請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91848
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 伍安怡 | zh_TW |
dc.contributor.advisor | Betty A. Wu-Hsieh | en |
dc.contributor.author | 黃娟娟 | zh_TW |
dc.contributor.author | Chuan-Chuan Huang | en |
dc.date.accessioned | 2024-02-23T16:16:48Z | - |
dc.date.available | 2024-02-24 | - |
dc.date.copyright | 2024-02-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-02 | - |
dc.identifier.citation | Aggarwal, S., N. Ghilardi, M. H. Xie, F. J. de Sauvage and A. L. Gurney (2003). "Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17." J Biol Chem 278(3): 1910-1914.
Alegre, M. L., A. M. Collins, V. L. Pulito, R. A. Brosius, W. C. Olson, R. A. Zivin, R. Knowles, J. R. Thistlethwaite, L. K. Jolliffe and J. A. Bluestone (1992). "Effect of a single amino acid mutation on the activating and immunosuppressive properties of a "humanized" OKT3 monoclonal antibody." J Immunol 148(11): 3461-3468. Alegre, M. L., J. Y. Tso, H. A. Sattar, J. Smith, F. Desalle, M. Cole and J. A. Bluestone (1995). "An anti-murine CD3 monoclonal antibody with a low affinity for Fc gamma receptors suppresses transplantation responses while minimizing acute toxicity and immunogenicity." J Immunol 155(3): 1544-1555. Almagro, J. C. and J. Fransson (2008). "Humanization of antibodies." Front Biosci 13: 1619-1633. Arif, S., F. Moore, K. Marks, T. Bouckenooghe, C. M. Dayan, R. Planas, M. Vives-Pi, J. Powrie, T. Tree, P. Marchetti, G. C. Huang, E. N. Gurzov, R. Pujol-Borrell, D. L. Eizirik and M. Peakman (2011). "Peripheral and islet interleukin-17 pathway activation characterizes human autoimmune diabetes and promotes cytokine-mediated β-cell death." Diabetes 60(8): 2112-2119. Arif, S., T. I. Tree, T. P. Astill, J. M. Tremble, A. J. Bishop, C. M. Dayan, B. O. Roep and M. Peakman (2004). "Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health." J Clin Invest 113(3): 451-463. Bendelac, A., C. Carnaud, C. Boitard and J. F. Bach (1987). "Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells." J Exp Med 166(4): 823-832. Bending, D., H. De la Peña, M. Veldhoen, J. M. Phillips, C. Uyttenhove, B. Stockinger and A. Cooke (2009). "Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice." J Clin Invest 119(3): 565-572. Bhela, S., C. Kempsell, M. Manohar, M. Dominguez-Villar, R. Griffin, P. Bhatt, P. Kivisakk-Webb, R. Fuhlbrigge, T. Kupper, H. Weiner and C. Baecher-Allan (2015). "Nonapoptotic and extracellular activity of granzyme B mediates resistance to regulatory T cell (Treg) suppression by HLA-DR-CD25hiCD127lo Tregs in multiple sclerosis and in response to IL-6." J Immunol 194(5): 2180-2189. Bisikirska, B., J. Colgan, J. Luban, J. A. Bluestone and K. C. Herold (2005). "TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs." J Clin Invest 115(10): 2904-2913. Blazar, B. R., M. K. Jenkins, P. A. Taylor, J. White, A. Panoskaltsis-Mortari, R. Korngold and D. A. Vallera (1997). "Anti-CD3 epsilon F(ab'')2 fragments inhibit T cell expansion in vivo during graft-versus-host disease or the primary immune response to nominal antigen." J Immunol 159(12): 5821-5833. Bluestone, J. A. and Q. Tang (2005). "How do CD4+CD25+ regulatory T cells control autoimmunity?" Curr Opin Immunol 17(6): 638-642. Bougneres, P. F., J. C. Carel, L. Castano, C. Boitard, J. P. Gardin, P. Landais, J. Hors, M. J. Mihatsch, M. Paillard, J. L. Chaussain and et al. (1988). "Factors associated with early remission of type I diabetes in children treated with cyclosporine." N Engl J Med 318(11): 663-670. Bradley, B. J., K. Haskins, F. G. La Rosa and K. J. Lafferty (1992). "CD8 T cells are not required for islet destruction induced by a CD4+ islet-specific T-cell clone." Diabetes 41(12): 1603-1608. Brusko, T. M., C. H. Wasserfall, M. J. Clare-Salzler, D. A. Schatz and M. A. Atkinson (2005). "Functional defects and the influence of age on the frequency of CD4+ CD25+ T-cells in type 1 diabetes." Diabetes 54(5): 1407-1414. Buist, M. R., P. Kenemans, W. den Hollander, J. B. Vermorken, C. J. Molthoff, C. W. Burger, T. J. Helmerhorst, J. P. Baak and J. C. Roos (1993). "Kinetics and tissue distribution of the radiolabeled chimeric monoclonal antibody MOv18 IgG and F(ab'')2 fragments in ovarian carcinoma patients." Cancer Res 53(22): 