請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91846完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬 | zh_TW |
| dc.contributor.advisor | Tzu-Pin Lu | en |
| dc.contributor.author | 黃宇彤 | zh_TW |
| dc.contributor.author | Yue-Ton Huang | en |
| dc.date.accessioned | 2024-02-23T16:16:17Z | - |
| dc.date.available | 2024-02-24 | - |
| dc.date.copyright | 2024-02-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-15 | - |
| dc.identifier.citation | 參考資料:
1. Organization W.H. Global cancer observatory. 2022 https://gco.iarc.fr/today/fact-sheets-cancers. 2. Cronin K.A., Scott S., Firth A.U., et al., Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer 2022. 128(24): p. 4251-4284.DOI: 10.1002/cncr.34479. 3. Siegel R.L., Miller K.D., Wagle N.S., et al., Cancer statistics, 2023. CA Cancer J Clin 2023. 73(1): p. 17-48.DOI: 10.3322/caac.21763. 4. Taiwan Cancer Registry Annual Report, 2020. 2022. 5. Torre L.A., Trabert B., DeSantis C.E., et al., Ovarian cancer statistics, 2018. CA Cancer J Clin 2018. 68(4): p. 284-296.DOI: 10.3322/caac.21456. 6. Köbel M. and Kang E.Y., The Evolution of Ovarian Carcinoma Subclassification. Cancers (Basel) 2022. 14(2).DOI: 10.3390/cancers14020416. 7. Lee A.W., Navajas E.E., and Liu L., Clear differences in ovarian cancer incidence and trends by ethnicity among Asian Americans. Cancer Epidemiol 2019. 61: p. 142-149.DOI: 10.1016/j.canep.2019.06.005. 8. Rauh-Hain J.A., Melamed A., Schaps D., et al., Racial and ethnic disparities over time in the treatment and mortality of women with gynecological malignancies. Gynecol Oncol 2018. 149(1): p. 4-11.DOI: 10.1016/j.ygyno.2017.12.006. 9. Peres L.C., Risch H., Terry K.L., et al., Racial/ethnic differences in the epidemiology of ovarian cancer: a pooled analysis of 12 case-control studies. Int J Epidemiol 2018. 47(3): p. 1011.DOI: 10.1093/ije/dyy054. 10. Integrated genomic analyses of ovarian carcinoma. Nature 2011. 474(7353): p. 609-15.DOI: 10.1038/nature10166. 11. Yang H., Yu M., Zhong S., et al., Neoantigens and the tumor microenvironment play important roles in the prognosis of high-grade serous ovarian cancer. J Ovarian Res 2022. 15(1): p. 18.DOI: 10.1186/s13048-022-00955-9. 12. Yang Q., Zhang C., Ren Y., et al., Genomic characterization of Chinese ovarian clear cell carcinoma identifies driver genes by whole exome sequencing. Neoplasia 2020. 22(9): p. 399-430.DOI: 10.1016/j.neo.2020.06.002. 13. Hollis R.L., Thomson J.P., Stanley B., et al., Molecular stratification of endometrioid ovarian carcinoma predicts clinical outcome. Nat Commun 2020. 11(1): p. 4995.DOI: 10.1038/s41467-020-18819-5. 14. Etemadmoghadam D., Azar W.J., Lei Y., et al., EIF1AX and NRAS Mutations Co-occur and Cooperate in Low-Grade Serous Ovarian Carcinomas. Cancer Res 2017. 77(16): p. 4268-4278.DOI: 10.1158/0008-5472.Can-16-2224. 15. Bashashati A., Ha G., Tone A., et al., Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol 2013. 231(1): p. 21-34.DOI: 10.1002/path.4230. 16. Murakami R., Matsumura N., Brown J.B., et al., Exome Sequencing Landscape Analysis in Ovarian Clear Cell Carcinoma Shed Light on Key Chromosomal Regions and Mutation Gene Networks. Am J Pathol 2017. 187(10): p. 2246-2258.DOI: 10.1016/j.ajpath.2017.06.012. 