation, Mol Cell Proteomics, 11 (2012) 202-214, https://doi.org/10.1074/mcp.M112.017707 [113] M.W. Roomi, T. Kalinovsky, M. Rath, A. Niedzwiecki, Effect of a nutrient mixture on matrix metalloproteinase-9 dimers in various human cancer cell lines, Int J Oncol, 44 (2014) 986-992, https://doi.org/10.3892/ijo.2013.2235 [114] E.W. Baxter, A.E. Graham, N.A. Re, I.M. Carr, J.I. Robinson, S.L. Mackie, A.W. Morgan, Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNgamma+LPS), M(IL-4) and M(IL-10) phenotypes, J Immunol Methods, 478 (2020) 112721, https://doi.org/10.1016/j.jim.2019.112721 [115] K. Yoshimatsu, H. Koide, Y. Hoshino, K.J. Shea, Preparation of abiotic polymer nanoparticles for sequestration and neutralization of a target peptide toxin, Nat Protoc, 10 (2015) 595-604, https://doi.org/10.1038/nprot.2015.032 [116] H.K. Nam, S.R. Jeong, M.C. Pyo, S.K. Ha, M.H. Nam, K.W. Lee, Methylglyoxal-Derived Advanced Glycation End Products (AGE4) Promote Cell Proliferation and Survival in Renal Cell Carcinoma Cells through the RAGE/Akt/ERK Signaling Pathways, Biol Pharm Bull, 44 (2021) 1697-1706, https://doi.org/10.1248/bpb.b21-00382 [117] Y.N. Lee, Y.J. Wu, H.I. Lee, H.H. Wang, C.Y. Chang, T.Y. Tien, C.F. Lin, C.H. Su, H.I. Yeh, Ultrasonic microbubble VEGF gene delivery improves angiogenesis of senescent endothelial progenitor cells, Sci Rep, 11 (2021) 13449, https://doi.org/10.1038/s41598-021-92754-3 [118] M. Dratwa, B. Wysoczanska, E. Turlej, A. Anisiewicz, M. Maciejewska, J. Wietrzyk, K. Bogunia-Kubik, Heterogeneity of telomerase reverse transcriptase mutation and expression, telomerase activity and telomere length across human cancer cell lines cultured in vitro, Exp Cell Res, 396 (2020) 112298, https://doi.org/10.1016/j.yexcr.2020.112298 [119] Z. Chen, J. Zhang, K. Hatta, P.D. Lima, H. Yadi, F. Colucci, A.T. Yamada, B.A. Croy, DBA-lectin reactivity defines mouse uterine natural killer cell subsets with biased gene expression, Biol Reprod, 87 (2012) 81, https://doi.org/10.1095/biolreprod.112.102293 [120] S.Y. Qin, D. Hu, K. Yamamoto, Preparation of Soluble Malectin and Its Tetramer, Methods Mol Biol, 2132 (2020) 285-294, https://doi.org/10.1007/978-1-0716-0430-4_28 [121] D. Manna, S. Pust, M.L. Torgersen, G. Cordara, M. Kunzler, U. Krengel, K. Sandvig, Polyporus squamosus Lectin 1a (PSL1a) Exhibits Cytotoxicity in Mammalian Cells by Disruption of Focal Adhesions, Inhibition of Protein Synthesis and Induction of Apoptosis, PLoS One, 12 (2017) e0170716, https://doi.org/10.1371/journal.pone.0170716 [122] M.A. Lehrman, S.V. Pizzo, M.J. Imber, R.L. Hill, The binding of fucose-containing glycoproteins by hepatic lectins. Re-examination of the clearance from blood and the binding to membrane receptors and pure lectins, J Biol Chem, 261 (1986) 7412-7418, https://www.ncbi.nlm.nih.gov/pubmed/3011783 [123] M.A. Lehrman, R.S. Haltiwanger, R.L. Hill, The binding of fucose-containing glycoproteins by hepatic lectins. The binding specificity of the rat liver fucose lectin, J Biol Chem, 261 (1986) 7426-7432, https://www.ncbi.nlm.nih.gov/pubmed/3711094 [124] T. Kawaguchi, H. Takazawa, S. Imai, J. Morimoto, T. Watanabe, M. Kanno, S. Igarashi, Expression of Vicia villosa agglutinin (VVA)-binding glycoprotein in primary breast cancer cells in relation to