5413-5418. Carpenter, P. A., S. Pavlovic, J. Y. Tso, O. W. Press, T. Gooley, X. Z. Yu and C. Anasetti (2000). "Non-Fc receptor-binding humanized anti-CD3 antibodies induce apoptosis of activated human T cells." J Immunol 165(11): 6205-6213. Ceuppens, J. L., F. J. Bloemmen and J. P. Van Wauwe (1985). "T cell unresponsiveness to the mitogenic activity of OKT3 antibody results from a deficiency of monocyte Fc gamma receptors for murine IgG2a and inability to cross-link the T3-Ti complex." J Immunol 135(6): 3882-3886. Chatenoud, L., M. F. Baudrihaye, N. Chkoff, H. Kreis, G. Goldstein and J. F. Bach (1986). "Restriction of the human in vivo immune response against the mouse monoclonal antibody OKT3." J Immunol 137(3): 830-838. Chatenoud, L., M. F. Baudrihaye, H. Kreis, G. Goldstein, J. Schindler and J. F. Bach (1982). "Human in vivo antigenic modulation induced by the anti-T cell OKT3 monoclonal antibody." Eur J Immunol 12(11): 979-982. Chatenoud, L. and J. A. Bluestone (2007). "CD3-specific antibodies: a portal to the treatment of autoimmunity." Nat Rev Immunol 7(8): 622-632. Chatenoud, L., C. Ferran, C. Legendre, I. Thouard, S. Merite, A. Reuter, Y. Gevaert, H. Kreis, P. Franchimont and J. F. Bach (1990). "In vivo cell activation following OKT3 administration. Systemic cytokine release and modulation by corticosteroids." Transplantation 49(4): 697-702. Chatenoud, L., E. Thervet, J. Primo and J. F. Bach (1994). "Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice." Proc Natl Acad Sci U S A 91(1): 123-127. Chen, Z., A. E. Herman, M. Matos, D. Mathis and C. Benoist (2005). "Where CD4+CD25+ T reg cells impinge on autoimmune diabetes." J Exp Med 202(10): 1387-1397. Chitnis, T., B. J. Kaskow, J. Case, K. Hanus, Z. Li, J. F. Varghese, B. C. Healy, C. Gauthier, T. J. Saraceno, S. Saxena, H. Lokhande, T. G. Moreira, J. Zurawski, R. E. Roditi, R. W. Bergmark, F. Giovannoni, M. F. Torti, Z. Li, F. Quintana, W. A. Clementi, K. Shailubhai, H. L. Weiner and C. M. Baecher-Allan (2022). "Nasal administration of anti-CD3 monoclonal antibody modulates effector CD8+ T cell function and induces a regulatory response in T cells in human subjects." Front Immunol 13: 956907. Cnop, M., N. Welsh, J. C. Jonas, A. Jörns, S. Lenzen and D. L. Eizirik (2005). "Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities." Diabetes 54 Suppl 2: S97-107. Cole, M. S., C. Anasetti and J. Y. Tso (1997). "Human IgG2 variants of chimeric anti-CD3 are nonmitogenic to T cells." J Immunol 159(7): 3613-3621. Costantino, C. M., C. M. Baecher-Allan and D. A. Hafler (2008). "Human regulatory T cells and autoimmunity." Eur J Immunol 38(4): 921-924. Covell, D. G., J. Barbet, O. D. Holton, C. D. Black, R. J. Parker and J. N. Weinstein (1986). "Pharmacokinetics of monoclonal immunoglobulin G1, F(ab'')2, and Fab'' in mice." Cancer Res 46(8): 3969-3978. Crepin, T., C. Carron, C. Roubiou, B. Gaugler, E. Gaiffe, D. Simula-Faivre, C. Ferrand, P. Tiberghien, J. M. Chalopin, B. Moulin, L. Frimat, P. Rieu, P. Saas, D. Ducloux and J. Bamoulid (2015). "ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients." Am J Transplant 15(4): 1028-1038. D''Addio, F., X. Yuan, A. Habicht, J. Williams, M. Ruzek, J. Iacomini, L. A. Turka, M. H. Sayegh, N. Najafian and M. J. Ansari (2010). "A novel clinically relevant approach to tip the balance toward regulation in stringent transplant model." Transplantation 90(3): 260-269. Davis, L. S., M. C. Wacholtz and P. E. Lipsky (1989). "The induction of T cell unresponsiveness by rapidly modulating CD3." J Immunol 142(4): 1084-1094. Dean, Y., F. Dépis and M. Kosco-Vilbois (2012). "Combination therapies in the context of anti-CD3 antibodies for the treatment of autoimmune diseases." Swiss Med Wkly 142: w13711. Dong, D., L. Zheng, J. Lin, B. Zhang, Y. Zhu, N. Li, S. Xie, Y. Wang, N. Gao and Z. Huang (2019). "Structural basis of assembly of the human T cell receptor-CD3 complex." Nature 573(7775): 546-552. Emamaullee, J. A., J. Davis, S. Merani, C. Toso, J. F. Elliott, A. Thiesen and A. M. Shapiro (2009). "Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice." Diabetes 58(6): 1302-1311. Fan, C. Y., C. C. Huang, W. C. Chiu, C. C. Lai, G. G. Liou, H. C. Li and M. Y. Chou (2008). "Production of multivalent protein binders using a self-trimerizing collagen-like peptide scaffold." FASEB J 22(11): 