17. Zhao S., Bellone S., Lopez S., et al., Mutational landscape of uterine and ovarian carcinosarcomas implicates histone genes in epithelial-mesenchymal transition. Proc Natl Acad Sci U S A 2016. 113(43): p. 12238-12243.DOI: 10.1073/pnas.1614120113. 18. Madariaga A., Garg S., Bruce J.P., et al., Biomarkers of outcome to weekly paclitaxel in epithelial ovarian cancer. Gynecol Oncol 2020. 159(2): p. 539-545.DOI: 10.1016/j.ygyno.2020.08.032. 19. Hlaváč V., Holý P., Václavíková R., et al., Whole-exome sequencing of epithelial ovarian carcinomas differing in resistance to platinum therapy. Life Sci Alliance 2022. 5(12).DOI: 10.26508/lsa.202201551. 20. Filippova O.T., Selenica P., Pareja F., et al., Molecular characterization of high-grade serous ovarian cancers occurring in younger and older women. Gynecol Oncol 2021. 161(2): p. 545-552.DOI: 10.1016/j.ygyno.2021.02.028. 21. Zhu Q., Zhang J., Chen Y., et al., Whole-exome sequencing of ovarian cancer families uncovers putative predisposition genes. Int J Cancer 2020. 146(8): p. 2147-2155.DOI: 10.1002/ijc.32545. 22. Pierson W.E., Peters P.N., Chang M.T., et al., An integrated molecular profile of endometrioid ovarian cancer. Gynecol Oncol 2020. 157(1): p. 55-61.DOI: 10.1016/j.ygyno.2020.02.011. 23. Matsushita H., Hasegawa K., Oda K., et al., Neoantigen load and HLA-class I expression identify a subgroup of tumors with a T-cell-inflamed phenotype and favorable prognosis in homologous recombination-proficient high-grade serous ovarian carcinoma. J Immunother Cancer 2020. 8(1).DOI: 10.1136/jitc-2019-000375. 24. Liu C.L., Yuan R.H., and Mao T.L., The Molecular Landscape Influencing Prognoses of Epithelial Ovarian Cancer. Biomolecules 2021. 11(7).DOI: 10.3390/biom11070998. 25. Lee J.Y., Yoon J.K., Kim B., et al., Tumor evolution and intratumor heterogeneity of an epithelial ovarian cancer investigated using next-generation sequencing. BMC Cancer 2015. 15: p. 85.DOI: 10.1186/s12885-015-1077-4. 26. Shibuya Y., Tokunaga H., Saito S., et al., Identification of somatic genetic alterations in ovarian clear cell carcinoma with next generation sequencing. Genes Chromosomes Cancer 2018. 57(2): p. 51-60.DOI: 10.1002/gcc.22507. 27. Lapke N., Chen C.H., Chang T.C., et al., Genetic alterations and their therapeutic implications in epithelial ovarian cancer. BMC Cancer 2021. 21(1): p. 499.DOI: 10.1186/s12885-021-08233-5. 28. Goodwin S., McPherson J.D., and McCombie W.R., Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 2016. 17(6): p. 333-51.DOI: 10.1038/nrg.2016.49. 29. Győrffy B., Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. Geroscience 2023. 45(3): p. 1889-1898.DOI: 10.1007/s11357-023-00742-4. 30. Ye M., Zhou J., Gao Y., et al., The prognostic value of the lysyl oxidase family in ovarian cancer. J Clin Lab Anal 2020. 34(12): p. e23538.DOI: 10.1002/jcla.23538. 31. Xiang J., Su R., Wu S., et al., Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes. Front Oncol 2022. 12: p. 967342.DOI: 10.3389/fonc.2022.967342. 32. Kang K.W., Lee M.J., Song J.A., et al., Overexpression of goosecoid homeobox is associated with chemoresistance and poor prognosis in ovarian carcinoma. Oncol Rep 2014. 32(1): p. 189-98.DOI: 10.3892/or.2014.3203. 