lymphatic metastasis: is atypical MUC1 bearing Tn antigen a receptor of VVA?, Breast Cancer Res Treat, 98 (2006) 31-43, https://doi.org/10.1007/s10549-005-9115-6 [125] Y. Xu, J. Huo, R. Nie, L. Ge, C. Xie, Y. Meng, J. Liu, L. Wu, X. Qin, Altered profile of glycosylated proteins in serum samples obtained from patients with Hashimoto''s thyroiditis following depletion of highly abundant proteins, Front Immunol, 14 (2023) 1182842, https://doi.org/10.3389/fimmu.2023.1182842 [126] 白可鈞, 香蕉凝集素分析與其對巨噬細胞之免疫調節作用, 園藝暨景觀學系, 國立臺灣大學, 2017, pp. 1-116.https://doi.org/10.6342/ntu201700170 [127] M. Gavrovic-Jankulovic, K. Poulsen, T. Brckalo, S. Bobic, B. Lindner, A. Petersen, A novel recombinantly produced banana lectin isoform is a valuable tool for glycoproteomics and a potent modulator of the proliferation response in CD3+, CD4+, and CD8+ populations of human PBMCs, Int J Biochem Cell Biol, 40 (2008) 929-941, https://doi.org/10.1016/j.biocel.2007.10.033 [128] M.D. Swanson, H.C. Winter, I.J. Goldstein, D.M. Markovitz, A lectin isolated from bananas is a potent inhibitor of HIV replication, J Biol Chem, 285 (2010) 8646-8655, https://doi.org/10.1074/jbc.M109.034926 [129] L.J. de Camargo, M.A.C. Maia, R. Dos Santos Woloski, C. Rizzi, G. Moreira, C.T. Pich, L. da Silva Pinto, Characterization of a Molecularly Engineered Banlec-Type Lectin (rBTL), Mol Biotechnol, 66 (2024) 288-299, https://doi.org/10.1007/s12033-023-00752-9 [130] A. Butschi, A. Titz, M.A. Walti, V. Olieric, K. Paschinger, K. Nobauer, X. Guo, P.H. Seeberger, I.B. Wilson, M. Aebi, M.O. Hengartner, M. Kunzler, Caenorhabditis elegans N-glycan core beta-galactoside confers sensitivity towards nematotoxic fungal galectin CGL2, PLoS Pathog, 6 (2010) e1000717, https://doi.org/10.1371/journal.ppat.1000717 [131] H. Huldani, A.I. Rashid, K.N. Turaev, M.J.C. Opulencia, W.K. Abdelbasset, D.O. Bokov, Y.F. Mustafa, M.E. Al-Gazally, A.T. Hammid, M.M. Kadhim, S.H. Ahmadi, Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential, Cell Commun Signal, 20 (2022) 167, https://doi.org/10.1186/s12964-022-00972-7 [132] J.M. Dwyer, C. Johnson, The use of concanavalin A to study the immunoregulation of human T cells, Clin Exp Immunol, 46 (1981) 237-249, https://www.ncbi.nlm.nih.gov/pubmed/6461456 [133] G. Cordara, W. Egge-Jacobsen, H.T. Johansen, H.C. Winter, I.J. Goldstein, K. Sandvig, U. Krengel, Marasmius oreades agglutinin (MOA) is a chimerolectin with proteolytic activity, Biochem Biophys Res Commun, 408 (2011) 405-410, https://doi.org/10.1016/j.bbrc.2011.04.031 [134] E.M. Grahn, H.C. Winter, H. Tateno, I.J. Goldstein, U. Krengel, Structural characterization of a lectin from the mushroom Marasmius oreades in complex with the blood group B trisaccharide and calcium, J Mol Biol, 390 (2009) 457-466, https://doi.org/10.1016/j.jmb.2009.04.074 [135] L. Zeng, J. Xian, H. Chen, S. Mao, L. Liu, L. Zhang, Glycoprofiling of early non-small cell lung cancer using lectin microarray technology, Oncologie, 25 (2023) 469-480, https://doi.org/doi:10.1515/oncologie-2023-0084 [136] K.J. Song, S.K. Jeon, S.B. Moon, J.S. Park, J.S. Kim, J. Kim, S. Kim, H.J. An, J.H. Ko, Y.S. Kim, Lectin from Sambucus sieboldiana abrogates the anoikis resistance of colon cancer cells conferred by N-acetylglucosaminyltransferase V during hematogenous