3795-3804. Ferraro, A., C. Socci, A. Stabilini, A. Valle, P. Monti, L. Piemonti, R. Nano, S. Olek, P. Maffi, M. Scavini, A. Secchi, C. Staudacher, E. Bonifacio and M. Battaglia (2011). "Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes." Diabetes 60(11): 2903-2913. Feutren, G., L. Papoz, R. Assan, B. Vialettes, G. Karsenty, P. Vexiau, H. Du Rostu, M. Rodier, J. Sirmai, A. Lallemand and et al. (1986). "Cyclosporin increases the rate and length of remissions in insulin-dependent diabetes of recent onset. Results of a multicentre double-blind trial." Lancet 2(8499): 119-124. Friend, P. J., G. Hale, L. Chatenoud, P. Rebello, J. Bradley, S. Thiru, J. M. Phillips and H. Waldmann (1999). "Phase I study of an engineered aglycosylated humanized CD3 antibody in renal transplant rejection." Transplantation 68(11): 1632-1637. Gaber, A. O., A. P. Monaco, J. A. Russell, Y. Lebranchu and M. Mohty (2010). "Rabbit antithymocyte globulin (thymoglobulin): 25 years and new frontiers in solid organ transplantation and haematology." Drugs 70(6): 691-732. Gaston, R. S., M. H. Deierhoi, T. Patterson, E. Prasthofer, B. A. Julian, W. H. Barber, D. A. Laskow, A. G. Diethelm and J. J. Curtis (1991). "OKT3 first-dose reaction: association with T cell subsets and cytokine release." Kidney Int 39(1): 141-148. Genestier, L., S. Fournel, M. Flacher, O. Assossou, J. P. Revillard and N. Bonnefoy-Berard (1998). "Induction of Fas (Apo-1, CD95)-mediated apoptosis of activated lymphocytes by polyclonal antithymocyte globulins." Blood 91(7): 2360-2368. Gregori, S., N. Giarratana, S. Smiroldo and L. Adorini (2003). "Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development." J Immunol 171(8): 4040-4047. Hamilton-Williams, E. E., S. E. Palmer, B. Charlton and R. M. Slattery (2003). "Beta cell MHC class I is a late requirement for diabetes." Proc Natl Acad Sci U S A 100(11): 6688-6693. Harada, M. and S. Makino (1986). "Suppression of overt diabetes in NOD mice by anti-thymocyte serum or anti-Thy 1, 2 antibody." Jikken Dobutsu 35(4): 501-504. Harrington, L. E., R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy and C. T. Weaver (2005). "Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages." Nat Immunol 6(11): 1123-1132. Herold, K. C., B. N. Bundy, S. A. Long, J. A. Bluestone, L. A. DiMeglio, M. J. Dufort, S. E. Gitelman, P. A. Gottlieb, J. P. Krischer, P. S. Linsley, J. B. Marks, W. Moore, A. Moran, H. Rodriguez, W. E. Russell, D. Schatz, J. S. Skyler, E. Tsalikian, D. K. Wherrett, A. G. Ziegler and C. J. Greenbaum (2019). "An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes." N Engl J Med 381(7): 603-613. Herold, K. C., S. Gitelman, C. Greenbaum, J. Puck, W. Hagopian, P. Gottlieb, P. Sayre, P. Bianchine, E. Wong, V. Seyfert-Margolis, K. Bourcier and J. A. Bluestone (2009). "Treatment of patients with new onset Type 1 diabetes with a single course of anti-CD3 mAb Teplizumab preserves insulin production for up to 5 years." Clin Immunol 132(2): 166-173. Herold, K. C., S. E. Gitelman, U. Masharani, W. Hagopian, B. Bisikirska, D. Donaldson, K. Rother, B. Diamond, D. M. Harlan and J. A. Bluestone (2005). "A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes." Diabetes 54(6): 1763-1769. Herold, K. C., W. Hagopian, J. A. Auger, E. Poumian-Ruiz, L. Taylor, D. Donaldson, S. E. Gitelman, D. M. Harlan, D. Xu, R. A. Zivin and J. A. Bluestone (2002). "Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus." N Engl J Med 346(22): 1692-1698. Hessell, A. J., L. Hangartner, M. Hunter, C. E. Havenith, F. J. Beurskens, J. M. Bakker, C. M. Lanigan, G. Landucci, D. N. Forthal, P. W. Parren, P. A. Marx and D. R. Burton (2007). "Fc receptor but not complement binding is important in antibody protection against HIV." Nature 449(7158): 101-104. Hildeman, D. A., Y. Zhu, T. C. Mitchell, P. Bouillet, A. Strasser, J. Kappler and P. Marrack (2002). "Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim." Immunity 16(6): 759-767. Hire, K., D. K. Ngo, K. M. Stewart-Maynard, B. Hering and P. Bansal-Pakala (2012). "FoxP3+, and not CD25+, T cells increase post-transplant in islet allotransplant recipients following anti-CD25+ rATG immunotherapy." Cell Immunol 274(1-2): 83-88. Hirsch, R., J. A. Bluestone, L. DeNenno and R. E. Gress (1990). "Anti-CD3 F(ab'')2 fragments are immunosuppressive in vivo without evoking either