33. Davis S.J., Sheppard K.E., Anglesio M.S., et al., Enhanced GAB2 Expression Is Associated with Improved Survival in High-Grade Serous Ovarian Cancer and Sensitivity to PI3K Inhibition. Mol Cancer Ther 2015. 14(6): p. 1495-503.DOI: 10.1158/1535-7163.Mct-15-0039. 34. Zhang S., Gao Y., Wang P., et al., Tryptophan metabolism enzymes are potential targets in ovarian clear cell carcinoma. Cancer Med 2023. 12(24): p. 21996-22005.DOI: 10.1002/cam4.6778. 35. Alberto-Aguilar D.R., Hernández-Ramírez V.I., Osorio-Trujillo J.C., et al., Ascites from Ovarian Cancer Induces Novel Fucosylated Proteins. Cancer Microenviron 2019. 12(2-3): p. 181-195.DOI: 10.1007/s12307-019-00227-z. 36. Bryan E.J., Thomas N.A., Palmer K., et al., Refinement of an ovarian cancer tumour suppressor gene locus on chromosome arm 22q and mutation analysis of CYP2D6, SREBP2 and NAGA. Int J Cancer 2000. 87(6): p. 798-802.DOI: 10.1002/1097-0215(20000915)87:6<798::aid-ijc6>3.0.co;2-x. 37. Trousil S., Lee P., Edwards R.J., et al., Altered cytochrome 2E1 and 3A P450-dependent drug metabolism in advanced ovarian cancer correlates to tumour-associated inflammation. Br J Pharmacol 2019. 176(18): p. 3712-3722.DOI: 10.1111/bph.14776. 38. Xiang G. and Cheng Y., MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod Biol 2018. 18(3): p. 218-224.DOI: 10.1016/j.repbio.2018.07.005. 39. Jiang Y.Z., Yu K.D., Peng W.T., et al., Enriched variations in TEKT4 and breast cancer resistance to paclitaxel. Nat Commun 2014. 5: p. 3802.DOI: 10.1038/ncomms4802. 40. Gadea G., Sanz-Moreno V., Self A., et al., DOCK10-mediated Cdc42 activation is necessary for amoeboid invasion of melanoma cells. Curr Biol 2008. 18(19): p. 1456-65.DOI: 10.1016/j.cub.2008.08.053. 41. Ruiz-Lafuente N., Minguela A., Moraleda J.M., et al., Variable Distribution of DOCK-D Proteins between Cytosol and Nucleoplasm in Cell Lines, Effect of Interleukin-4 on DOCK10 in B-Cell Lymphoid Neoplasms, and Validation of a New DOCK10 Antiserum for Immunofluorescence Studies. Antibodies (Basel) 2021. 10(3).DOI: 10.3390/antib10030033. 42. Chatzinasiou F., Lill C.M., Kypreou K., et al., Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J Natl Cancer Inst 2011. 103(16): p. 1227-35.DOI: 10.1093/jnci/djr219. 43. Cui C., Dwyer B.G., Liu C., et al., Total Synthesis and Target Identification of the Curcusone Diterpenes. J Am Chem Soc 2021. 143(11): p. 4379-4386.DOI: 10.1021/jacs.1c00557. 44. Rohozinski J., Diaz-Arrastia C., and Edwards C.L., Do some epithelial ovarian cancers originate from a fallopian tube ciliate cell lineage? Med Hypotheses 2017. 107: p. 16-21.DOI: 10.1016/j.mehy.2017.07.014. 45. Qiao Z., Jiang Y., Wang L., et al., Mutations in KIAA1109, CACNA1C, BSN, AKAP13, CELSR2, and HELZ2 Are Associated With the Prognosis in Endometrial Cancer. Front Genet 2019. 10: p. 909.DOI: 10.3389/fgene.2019.00909. 46. Huang Y., Zhang W., Xu C., et al., Presence of PD-1 similarity genes in monocytes may promote the development of type 1 diabetes mellitus and poor prognosis of pancreatic cancer. BMJ Open Diabetes Res Care 2023. 11(3).DOI: 10.1136/bmjdrc-2022-003196. 47. Kim Y.I., Lee J., Choi Y.J., et al., Proteogenomic Study beyond Chromosome 9: New Insight into Expressed Variant Proteome and Transcriptome in Human Lung Adenocarcinoma Tissues. J Proteome Res 2015. 14(12): p. 5007-16.DOI: 10.1021/acs.jproteome.5b00544. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91846 | - |