metastasis, Oncotarget, 8 (2017) 42238-42251, https://doi.org/10.18632/oncotarget.15034 [137] S. Arques, Human serum albumin in cardiovascular diseases, Eur J Intern Med, 52 (2018) 8-12, https://doi.org/10.1016/j.ejim.2018.04.014 [138] G. Rabbani, S.N. Ahn, Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo, Int J Biol Macromol, 123 (2019) 979-990, https://doi.org/10.1016/j.ijbiomac.2018.11.053 [139] A.M. Schmidt, S.D. Yan, S.F. Yan, D.M. Stern, The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses, J Clin Invest, 108 (2001) 949-955, https://doi.org/10.1172/JCI14002 [140] S. He, Q. Hu, X. Xu, Y. Niu, Y. Chen, Y. Lu, Q. Su, L. Qin, Advanced glycation end products enhance M1 macrophage polarization by activating the MAPK pathway, Biochem Biophys Res Commun, 525 (2020) 334-340, https://doi.org/10.1016/j.bbrc.2020.02.053 [141] E. Shim, J.P. Babu, Glycated albumin produced in diabetic hyperglycemia promotes monocyte secretion of inflammatory cytokines and bacterial adherence to epithelial cells, J Periodontal Res, 50 (2015) 197-204, https://doi.org/10.1111/jre.12194 [142] X.Q. Han, Z.J. Gong, S.Q. Xu, X. Li, L.K. Wang, S.M. Wu, J.H. Wu, H.F. Yang, Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response, J Huazhong Univ Sci Technolog Med Sci, 34 (2014) 10-17, https://doi.org/10.1007/s11596-014-1224-1 [143] K. Ohashi, H.K. Takahashi, S. Mori, K. Liu, H. Wake, H. Sadamori, H. Matsuda, T. Yagi, T. Yoshino, M. Nishibori, N. Tanaka, Advanced glycation end products enhance monocyte activation during human mixed lymphocyte reaction, Clin Immunol, 134 (2010) 345-353, https://doi.org/10.1016/j.clim.2009.10.008 [144] L.D. Samson, P. Engelfriet, W.M.M. Verschuren, H.S.J. Picavet, J.A. Ferreira, M.L. de Zeeuw-Brouwer, A.M. Buisman, A.M.H. Boots, Impaired JAK-STAT pathway signaling in leukocytes of the frail elderly, Immun Ageing, 19 (2022) 5, https://doi.org/10.1186/s12979-021-00261-w [145] S.S. Shen-Orr, D. Furman, B.A. Kidd, F. Hadad, P. Lovelace, Y.W. Huang, Y. Rosenberg-Hasson, S. Mackey, F.A. Grisar, Y. Pickman, H.T. Maecker, Y.H. Chien, C.L. Dekker, J.C. Wu, A.J. Butte, M.M. Davis, Defective Signaling in the JAK-STAT Pathway Tracks with Chronic Inflammation and Cardiovascular Risk in Aging Humans, Cell Syst, 3 (2016) 374-384 e374, https://doi.org/10.1016/j.cels.2016.09.009 [146] H.J. Oh, H. Jin, B.Y. Lee, Hesperidin Ameliorates Sarcopenia through the Regulation of Inflammaging and the AKT/mTOR/FoxO3a Signaling Pathway in 22-26-Month-Old Mice, Cells, 12 (2023) https://doi.org/10.3390/cells12152015 [147] S. Tabibzadeh, Signaling pathways and effectors of aging, Front Biosci (Landmark Ed), 26 (2021) 50-96, https://doi.org/10.2741/4889 [148] P.R. Coleman, G. Chang, G. Hutas, M. Grimshaw, M.A. Vadas, J.R. Gamble, Age-associated stresses induce an anti-inflammatory senescent phenotype in endothelial cells, Aging (Albany NY), 5 (2013) 913-924, https://doi.org/10.18632/aging.100622 [149] F. Prattichizzo, L. Micolucci, M. Cricca, S. De Carolis, E. Mensa, A. Ceriello, A.D. Procopio, M. Bonafe, F. Olivieri, Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging, Mech Ageing Dev, 168 (2017) 44-53, https://doi.org/10.1016/j.mad.2017.02.008 [150] F. Prattichizzo, M. Bonafe, A. Ceka, A. Giuliani, M.R. Rippo, M. Re, R. Antonicelli, A.D. Procopio, F. Olivieri, Endothelial