the strong humoral response or morbidity associated with whole mAb." Transplantation 49(6): 1117-1123. Hirsch, R., M. Eckhaus, H. Auchincloss, Jr., D. H. Sachs and J. A. Bluestone (1988). "Effects of in vivo administration of anti-T3 monoclonal antibody on T cell function in mice. I. Immunosuppression of transplantation responses." J Immunol 140(11): 3766-3772. Honkanen, J., J. K. Nieminen, R. Gao, K. Luopajarvi, H. M. Salo, J. Ilonen, M. Knip, T. Otonkoski and O. Vaarala (2010). "IL-17 immunity in human type 1 diabetes." J Immunol 185(3): 1959-1967. Hooks, M. A., C. S. Wade and W. J. Millikan, Jr. (1991). "Muromonab CD-3: a review of its pharmacology, pharmacokinetics, and clinical use in transplantation." Pharmacotherapy 11(1): 26-37. Hu, X. and F. Chen (2018). "Exogenous insulin antibody syndrome (EIAS): a clinical syndrome associated with insulin antibodies induced by exogenous insulin in diabetic patients." Endocr Connect 7(1): R47-r55. Iwahashi, T., E. Okochi, K. Ariyoshi, H. Watabe, E. Amann, S. Mori, T. Tsuruo and K. Ono (1993). "Specific targeting and killing activities of anti-P-glycoprotein monoclonal antibody MRK16 directed against intrinsically multidrug-resistant human colorectal carcinoma cell lines in the nude mouse model." Cancer Res 53(22): 5475-5482. Katz, J., C. Benoist and D. Mathis (1993). "Major histocompatibility complex class I molecules are required for the development of insulitis in non-obese diabetic mice." Eur J Immunol 23(12): 3358-3360. Katz, J. D., C. Benoist and D. Mathis (1995). "T helper cell subsets in insulin-dependent diabetes." Science 268(5214): 1185-1188. Keymeulen, B., S. Candon, S. Fafi-Kremer, A. Ziegler, M. Leruez-Ville, C. Mathieu, E. Vandemeulebroucke, M. Walter, L. Crenier, E. Thervet, C. Legendre, D. Pierard, G. Hale, H. Waldmann, J. F. Bach, J. M. Seigneurin, D. Pipeleers and L. Chatenoud (2010). "Transient Epstein-Barr virus reactivation in CD3 monoclonal antibody-treated patients." Blood 115(6): 1145-1155. Keymeulen, B., E. Vandemeulebroucke, A. G. Ziegler, C. Mathieu, L. Kaufman, G. Hale, F. Gorus, M. Goldman, M. Walter, S. Candon, L. Schandene, L. Crenier, C. De Block, J. M. Seigneurin, P. De Pauw, D. Pierard, I. Weets, P. Rebello, P. Bird, E. Berrie, M. Frewin, H. Waldmann, J. F. Bach, D. Pipeleers and L. Chatenoud (2005). "Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes." N Engl J Med 352(25): 2598-2608. Keymeulen, B., M. Walter, C. Mathieu, L. Kaufman, F. Gorus, R. Hilbrands, E. Vandemeulebroucke, U. Van de Velde, L. Crenier, C. De Block, S. Candon, H. Waldmann, A. G. Ziegler, L. Chatenoud and D. Pipeleers (2010). "Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass." Diabetologia 53(4): 614-623. Knight, R. R., D. Kronenberg, M. Zhao, G. C. Huang, M. Eichmann, A. Bulek, L. Wooldridge, D. K. Cole, A. K. Sewell, M. Peakman and A. Skowera (2013). "Human β-cell killing by autoreactive preproinsulin-specific CD8 T cells is predominantly granule-mediated with the potency dependent upon T-cell receptor avidity." Diabetes 62(1): 205-213. Kohm, A. P., J. S. Williams, A. L. Bickford, J. S. McMahon, L. Chatenoud, J. F. Bach, J. A. Bluestone and S. D. Miller (2005). "Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis." J Immunol 174(8): 4525-4534. Koike, T., Y. Itoh, T. Ishii, I. Ito, K. Takabayashi, N. Maruyama, H. Tomioka and S. Yoshida (1987). "Preventive effect of monoclonal anti-L3T4 antibody on development of diabetes in NOD mice." Diabetes 36(4): 539-541. Kuhn, C. and H. L. Weiner (2016). "Therapeutic anti-CD3 monoclonal antibodies: from bench to bedside." Immunotherapy 8(8): 889-906. Kutlu, B., A. K. Cardozo, M. I. Darville, M. Kruhøffer, N. Magnusson, T. Ørntoft and D. L. Eizirik (2003). "Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells." Diabetes 52(11): 2701-2719. Li, C. R., E. E. Mueller and L. M. Bradley (2014). "Islet antigen-specific Th17 cells can induce TNF-α-dependent autoimmune diabetes." J Immunol 192(4): 1425-1432. Li, J., J. Davis, M. Bracht, J. Carton, J. Armstrong, W. Gao, B. Scallon, R. Fung, E. Emmell, M. Zimmerman, D. E. Griswold and L. Li (2006). "Modulation of antigen-specific T cell response by a non-mitogenic anti-CD3 antibody." Int Immunopharmacol 6(6): 880-891. Li, Z., B. F. Krippendorff, S. Sharma, A. C. Walz, T. Lavé and D. K. Shah (2016). "Influence