| dc.description.abstract | 背景與動機
卵巢癌的發生和死亡存在種族差異與亞型差異。本研究旨在探索台灣女性卵巢癌患者腫瘤的體細胞單核甘酸變異 (single nucleotide variants,SNVs),是否可以作為患者預後的預測子,並探討其是否具有種族特異性或亞型特異性。 方法: 本研究以全外顯子定序技術分析腫瘤體細胞突變。我們以Cox風險比例模型和加速失效時間模型分析SNV和死亡風險及復發風險的關係,並透過邏輯斯迴歸模型了解SNV和患者對鉑類藥物反應之間的關係。同時計算次要等位基因,以及以卡方檢定或費雪精準檢定以確定SNV在特定亞型中的顯著性。 結果: 我們識別出17個SNV,可以作為全亞型的死亡風險預測子(如rs17120062、rs3746435和rs75323205)、透明細胞 (Clear cell carcinoma,CCC)亞型(如rs3746435、rs17120062等)、子宮內膜樣 (Endometrioid carcinoma,EC)亞型(如rs36097019、rs6788448等)和漿液 (Serous carcinoma,SC) 亞型(如rs3810481、rs2108622等)的死亡風險預測子。存活分析的log rank test皆顯示攜帶變異者和未攜帶者在存活曲線存在顯著差異。此外,我們鑑定了20個SNV,可以作為復發風險預測子 (如rs57115249、rs7047726和rs2279218等),這些SNV在存活分析中也展現了顯著的差異。我們也識別出18個SNV,可以作為對藥物敏感的預測子(如rs529208、rs56727079和rs57115249等)。 在比較公開資料庫中的等位基因頻率時,我們發現這些SNV在東亞人群中普遍高於白人,但在本研究樣本中的頻率卻相對較低,暗示台灣卵巢癌患者中可能存在特異性的基因變異,這些變異可能是導致卵巢癌發生率和死亡率種族差異的潛在因素。本研究還確定了5個用於區分不同亞型的SNV。 結論: 本研究成功鑑定了多個與卵巢癌預後密切相關,而且可用於區分不同亞型的SNV。這些SNV的等位基因頻率揭示了台灣卵巢癌的種族特異性變異。上述這些SNV坐落的13個基因 (ALPK2、LOXL4、SLC28A1、TNFRSF10D、ATP13A4、IDO2、IGHV1-2、PLXNB2、CYP2D6、EGFLAM 、C19orf53、CYP4F2和UBAP2) 已有少數與卵巢癌相關的研究。在與預後有顯著相關的變異中,有六個變異在不同的分析模型中都有重複地出現在CCC亞型以及全亞型的組別中,分別為rs3746435、rs17120062、rs11547731、rs1065852、rs1983864和rs584855,對應的基因名稱為MYH7B、TEKT4、PLXNB2、CYP2D6、LOXL4和ANKRD60。這些基因目前有少數與卵巢癌或其他癌症相關的研究,這些基因可能可以為在台灣較為常見的CCC亞型卵巢癌患者提供重要的治療和診斷洞見。 這些發現顯示了本探索性分析的重要性。這些鑑定出的SNV為後續深入的功能性研究奠定了基礎,它們具有成為癌症診斷和治療的關鍵生物標記的潛力,並有機會直接作為癌症治療的新型藥物靶點。此外,這些SNV的發現為臨床決策提供了新的參考依據,可以幫助優化治療策略和提高預後預測的準確性。 | zh_TW |
| dc.description.abstract | Background and Motivation:
Ovarian cancer exhibits ethnic and subtype disparities in incidence and mortality. This study aimed to explore whether somatic single nucleotide variants (SNVs) in Taiwanese female ovarian cancer patients could serve as prognostic predictors and to investigate their ethnic specificity or subtype specificity. Methods: The study analyzed tumor somatic mutations using whole-exome sequencing. We employed Cox proportional hazards and accelerated failure time models to analyze the relationship between SNVs and risks of death and recurrence. Logistic regression was used to understand the relationship between SNVs and patient response to platinum-based drugs. Minor allele frequencies were calculated, and chi-square or Fisher''s exact tests were used to determine the significance of SNVs in specific subtypes. Results: We identified 17 SNVs as predictors of mortality risk in all subtypes (e.g., rs17120062, rs3746435, rs75323205), in clear cell carcinoma (CCC) subtype (e.g., rs3746435, rs17120062), in endometrioid carcinoma (EC) subtype (e.g., rs36097019, rs6788448), and in serous carcinoma (SC) subtype (e.g., rs3810481, rs2108622). Log-rank tests showed significant differences in survival curves between carriers and non-carriers of these variants. Furthermore, 20 SNVs were identified as predictors of recurrence risk (e.g., rs57115249, rs7047726, rs2279218), showing significant differences in survival analysis. Additionally, 18 SNVs were identified as predictors of drug sensitivity (e.g., rs529208, rs56727079, rs57115249). When comparing allele frequencies in public databases, these SNVs