Cell Senescence and Inflammaging: MicroRNAs as Biomarkers and Innovative Therapeutic Tools, Curr Drug Targets, 17 (2016) 388-397, https://doi.org/10.2174/1389450116666150804105659 [151] I. Pantsulaia, W.M. Ciszewski, J. Niewiarowska, Senescent endothelial cells: Potential modulators of immunosenescence and ageing, Ageing Res Rev, 29 (2016) 13-25, https://doi.org/10.1016/j.arr.2016.05.011 [152] J.R. Petrie, T.J. Guzik, R.M. Touyz, Diabetes, Hypertension, and Cardiovascular Disease: Clinical Insights and Vascular Mechanisms, Can J Cardiol, 34 (2018) 575-584, https://doi.org/10.1016/j.cjca.2017.12.005 [153] F. Giacco, M. Brownlee, Oxidative stress and diabetic complications, Circ Res, 107 (2010) 1058-1070, https://doi.org/10.1161/CIRCRESAHA.110.223545 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91856 | - |
| dc.description.abstract | 背景:發炎老化反應,是一種長期低度非感染性的發炎,此一現象的持續存在對於老化過程影響甚劇,並且在老化相關疾病的致病機轉中扮演重要角色。終期醣化產物是一群由單醣分子,經過非酵素性的梅納反應修飾而成的大分子。在糖尿病、老化相關疾病和自體免疫疾病的患者,常可見到患者體內終期醣化產物升高的狀況。我們認為終期醣化產物出現在老化相關疾病及慢性發炎疾病患者體內,而發炎老化反應又可能造成老化相關疾病,這兩者之間應有其相關,所以我們假設終期醣化產物可能是誘發發炎老化反應的重要因子之一。我們之前的研究發現終期醣化產物對 Th1/Th2 的抑制以及對單核細胞/巨噬細胞的刺激作用,乃經由MyD88和MAPK-ERK-NF-κB的訊息傳導路徑。然而,與終期醣化產物引發的發炎老化反應的分子機制仍有待更進一步的闡明。
方法:本研究將人類血清白蛋白和葡萄糖在37℃、5%CO2培養箱中培養0-180天,並動態觀察終期醣化產物的生合成。我們用此人工合成的終期醣化產物觀察對免疫細胞,如T細胞和巨噬細胞細胞株,及和內皮細胞功能的影響,並研究其分子機制。另外,為了研究發炎現象和醣化之間的交互作用,我們也檢測了和各種不同自體免疫疾病患者血清中的終期醣化產物濃度,並在製作終期醣化產物的過程中加入和免疫老化反應相關的各種不同細胞激素,以評估其影響。 結果:我們發現終期醣化產物在製作過程中其顏色會逐漸由透明最終變為棕色,並且其分子量也會逐漸增加。其酸鹼值也從7.2逐漸降低到5.4,但此變化與離子電荷或鈣離子濃度無關。這些變化乃因血清白蛋白分子內的鹼性氨基酸,包括離氨酸和精氨酸的逐漸醣化,從而喪失鹼性特性而趨向酸性溶液相關。我們發現,每毫升40微克的終期醣化產物,會經由抑制p-STAT3、p-STAT4 和p-STAT6的訊息傳導路徑,來抑制人類Jurkat T細胞株產生第二介白質,同時,也會增加衰老相關β-半乳糖苷酶(SA- βgal) 的表現。但與 Th1/Th2/Treg 亞群的變化無關。另外同樣濃度的終期醣化產物會增加趨化因子CCL-5、第八介白質、巨噬細胞遷移抑制因子(MIF) 和第一介白質受體拮抗分子(IL-1Ra)的產生,但會抑制巨噬細胞的SA-βgal表現量。除此之外,終期醣化產物也會抑制白蛋白對人類冠狀動脈內皮細胞的影響,包括釋放可溶性細胞間質粘附分子1 (sICAM-1)、可溶性內皮細胞選擇素和內皮素的分泌,並增強了老化相關分子SA-βgal的表現量。而在體外研究中,我們發現個別的發炎細胞激素,例如第二介白質、第六介白質、第十七介白質,乙型轉化生長因子,甲型腫瘤壞死因子等,會加速及增加終期醣化產物的生成。本發現佐證了在自體免疫疾病患者體內終期醣化產物增加的現象。 結論:本研究證實終期醣化產物具有免疫抑制、促發炎反應、及引發血管病變等發炎性老化現象。這些病態生理作用乃經由MAPK-ERK-及MyD88-STATs-NF-κB等訊息傳導路徑,並可能與產生衰老相關的 β-半乳糖苷酶相關。另外, AGE-ALB分子會喪失正常白蛋白對血管內皮細胞的正常生理機能,而引發血管病變。而各種不同的發炎性細胞激素因子本身會加速終期醣化產物的形成,而導致惡性循環。 | zh_TW |
| dc.description.abstract | Introduction: Inflamm-aging is a chronic, sterile, low-grade inflammation occurred during aging process. Inflamm-aging play a critical role in aging process and contribute to pathogenesis of age-related diseases. Advanced glycation end products (AGEs) are macro-molecules modified by different monocarbohydrates via non- enzymatic Maillard reaction. Increased serum levels of AGEs are commonly found in the patients with Diabetes mellitus (DM), aging-related diseases, and immune- mediated diseases. We thought that both AGEs and inflammaging existed in age-related disease may not be a coincidence and suggest that AGEs may contribute to inflammaging.