of molecular size on tissue distribution of antibody fragments." MAbs 8(1): 113-119. Lindley, S., C. M. Dayan, A. Bishop, B. O. Roep, M. Peakman and T. I. Tree (2005). "Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes." Diabetes 54(1): 92-99. Long, S. A., J. Thorpe, H. A. DeBerg, V. Gersuk, J. Eddy, K. M. Harris, M. Ehlers, K. C. Herold, G. T. Nepom and P. S. Linsley (2016). "Partial exhaustion of CD8 T cells and clinical response to teplizumab in new-onset type 1 diabetes." Sci Immunol 1(5). Long, S. A., J. Thorpe, K. C. Herold, M. Ehlers, S. Sanda, N. Lim, P. S. Linsley, G. T. Nepom and K. M. Harris (2017). "Remodeling T cell compartments during anti-CD3 immunotherapy of type 1 diabetes." Cell Immunol 319: 3-9. Makino, S., M. Harada, Y. Kishimoto and Y. Hayashi (1986). "Absence of insulitis and overt diabetes in athymic nude mice with NOD genetic background." Jikken Dobutsu 35(4): 495-498. Makino, S., K. Kunimoto, Y. Muraoka, Y. Mizushima, K. Katagiri and Y. Tochino (1980). "Breeding of a non-obese, diabetic strain of mice." Jikken Dobutsu 29(1): 1-13. Marrack, P., J. Kappler and B. L. Kotzin (2001). "Autoimmune disease: why and where it occurs." Nat Med 7(8): 899-905. Martin-Orozco, N., Y. Chung, S. H. Chang, Y. H. Wang and C. Dong (2009). "Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells." Eur J Immunol 39(1): 216-224. Marwaha, A. K., S. Q. Crome, C. Panagiotopoulos, K. B. Berg, H. Qin, Q. Ouyang, L. Xu, J. J. Priatel, M. K. Levings and R. Tan (2010). "Cutting edge: Increased IL-17-secreting T cells in children with new-onset type 1 diabetes." J Immunol 185(7): 3814-3818. Michallet, M. C., X. Preville, M. Flacher, S. Fournel, L. Genestier and J. P. Revillard (2003). "Functional antibodies to leukocyte adhesion molecules in antithymocyte globulins." Transplantation 75(5): 657-662. Miller, B. J., M. C. Appel, J. J. O''Neil and L. S. Wicker (1988). "Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice." J Immunol 140(1): 52-58. Mosmann, T. R. and R. L. Coffman (1989). "TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties." Annu Rev Immunol 7: 145-173. Naramura, M., I. K. Jang, H. Kole, F. Huang, D. Haines and H. Gu (2002). "c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation." Nat Immunol 3(12): 1192-1199. Nathan, D. M., S. Genuth, J. Lachin, P. Cleary, O. Crofford, M. Davis, L. Rand and C. Siebert (1993). "The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus." N Engl J Med 329(14): 977-986. Ogawa, M., T. Murayama, T. Hasegawa, T. Kanaya, F. Kobayashi, Y. Tochino and H. Uda (1985). "<b>The inhibitory effect of neonatal thymectomy on the incidence of insulitis in non-obese diabetes (NOD) </b><b>mice </b>." Biomedical Research 6(2): 103-105. Park, H., Z. Li, X. O. Yang, S. H. Chang, R. Nurieva, Y. H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian and C. Dong (2005). "A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17." Nat Immunol 6(11): 1133-1141. Patel, D. D. and J. B. Bussel (2020). "Neonatal Fc receptor in human immunity: Function and role in therapeutic intervention." J Allergy Clin Immunol 146(3): 467-478. Penaranda, C., Q. Tang and J. A. Bluestone (2011). "Anti-CD3 therapy promotes tolerance by selectively depleting pathogenic cells while preserving regulatory T cells." J Immunol 187(4): 2015-2022. Rathmell, J. C., T. Lindsten, W. X. Zong, R. M. Cinalli and C. B. Thompson (2002). "Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis." Nat Immunol 3(10): 932-939. Reinert-Hartwall, L., J. Honkanen, H. M. Salo, J. K. Nieminen, K. Luopajärvi, T. Härkönen, R. Veijola, O. Simell, J. Ilonen, A. Peet, V. Tillmann, M. Knip and O. Vaarala (2015). "Th1/Th17 plasticity is a marker of advanced β cell autoimmunity and impaired glucose tolerance in humans." J Immunol 194(1): 68-75. Rudensky, A. Y. (2011). "Regulatory T cells and Foxp3." Immunol Rev 241(1): 260-268. Russell, J. H., B. Rush, C. Weaver and R. Wang (1993). "Mature T cells of autoimmune lpr/lpr mice have a defect in antigen-stimulated suicide." Proc Natl Acad Sci U S A 90(10): 4409-4413. Russell, J. H. and R. Wang (1993). "Autoimmune gld mutation uncouples suicide and cytokine/proliferation pathways in activated, mature T cells." Eur J Immunol 23(9): 2379-2382. Salomon, B., D. J. Lenschow, L. Rhee, N. Ashourian, B. Singh, A. Sharpe and