were generally higher in East Asians than in Caucasians but were relatively lower in our study sample, suggesting the presence of specific genetic variations in Taiwanese ovarian cancer patients that may contribute to ethnic differences in incidence and mortality rates. The study also identified 5 SNVs for differentiating subtypes. Conclusion: This study successfully identified multiple SNVs related to ovarian cancer prognosis and useful for differentiating subtypes. The allele frequencies of these SNVs reveal ethnic-specific variations in Taiwanese ovarian cancer. The 13 genes hosting these SNVs (ALPK2, LOXL4, SLC28A1, TNFRSF10D, ATP13A4, IDO2, IGHV1-2, PLXNB2, CYP2D6, EGFLAM, C19orf53, CYP4F2, and UBAP2) have limited studies related to ovarian cancer. Among the prognostically significant variants, six (rs3746435, rs17120062, rs11547731, rs1065852, rs1983864 and rs584855 corresponding to MYH7B, TEKT4, PLXNB2, CYP2D6、LOXL4 and ANKRD60 , respectively) were consistently observed in different analytical models in CCC and all subtype groups. These genes, linked to ovarian cancer or other cancers in a few studies, may provide critical therapeutic and diagnostic insights for CCC subtype, prevalent in Taiwan. These findings highlight the importance of this exploratory analysis. The identified SNVs lay the groundwork for subsequent functional studies, holding potential as key biomarkers for cancer diagnosis and treatment, and as novel drug targets. Moreover, these discoveries provide new references for clinical decision-making, helping optimize treatment strategies and enhance the accuracy of prognosis prediction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:16:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-23T16:16:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
謝辭 i 中文摘要 ii 英文摘要 iv 第一章、導論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 研究目的 4 第二章、研究材料與方法 5 2.1 樣本資料 5 2.1.1 資料來源與變項定義 5 2.1.2 資料特性 5 2.2 全外顯子定序方法 (Whole exome sequencing,簡稱WES) 7 2.2.1 品質控制(Quality control) 7 2.2.2 識別變異 (Variant calling) 7 2.2.3 註解 (Annotation) 8 2.3分析方法 9 2.3.1 Cox比例風險模型 (Cox proportional hazard model) 10 2.3.2 加速失效時間模型 (Accelerated Failure Time model) 11 2.3.3 邏輯斯迴歸 11 2.3.4 Kaplan-Meier 方法與 Log-rank test 12 第三章、結果 14 3.1 病患人口統計分布 14 3.2 全外顯子定序分析結果 15 3.2.1 Trimmomatic工具去除低品質讀長 15 3.2.2 樣本與reference genome hg19的alignment結果 15 3.2.3 單核苷酸變異位點 (Single nucleotide variant,SNV) 15 3.3 與台灣卵巢癌患者總生存期和死亡風險顯著相關的單核苷酸變異 16 3.3.1 單因子Cox比例風險模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異 16 3.3.2 多因子Cox比例風險模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異 16 3.3.3 單因子AFT加速失效時間模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異 17 3.3.4 多因子AFT加速失效時間模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異 17 3.3.5 基於單核苷酸變異狀態計算的存活曲線 18 3.4 與台灣卵巢癌患者無病存活期和復發風險顯著相關的單核甘酸變異 20 3.4.1 單因子Cox比例風險模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異 20 3.4.2 多因子Cox比例風險模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異 20 3.4.3 單因子AFT加速失效時間模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異 21 3.4.4 多因子AFT加速失效時間模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異 21 3.4.5 基於單核苷酸變異狀態對於無病存活期計算的存活曲線 22 3.5 與台灣卵巢癌患者對鉑類藥物反應顯著相關的單核苷酸變異 24 3.5.1 單因子邏輯斯迴歸得出與對鉑類藥物反應顯著相關的單核苷酸變異 24 3.5.2 