We have already demonstrated that the AGE-BSA would exert inhibitory effects on Th1/Th2 cytokine expression and stimulatory effects on monocyte/macrophage lineage via MyD88- and MAPK-ERK- NF-κB signaling pathways. However, the detailed molecular bases of inflamm-aging and vasculopathy related to AGEs remains elucidation. In addition, the real mechanism(s) of inflammation-related cytokines in enhancing AGE-HSA production in autoimmune diseases need further investigation. Methods: We incubated human serum albumin (HSA) and glucose at 37℃ in 5% CO2-95% air incubator for 0-180 days to generate AGE-HSA. The immune-related cell, such as T cell and macrophage cell lines and endothelial cell were incubated with AGE-HSA to evaluate their effects on inflamm-aging and the respective signaling pathways. Furthermore, the effects and the possible molecular mechanism(s) of different inflammation-related cytokines including IL-2. IL-6, IL-17, TNF-α, and TGF-β on AGE-HSA formation were also evaluated. Results: We found the mixture of HSA and glucose gradually changing the color from transparency to brown and increased the molecular weight during incubation. The pH value also gradually decreased from 7.2 to 5.4 irrelevant to ionic charge or [Ca2+] concentration, but dependent on progressive glycation of the alkaline amino acids, lysine and arginine, in the HSA protein molecule. Functionally, 40 μg/mL of AGE-HSA decreased IL-2 production from human Jurkat T cell line via suppressing p-STAT3, p-STAT4, and p-STAT6 whereas increasing senescence-associated β-galactosidase (SA-βgal) expression irrelevant to shifting of Th1/Th2/Treg subpopulations. In contrast, AGE-HSA enhanced CC motif chemokine ligand 5 (CCL-5), IL-8, macrophage migration inhibitory factor (MIF), and interleukin 1 receptor antagonist (IL-1Ra) production but suppressed SA-βgal expression by human macrophage-like THP-1 cells. Interestingly, AGE-HSA abrogated the HSA-induced soluble intercellular adhesion molecules 1 (sICAM-1), sE-selectin and endothelin release from human coronary artery endothelial cells (HCAEC) as well as enhanced SA-βgal expression. The accelerated and increased HSA glycations by individual inflammation-related cytokine such as IL-2, IL-6, IL-17, TGF-β, or TNF-α in the in vitro study reflect increased serum AGE levels in patients with different immune-mediated diseases. Conclusions: AGE-HSA can exert immunosuppressive, inflammatory and vasculopathic effects in patients with immune-mediated disease mimicking inflamm- aging via both MyD88-, and MAPK-ERK-STAT-NF-κB signaling pathways and increasing senescence-associated β-galactosidase expression. The inflammatory cytokines per se may accelerate AGE-HSA formation as reflected by increased serum AGE-HSA levels in these patients. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:18:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-23T16:18:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝詞 ii 中文摘要 iv English abstract vii Index x Figure index xviii Table index xxi Content 1 Chapter 1. Introduction 1.1. Introduction of inflammaging 1 1.2. Inflamm-aging in cellular level 2 1.3. Introdunction of biomarker of age-related diseases: advanced glycation endproducs 4 1.3.1. Physiologically formation of AGE 5 1.4. Correlation of AGE with inflammaging 6 1.4.1. Correlation of AGE with immune-mediated disease 8 1.4.2.AGE and receptor signaling 9 1.5. Summary of master’s thesis 11 1.6. Aim of doctoral dissertation 11 Chapter 2. Materials and methods 2.1. Preparation Of AGE-ALB mixture 13 2.1.1. Kinetic observation of color, molecular weight and pH change for AGE-HSA 14 2.1.2. Lectin array analysis between