J. A. Bluestone (2000). "B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes." Immunity 12(4): 431-440. Schneider, A., S. A. Long, K. Cerosaletti, C. T. Ni, P. Samuels, M. Kita and J. H. Buckner (2013). "In active relapsing-remitting multiple sclerosis, effector T cell resistance to adaptive T(regs) involves IL-6-mediated signaling." Sci Transl Med 5(170): 170ra115. Sgro, C. (1995). "Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review." Toxicology 105(1): 23-29. Shah, K., A. Al-Haidari, J. Sun and J. U. Kazi (2021). "T cell receptor (TCR) signaling in health and disease." Signal Transduct Target Ther 6(1): 412. Simon, G., M. Parker, V. Ramiya, C. Wasserfall, Y. Huang, D. Bresson, R. F. Schwartz, M. Campbell-Thompson, L. Tenace, T. Brusko, S. Xue, A. Scaria, M. Lukason, S. Eisenbeis, J. Williams, M. Clare-Salzler, D. Schatz, B. Kaplan, M. Von Herrath, K. Womer and M. A. Atkinson (2008). "Murine antithymocyte globulin therapy alters disease progression in NOD mice by a time-dependent induction of immunoregulation." Diabetes 57(2): 405-414. Skowera, A., R. J. Ellis, R. Varela-Calviño, S. Arif, G. C. Huang, C. Van-Krinks, A. Zaremba, C. Rackham, J. S. Allen, T. I. Tree, M. Zhao, C. M. Dayan, A. K. Sewell, W. W. Unger, J. W. Drijfhout, F. Ossendorp, B. O. Roep and M. Peakman (2008). "CTLs are targeted to kill beta cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope." J Clin Invest 118(10): 3390-3402. Smith, J. A., Q. Tang and J. A. Bluestone (1998). "Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets." J Immunol 160(10): 4841-4849. Stockinger, B. and S. Omenetti (2017). "The dichotomous nature of T helper 17 cells." Nat Rev Immunol 17(9): 535-544. Sumida, T., M. Furukawa, A. Sakamoto, T. Namekawa, T. Maeda, M. Zijlstra, I. Iwamoto, T. Koike, S. Yoshida, H. Tomioka and et al. (1994). "Prevention of insulitis and diabetes in beta 2-microglobulin-deficient non-obese diabetic mice." Int Immunol 6(9): 1445-1449. Thistlethwaite, J. R., Jr., J. K. Stuart, J. T. Mayes, A. O. Gaber, S. Woodle, M. R. Buckingham and F. P. Stuart (1988). "Complications and monitoring of OKT3 therapy." Am J Kidney Dis 11(2): 112-119. Tritt, M., E. Sgouroudis, E. d''Hennezel, A. Albanese and C. A. Piccirillo (2008). "Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes." Diabetes 57(1): 113-123. Valdez-Ortiz, R., O. Bestard, I. Llaudó, M. Franquesa, G. Cerezo, J. Torras, I. Herrero-Fresneda, R. Correa-Rotter and J. M. Grinyó (2015). "Induction of suppressive allogeneic regulatory T cells via rabbit antithymocyte polyclonal globulin during homeostatic proliferation in rat kidney transplantation." Transpl Int 28(1): 108-119. Viglietta, V., C. Baecher-Allan, H. L. Weiner and D. A. Hafler (2004). "Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis." J Exp Med 199(7): 971-979. Weinshenker, B. G., B. Bass, S. Karlik, G. C. Ebers and G. P. Rice (1991). "An open trial of OKT3 in patients with multiple sclerosis." Neurology 41(7): 1047-1052. Wicker, L. S., B. J. Miller and Y. Mullen (1986). "Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice." Diabetes 35(8): 855-860. Wilkinson, I., S. Anderson, J. Fry, L. A. Julien, D. Neville, O. Qureshi, G. Watts and G. Hale (2021). "Fc-engineered antibodies with immune effector functions completely abolished." PLoS One 16(12): e0260954. Willcox, A., S. J. Richardson, A. J. Bone, A. K. Foulis and N. G. Morgan (2009). "Analysis of islet inflammation in human type 1 diabetes." Clin Exp Immunol 155(2): 173-181. Woodle, E. S., J. R. Thistlethwaite, I. A. Ghobrial, L. K. Jolliffe, F. P. Stuart and J. A. Bluestone (1991). "OKT3 F(ab'')2 fragments--retention of the immunosuppressive properties of whole antibody with marked reduction in T cell activation and lymphokine release." Transplantation 52(2): 354-360. Woodle, E. S., D. Xu, R. A. Zivin, J. Auger, J. Charette, R. O''Laughlin, D. Peace, L. K. Jollife, T. Haverty, J. A. Bluestone and J. R. Thistlethwaite, Jr. (1999). "Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection." Transplantation 68(5): 608-616. Wu, A. M., G. J. Tan, M. A. Sherman, P. Clarke, T. Olafsen, S. J. Forman and A. A. Raubitschek (2001). "Multimerization of a chimeric anti-CD20 single-chain Fv-Fc fusion protein is mediated through variable domain exchange." Protein Eng 14(12): 