多因子邏輯斯迴歸得出與對鉑類藥物反應顯著相關的單核苷酸變異 24 3.6 單核苷酸變異於不同種族的次要等位基因頻率 25 3.7 與亞型顯著相關的單核苷酸變異 27 第四章、討論 28 4.1 顯著相關的SNV包含風險預測子與保護預測子 28 4.1.1 13個基因中與卵巢癌預後相關的研究 29 4.1.2 13個基因中與免疫相關的基因 29 4.1.3 與CCC亞型預後相關的變異基因 29 4.1.4 保護型預測子 31 4.1.5 其他有癌症相關研究的對應基因 31 4.2 次要等位基因頻率的討論 32 4.3 亞型特異性SNV的討論 32 4.4 總結 33 4.5 研究限制 34 參考資料: 35 圖次 圖表 1、流程圖 39 圖表 2、各個亞型Overall Survival的存活曲線 43 圖表 3、各個亞型Disease Free Survival的存活曲線 44 圖表 4、Kaplan-Meier Curve of Overall Survival in All Subtype 45 圖表 5、Kaplan-Meier Curve of Overall Survival in CCC Subtype 46 圖表 6、Kaplan-Meier Curve of Overall Survival in EC Subtype 48 圖表 7、Kaplan-Meier Curve of Overall Survival in SC Subtype 50 圖表 8、Kaplan-Meier Curve of Disease Free Survival in All Subtype 52 圖表 9、Kaplan-Meier Curve of Disease Free Survival in CCC Subtype 54 圖表 10、Kaplan-Meier Curve of Disease Free Survival in EC Subtype 56 圖表 11、Kaplan-Meier Curve of Disease Free Survival in SC Subtype 58 表次 表格 1、人口統計學 60 表格 2、Trimmomatic log output 64 表格 3、Alignment log output 70 表格 4、單因子Cox比例風險模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異列表 75 表格 5、多因子Cox比例風險模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異列表 84 表格 6、單因子AFT加速失效時間模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異列表 87 表格 7、多因子AFT加速失效時間模型分析得出與總生存期和死亡風險顯著相關的單核苷酸變異列表 109 表格 8、單因子Cox比例風險模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異列表 114 表格 9、多因子Cox比例風險模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異列表 140 表格 10、單因子AFT加速失效時間模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異列表 145 表格 11、多因子AFT加速失效時間模型分析得出與無病存活期和復發風險顯著相關的單核甘酸變異列表 204 表格 12、單因子邏輯斯回歸得出與對鉑類藥物反應顯著相關的單核苷酸變異列表 237 表格 13、多因子羅吉斯回歸得出與對鉑類藥物反應顯著相關的單核苷酸變異列表 239 表格 14、校正後與總生存期顯著相關的單核苷酸變異的次要等位基因頻率 240 表格 15、校正後與無病存活期顯著相關的單核苷酸變異的次要等位基因頻率 242 表格 16、校正後與鉑類藥物反應顯著相關的單核苷酸變異的次要等位基因頻率 245 表格 17、與亞型顯著相關的單核苷酸變異 247 表格 18、單核苷酸變異與對照基因名稱 251 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 卵巢癌 | zh_TW |
| dc.subject | 全外顯子定序 | zh_TW |
| dc.subject | 單核苷酸變異 | zh_TW |
| dc.subject | 種族差異 | zh_TW |
| dc.subject | 預後 | zh_TW |
| dc.subject | 次要等位基因頻率 | zh_TW |
| dc.subject | 亞型特異性 | zh_TW |
| dc.subject | minor allele frequency | en |
| dc.subject | whole exome sequencing | en |
| dc.subject | single nucleotide variant | en |
| dc.subject | ethnic disparity | en |
| dc.subject | subtype disparity | en |
| dc.subject | prognosis | en |
| dc.subject | ovarian cancer | en |
| dc.title | 台灣卵巢癌全外顯子分析與存活率的關係 | zh_TW |
| dc.title | A Whole Exome Analysis Study of Ovarian Cancer Patients with Survival Outcomes in Taiwan. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江盈澄;王彥雯 | zh_TW |
| dc.contributor.oralexamcommittee | Ying-Cheng Chiang;CHARLOTTE WANG | en |
| dc.subject.keyword | 卵巢癌,全外顯子定序,單核苷酸變異,種族差異,預後,次要等位基因頻率,亞型特異性, | zh_TW |
| dc.subject.keyword | ovarian cancer,whole exome sequencing,single nucleotide variant,ethnic disparity,prognosis,minor allele frequency,subtype disparity, | en |
| dc.relation.page | 252 | - |
| dc.identifier.doi | 10.6342/NTU202400635 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-16 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 公共衛生碩士學位學程 | - |
| dc.date.embargo-lift | 2029-02-07 | - |
| 顯示於系所單位: | 公共衛生碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 9.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