ALB and AGE-ALB 14 2.1.3. Quantitation of the glycated lysine, arginine and cysteine residues by LC/MS proteomics analysis 15 2.1.4. Quantitation of the % glycated lysine residues in different AGE-HSA preparations by glycation mass spectrometry proteomics analysis 17 2.2.Subculture of human macrophage-like cell, T cell lines and coronary artery endothelial cell 19 2.3.Detection of receptors for AGE (RAGE) expression on the cell surface 21 2.4.Cell cytotoxicity assay detected by CCK-8 assay kit 22 2.5.Preincubation of different cells with RAGE inhibitor (RAGEi) 22 2.6.Detection of senescence-associated β-galactosidase (SA-βgal) in Jurkat T, THP-1 and HCAEC cells 23 2.7.Detection of relative telomerase activity in Jurkat T, THP-1 and HCAEC cell lines 23 2.8.Detection of relative telomere length in Jurkat T cell, THP-1 cell and HCAEC cell lines 24 2.9.Functional assay evaluation of Jurkat, THP and HCAEC cells after AGE-HSA stimulation 24 2.9.1.Detection of IL-2 after incubation of the activated Jurkat cells with AGE-HSA 24 2.9.2.Detection of transcription factors T-bet (Th1), GATA-3(Th2) and FoxP3 (Treg) 25 2.9.3.Detection of intracellular positive (STATs) and negative (CIS and SOCSs) regulators for IL-2 by western blot 25 2.9.4.Detection of IL-8, macrophage migration inhibitor factor (MIF), CC motif chemokine ligand 5 (CCL-5), and interleukin 1 receptor antagonist (IL-1Ra) production after stimulated with AGE/HSA on PMA-activated human THP-1 cells 26 2.9.5.Detection of soluble intercellular adhesion molecules 1 (sICAM-1) and sE-selectin, and endothelin concentration in the culture supernatants of HCAEC by ELISA 26 2.10.Quantitation of Nε-(carboxymethyl)-lysine (CML) and Nε-(carboxy- ethyl)-lysine (CEL) as the surrogate AGE-HSA molecule in the incubated mixture and the sera of patients with connective tissue disease 27 2.11.Co-cultured HSA+glucose mixture with inflammaging and inflamm ation-related cytokine, including IL-2, IL-6, IL-17, TGF-β, or TNF-α 28 2.12.Detection of the residual cytokines in Glucose+HSA mixture after incubation of 180 days 28 2.13.Statistics 29 Chapter 3. Result 3.1.Progressive changes of color, relative molecular weight, pH value, and glycation of amino acid residues during AGE-ALB formation. 3.1.1.Progressive change of color 29 3.1.2.Progressive increase in relative molecular weight 29 3.1.3.Progressive change of pH value toward acidic during AGE-HSA formation, not relevant to ionic charge or [Ca2+] concentration 30 3.1.4.Kinetic amino acid residues glycation by LC/MS 31 3.1.5.Kinetic amino acid residues glycation by glycan mass 32 3.1.7.Difference of Lectin Binding between AGE-HSA and HSA 32 3.2.Expression of RAGE on the cell surface 34 3.3.Suppression of Jurkat T cell IL-2 production by AGE-HSA 35 3.3.1.Irrelevant cytotoxic effect to human Jurkat T cell by AGE-HSA 35 3.3.2.The IL-2 production was significantly decreased in the presence of AGE-HSA 35 3.3.3.Molecular basis of suppressive effect of AGE-HSA on IL-2 formation by Jurkat T cell 35 3.3.4.The effects of RAGE inhibitor on IL-2 production by Jurkat T cell 36 3.3.5.Increased tendency of senescence associated β-galactosidase (SA-βgal) expression in Jurkat T cells by AGE-HSA 36 3.3.6.T cell population alteration 37 3.4.Enhanced pro-inflammatory (CCL-5, IL-8, and MIF) and anti- inflammatory (IL-1Ra) cytokines production from human macrophage-like THP-1 cells by AGE-HSA 37 3.4.1.Irrelevant cytotoxic effect to human THP-1 macrophages by AGE-HSA 38 3.4.2.Significantly enhanced pro-inflammatory and anti-inflammatory cytokines production by THP-1 macrophages 38 3.4.3.Downregulate senescence associated β-galactosidase expression in THP-1 macrophage by AGE-HSA 38 3.4.4.Effect of RAGE inhibition to THP-1 macrophage on CCL5, IL-8, MIF and IL-1Ra formation 39 3.5.Abrogation of HSA-mediated homeostatic effects on HCAEC cells by AGE-HSA 39 3.5.1.Irrelevant cell cytotoxicity after AGE stimulation on HCAEC 39 3.5.2.Abrogate anti-inflammatory homeostasis effect of HSA on HCAEC by AGE-HSA 40 3.5.3.Enhanced senescence, as SA-βgal expression of HCAEC by AGE 40 3.5.4.Effect of RAGE inhibition to HCAEC 40 3.6.Mimicking environment of inflammaging as comparing HSA+ glucose +individual inflammation-related cytokine vs.HSA+glucose 41 3.6.1.Faster pH progression in the HSA+glucose+individual cytokine group 41 3.6.2.No distinct molecular weight change in the presence of various cytokines 41 3.6.3. Accelerated glycation of HSA in the presence of inflammation- related cytokines 42 3.6.4.Intensity of glycation also increased after 30 days incubation with and without cytokines 42 3.6.5.Residual cytokines in the supernatants after incubation of HSA+glucose+individual cytokine vs. HSA+ individual cytokine 43 3.7. Schematic summary 43 Chapter 4. Discussion 4.1. Scientific soundness of our findings 43 4.2. Receptors binding and intraceullar signaling of AGE-HSA on the 3 cell lines 45 4.3. Effect of inflammaging or inflammation related cytokines to AGE-HSA Maillard reaction and possible mechanism 47 4.4. AGE-HSA may be able to abrogate specific physiological functions of HSA on the vascular endothelial cells and senescence effect of Jurkat T cell and HCAEC 49 4.5. Conditions or agents altering AGE formation 51 4.6. Drawbacks 52 Chapter 5. Future prospective 53 Reference 55 個人在博士班修業期間發表論文 70 Figures 71 Tables 99 Appendix 106 Index of Figures Figure 1. Increased serum levels of AGE in SLE, connective tissue diseases, and RA compared to normal controls detected by CML assay kit 71 Figure 2. Advanced glycation end-product (AGE) formation via Maillard reaction and results after binding with different AGE receptors 72 Figure 3. Cellular and molecular pathogenesis of AGE–RAGE axis activation in inducing microvascular endothelial cell damage, tissue inflammation, immune dysfunction, tissue fibrosis, and retinopathy 74 Figure 4: Progressive color change of AGE 75 Figure 5. Progressive increase in the molecular weight of AGE-ALB 76 Figure 6: The pH value of AGE-HSA mixture gradually progress to acidic 77 Figure 7. Progressive increase in lysine and arginine residue glycation 78 Figure 8. Progressive increase in lysine residue glycation from D0 to D180 79 Figure 9: The effect of ionic charge and [Ca2+] concentration on the pH change of HSA+glucose mixture during Maillard reaction for 0-180 days 80 Figure10: Detection of receptor for AGE (RAGE) expression on the cell surface of human coronary artery endothelial cells (HCAEC), human Jurkat T and THP-1 macrophage-like cells by indirect fluorescence antibody method 81 Figure 