1025-1033. Xu, D., M. L. Alegre, S. S. Varga, A. L. Rothermel, A. M. Collins, V. L. Pulito, L. S. Hanna, K. P. Dolan, P. W. Parren, J. A. Bluestone, L. K. Jolliffe and R. A. Zivin (2000). "In vitro characterization of five humanized OKT3 effector function variant antibodies." Cell Immunol 200(1): 16-26. Yang, S., N. Fujikado, D. Kolodin, C. Benoist and D. Mathis (2015). "Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance." Science 348(6234): 589-594. You, S., M. Belghith, S. Cobbold, M. A. Alyanakian, C. Gouarin, S. Barriot, C. Garcia, H. Waldmann, J. F. Bach and L. Chatenoud (2005). "Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells." Diabetes 54(5): 1415-1422. Yu, X. Z., L. Zhu, J. E. Davis, J. Y. Tso, J. A. Hansen and C. Anasetti (1996). "Induction of apoptosis by anti-CD3 epsilon F(ab'')2 in antigen receptor transgenic murine T cells activated by specific peptide." J Immunol 157(8): 3420-3429. Zhu, J. and W. E. Paul (2008). "CD4 T cells: fates, functions, and faults." Blood 112(5): 1557-1569. Zhu, L., X. Yu, Y. Akatsuka, J. A. Cooper and C. Anasetti (1999). "Role of mitogen-activated protein kinases in activation-induced apoptosis of T cells." Immunology 97(1): 26-35. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91848 | - |
dc.description.abstract | Anti-CD3的專一性療法在治療異體器官移植及第一型糖尿病具有良好前景。藉由減低抗體之Fc 與Fc 受體結合能力減少副作用,可以因而增加anti-CD3抗體用於治療的可能性。本研究利用一段能自我形成三股螺旋結構的類膠原蛋白胜肽序列 (Gly-Pro-Pro)10,生產出不含Fc結構,以三倍體Fab形式的anti-mouse CD3 Collabody, h145CSA。我們將同質三倍體的h145CSA成功地以可溶性蛋白質的形式分泌至CHO 細胞培養上清液中,並且利用親合性及分子篩管柱層析的方式,製備出高純度且適合作為治療用的藥物。與兩價、FcR 結合力降低的免疫球蛋白h145chIgGAA相比,三價的h145CSA具有較佳和TCR/CD3 complex的結合強度、以及使T 細胞表面TCR/CD3 complex表現量下降的能力。與兩價的抗體相比,只有三價的h145CSA可以造成細胞凋亡,且使Th1細胞凋亡比例較Treg細胞高。有趣的是,以h145CSA處理的Th1細胞,其FasL 的表現量明顯高於Treg細胞,且 FasL中和性抗體可以阻斷h145CSA造成的Th1細胞凋亡。h145CSA投與正常活體小鼠,只會造成極低的T細胞活化以及低量細胞激素的產生。投與正常小鼠多次劑量h145CSA,造成脾臟中CD4+ T細胞減少的能力與兩價抗體相同,但它使CD4+ T細胞回復到正常量的速度比兩價抗體更快速。以h145CSA治療剛發病第一型糖尿病之NOD小鼠的功效也比兩價抗體h145chIgGAA明顯更有效,此與在h145CSA治療小鼠的胰臟及腸繫膜淋巴結中,存有較低比例的CD4+IFNγ+ T 細胞以及Treg/Th1 比值較高有相關性。本研究結果顯示,三價非Fc結構的anti-CD3 Collabody具有治療第一型糖尿病之潛能。 | zh_TW |
dc.description.abstract | Specific anti-CD3 treatment is deemed to be a promising therapy for allograft rejection and type 1 diabetes (T1D). Fc receptor (FcR) reduced-binding antibodies, by avoiding adverse effects of Fc and FcR interaction, have good therapeutic potential. We generated a trivalent, non-Fc-containing anti-mouse-CD3 Collabody, h145CSA, by using a triplex-forming collage-like peptide (Gly-Pro-Pro)10 to drive the trimerization of the Fab fragments. h145CSA was successfully produced as a soluble protein in the culture supernatant of CHO cells and could be purified as a homotrimer by affinity and size-exclusion chromatography to high purity, suitable for use as therapeutics. Trivalent h145CSA exhibited better binding strength and greater potency in downregulation of the TCR/CD3 complex compared to FcR reduced-binding format IgG, h145chIgGAA. Moreover, while h145CSA induced a significantly higher percentage of Th1 cell apoptosis than Treg cells, h145IgGAA did not. Interestingly, FasL was significantly up-regulated in h145CSA-treated Th1 cells compared to Treg cells. Neutralizing antibody to FasL blocked h145CSA-induced Th1 cell apoptosis. Administration of h145CSA invoked minimal T cell activation and cytokine production in normal mice. Multiple dosing of h145CSA depleted splenic CD4+ T cells, which was comparable to bivalent antibodies, yet it was characterized by more rapid CD4+ T cell recovery kinetics than treatment with other bivalent antibodies. Importantly, h145CSA was more potent than h145chIgGAA in inducing long-lasting remission in recent-onset diabetic NOD mice. Its therapeutic effect was accompanied by a significantly lower percentage of CD4+IFN+ T cells and a higher Treg/Th1 ratio in pancreatic and mesenteric lymph nodes. The results of our study demonstrate that trivalent non-Fc anti-CD3 Collabody has potential to be used in treatment of T1D. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:16:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-23T16:16:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv Table of contents vi List of Table and Figures x Chapter 1: Introduction 1 1.1 Role of T cell in immune response 2 1.2 T cell subsets and their characteristics 2 1.2.1 Th1 and Th2 cells 2 1.2.2 Th17 cells 3 1.2.3 Regulatory T cells 3 1.3 The role of different subsets of T cells in T1D pathogenesis 4 1.3.1 The role of Th1 cells in T1D pathogenesis 4 1.3.2 The role of Th17 cells in T1D pathogenesis 5 1.3.3 The role of Treg cells in T1D pathogenesis 6 1.3.4 The role of CD8+ T cells in T1D pathogenesis 6 1.3.5 The roles of CD4+ and CD8+ T cells in diabetes 7 1.4 T cell-targeting therapy for T1D 7 1.4.1 Broad-spectrum immunosuppressive drugs 8 1.4.2 Anti-thymocyte globulin (ATG) 8 1.4.3 Anti-CD3 antibody 9 1.5 The effect of anti-CD3 antibody on T cells 9 1.5.1 Components and function of CD3/TCR in T cell 9 1.5.2 The effect of anti-CD3 antibody on T cells 9 1.6 Clinical application of anti-CD3 antibody 10 1.6.1 Immunogenicity 10 1.6.2 Adverse effects 11 1.6.3 Fc-modification of anti-CD3 antibody 11 1.6.4 Clinical application of anti-CD3 antibody in T1D 12 1.7 Collabody 13 1.8 Research goal 14 Chapter: 2 Materials and Methods 16 2.1 Materials 17 2.1.1 Ethics statement 17 2.1.2 Mice 17 2.1.3 Antibodies and reagents 18 2.1.4 Culture medium, Resins and Buffers 21 2.1.5 Mouse T cell isolation kits 23 2.1.6 Primer sequences used in qPCR 23 2.2 Methods 23 2.2.1 Construction of recombinant plasmids 24 2.2.2 Antibody expression and purification 24 2.2.3 Antibody characterization 25 2.2.4 T cell enrichment 25 2.2.5 Staining and flow cytometry 26 2.2.6 Direct and competitive T cell binding assays 26 2.2.7 TCR downregulation assay 27 2.2.8 CD4+ T cell activation and differentiation 28 2.2.9 In vitro T cell apoptosis assay 28 2.2.10 Quantitative PCR 29 2.2.11 Pharmacokinetics of h145CSA 29 2.2.12 Biodistribution profile of h145CSA 30 2.2.13 Measurements of T cell counts in vivo 30 2.2.14 Serum cytokine assay 31 2.2.15 Antibody treatment of NOD mice 31 2.2.16 Statistics 31 Chapter 3: Results 33 3.1 Generation and characterization of anti-CD3 Collabody and its bivalent antibody counterparts 34 3.2 Anti-CD3 CSA is superior to bivalent antibodies in binding strength and ability to downregulate cell surface TCR 34 3.3 Naïve and activated CD4+ T cells differ in their susceptibility to trivalent anti-CD3 CSA- and bivalent anti-CD3 IgG-induced apoptosis 36 3.4 Th1 cells are more susceptible than Treg cells to anti-CD3 CSA-induced apoptosis 36 3.5 Anti-CD3 CSA induces Th1 cell apoptosis by up-regulating FasL expression 37 3.6 Pharmacokinetics and its biodistribution profile of anti-CD3 CSA 38 3.7 Multiple dosing of anti-CD3 CSA efficiently reduces splenic T cells, followed by rapid recovery kinetics in naïve mice 39 3.8 Anti-CD3 CSA induces weak mitogenic response in vivo 40 3.9 Anti-CD3 CSA is therapeutically more efficacious than anti-CD3 IgGAA in treating recent-onset diabetic NOD mice 40 3.10 The efficacy of anti-CD3 CSA correlates with reduction of CD4+IFN-+ T cells 41 Chapter 4: Discussion 43 4.1 Application of Collabody as a trivalent and non-Fc-containing antibody 44 4.2 The benefit of anti-CD3 CSA in CD3/TCR downregulation and apoptosis induction compared to bivalent antibodies 45 4.3 The characteristics of anti-CD3 CSA for in vivo use 46 4.4 Anti-CD3 therapy selectively deplete pathogenic Th1 cells is a viable approach to treat T1D 48 4.5 The role of regulatory/exhausted CD8+ T cells in diabetic patients responding to anti-CD3 antibody treatment 50 4.6 Summary 51 Chapter 5: References 53 Chapter 6: Table and Figures 71 Chapter 7: Appendix 113 | - |
dc.language.iso | en | - |
dc.title | Anti-CD3 Collabody特性分析與糖尿病NOD小鼠治療應用 | zh_TW |
dc.title | Characterization of Anti-CD3 Collabody and its Therapeutic Use in Diabetic NOD Mice | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 博士 | - |
dc.contributor.coadvisor | 周民元 | zh_TW |
dc.contributor.coadvisor | Min-Yuan Chou | en |
dc.contributor.oralexamcommittee | 孔祥智;繆希椿;李建國;顧家綺 | zh_TW |
dc.contributor.oralexamcommittee | John T. Kung;Shi-Chuen Miaw;Chien-Kuo Lee;Chia-Chi Ku | en |
dc.subject.keyword | CD3,Collabody,第一型糖尿病,第一型輔助T細胞,細胞凋亡, | zh_TW |
dc.subject.keyword | CD3,Collabody,type 1 diabetes,Th1,apoptosis, | en |
dc.relation.page | 113 | - |
dc.identifier.doi | 10.6342/NTU202400452 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-02-02 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 免疫學研究所 | - |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 18.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。