11: The effect and the molecular basis of AGE-HSA (40μg/mL) on IL-2 (a pluripotential cytokine for T cell development and homeostasis) production from Jurkat Tcells 83 Figure 12: The effect of RAGE inhibition to the AGE suppression effect to Jurkat 85 Figure 13: Enhanced immunosenescence stress on Jurkat T cells by AGE-HSA 86 Figure 14: Jurkat T cell subpopulation did not change to TH2 or Treg cell after AGE stimulation 88 Figure 15: The activation of human macrophage-like THP-1 by AGE-HSA and decre-ased tendency of senescence-associated β-galactosidase expression 89 Figure 16: The effect of RAGE inhibition to the AGE suppression effect to macrophage cell 91 Figure 17: Suppression of AGE-HSA on HSA-enhanced human cardiac coronary endothelial cells (HCAEC) function via its senescence-inducing activity 92 Figure 18: Results of RAGE inhibition on AGE effect to HCAEC cell 94 Figure 19: Increased serum AGE-HSA levels and the effects of inflammation-related cytokines on AGE formation via Maillard reaction 95 Figure 20. The glycation mass spectrometry detection also revealed increased the number of lysine glycation 97 Figure 21. Residual cytokines in the supernatants of HSA-Glucose- cytokine comparing with HSA-cytokine only 98 Figure 22: A scheme illustrating the accelerated and increased formation of AGE-HSA by inflammation-related cytokines 99 Index of Table Table 1. Liquid Chromatograph/Mass Spectrometer (LC/MS) result of BSA glycation 100 Table 2. Glycan Mass Spectrometry of HSA glycation 101 Table 3. Lectin array binding of HSA and AGE-HSA 103 Table 4. Glycan Mass Spectrometry of AGE with different cytokines 104 | - |
| dc.language.iso | en | - |
| dc.subject | 終期醣化產物 | zh_TW |
| dc.subject | Nε-羧甲基離氨酸 | zh_TW |
| dc.subject | 免疫抑制 | zh_TW |
| dc.subject | 血管病變 | zh_TW |
| dc.subject | 衰老相關β-半乳糖苷酶 | zh_TW |
| dc.subject | 發炎性衰老 | zh_TW |
| dc.subject | 自體免疫疾病 | zh_TW |
| dc.subject | Nε-carboxyethyl-lysine | en |
| dc.subject | AGE-modified human serum albumin | en |
| dc.subject | Nε-carboxymethyl-lysine | en |
| dc.subject | autoimmune diseases | en |
| dc.subject | inflamm-aging | en |
| dc.subject | senescence-associated β-galactosidase | en |
| dc.subject | vasculopathy | en |
| dc.title | 終期醣化產物對自體免疫疾病的免疫發炎反應及血管病變引發類似發炎老化反應的分子機制 | zh_TW |
| dc.title | The Molecular Basis of AGE-ALB on Immunological/ Inflammatory Reactions and Vasculopathy Mimicking Inflamm-aging in Autoimmune Diseases | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 謝松洲 | zh_TW |
| dc.contributor.coadvisor | Song-Chou Hsieh | en |
| dc.contributor.oralexamcommittee | 楊偉勛;蔡長祐;李芳仁;孫光蕙 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Shiung Yang;Chang-Youh Tsai;Fang-Jen Lee;Kuang-Hui Sun | en |
| dc.subject.keyword | 終期醣化產物,Nε-羧甲基離氨酸,免疫抑制,血管病變,衰老相關β-半乳糖苷酶,發炎性衰老,自體免疫疾病, | zh_TW |
| dc.subject.keyword | AGE-modified human serum albumin,Nε-carboxymethyl-lysine,Nε-carboxyethyl-lysine,vasculopathy,,senescence-associated β-galactosidase,inflamm-aging,autoimmune diseases, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202304415 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-01 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床醫學研究所 | - |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 4.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
