請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91830
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 阮麗蓉 | zh_TW |
dc.contributor.advisor | Li-Jung Juan | en |
dc.contributor.author | 黃蔓鈞 | zh_TW |
dc.contributor.author | Man-Chun Huang | en |
dc.date.accessioned | 2024-02-23T16:11:51Z | - |
dc.date.available | 2024-02-24 | - |
dc.date.copyright | 2024-02-23 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-15 | - |
dc.identifier.citation | Ahlenius, H., Visan, V., Kokaia, M., Lindvall, O., & Kokaia, Z. (2009). Neural Stem and Progenitor Cells Retain Their Potential for Proliferation and Differentiation into Functional Neurons Despite Lower Number in Aged Brain. The Journal of Neuroscience, 29(14), 4408-4419. https://doi.org/10.1523/jneurosci.6003-08.2009
Ahmed, A. K. M. A., Isaksen, T. J., & Yamashita, T. (2021). Protocol Protocol for mouse adult neural stem cell isolation and culture. Star Protocols, 2(2). https://doi.org/ARTN 100522 10.1016/j.xpro.2021.100522 Altman, J., & Das, G. D. (1965). Autoradiographic and Histological Evidence of Postnatal Hippocampal Neurogenesis in Rats. Journal of Comparative Neurology, 124(3), 319-&. https://doi.org/DOI 10.1002/cne.901240303 Angata, K., & Fukuda, M. (2010). Roles of Polysialic Acid in Migration and Differentiation of Neural Stem Cells. Methods in Enzymology, Vol 479: Functional Glycomics, 479, 25-36. https://doi.org/10.1016/S0076-6879(10)79002-9 Apostolopoulou, M., Kiehl, T. R., Winter, M., Cardenas De La Hoz, E., Boles, N. C., Bjornsson, C. S., Zuloaga, K. L., Goderie, S. K., Wang, Y., Cohen, A. R., & Temple, S. (2017). Non-monotonic Changes in Progenitor Cell Behavior and Gene Expression during Aging of the Adult V-SVZ Neural Stem Cell Niche. Stem Cell Reports, 9(6), 1931-1947. https://doi.org/10.1016/j.stemcr.2017.10.005 Audesse, A. J., & Webb, A. E. (2018). Enhancing Lysosomal Activation Restores Neural Stem Cell Function During Aging. Journal of Experimental Neuroscience, 12, 117906951879587. https://doi.org/10.1177/1179069518795874 Audesse, A. J., & Webb, A. E. (2020). Mechanisms of enhanced quiescence in neural stem cell aging. Mechanisms of Ageing and Development, 191, 111323. https://doi.org/10.1016/j.mad.2020.111323 Bernal-Perez, L. F., Prokai, L., & Ryu, Y. (2012). Selective N-terminal fluorescent labeling of proteins using 4-chloro-7-nitrobenzofurazan: a method to distinguish protein N-terminal acetylation. Anal Biochem, 428(1), 13-15. https://doi.org/10.1016/j.ab.2012.05.026 Bond, A. M., Ming, G. L., & Song, H. (2015). Adult Mammalian Neural Stem Cells and Neurogenesis: Five Decades Later. Cell Stem Cell, 17(4), 385-395. https://doi.org/10.1016/j.stem.2015.09.003 Bouab, M., Paliouras, G. N., Aumont, A., Forest-Bérard, K., & Fernandes, K. J. L. (2011). Aging of the Subventricular Zone Neural Stem Cell Niche: Evidence for Quiescence-Associated Changes between Early and Mid-Adulthood. Neuroscience, 173, 135-149. https://doi.org/10.1016/j.neuroscience.2010.11.032 Bragado Alonso, S., Reinert, J. K., Marichal, N., Massalini, S., Berninger, B., Kuner, T., & Calegari, F. (2019). An increase in neural stem cells and olfactory bulb adult neurogenesis improves discrimination of highly similar odorants. EMBO J, 38(6). https://doi.org/10.15252/embj.201798791 Breton-Provencher, V., Lemasson, M., Peralta, M. R., 3rd, & Saghatelyan, A. (2009). Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J Neurosci, 29(48), 15245-15257. https://doi.org/10.1523/JNEUROSCI.3606-09.2009 Cutler, R. R., & Kokovay, E. (2020). Rejuvenating subventricular zone neurogenesis in the aging brain. Curr Opin Pharmacol, 50, 1-8. https://doi.org/10.1016/j.coph.2019.10.005 Dissmeyer, N., Graciet, E., Holdsworth, M. J., & Gibbs, D. J. (2019). N-term 2017: Proteostasis via the N-terminus. Trends Biochem Sci, 44(4), 293-295. https://doi.org/10.1016/j.tibs.2017.11.006 Donato, R., Miljan, E. A., Hines, S. J., Aouabdi, S., Pollock, K., Patel, S., Edwards, F. A., & Sinden, J. D. (2007). Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neuroscience, 8(1), 36. https://doi.org/10.1186/1471-2202-8-36 Esteve, D., Molina-Navarro, M. M., Giraldo, E., Martínez-Varea, N., Blanco-Gandia, M.-C., Rodríguez-Arias, M., García-Verdugo, J. M., Viña, J., & Lloret, A. (2022). Adult Neural Stem Cell Migration Is Impaired in a Mouse Model of Alzheimer’s Disease. Molecular Neurobiology, 59(2), 1168-1182. https://doi.org/10.1007/s12035-021-02620-6 Goffredo, D., Conti, L., Di Febo, F., Biella, G., Tosoni, A., Vago, G., Biunno, I., Moiana, A., Bolognini, D., Toselli, M., & Cattaneo, E. (2008). Setting the conditions for efficient, robust and reproducible generation of functionally active neurons from adult subventricular zone-derived neural stem cells. Cell Death & Differentiation, 15(12), 1847-1856. https://doi.org/10.1038/cdd.2008.118 Hagihara, H., Toyama, K., Yamasaki, N., & Miyakawa, T. (2009). Dissection of hippocampal dentate gyrus from adult mouse. J Vis Exp(33). https://doi.org/10.3791/1543 Hou, Y. J., Dan, X. L., Babbar, M., Wei, Y., Hasselbalch, S. G., Croteau, D. L., & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews Neurology, 15(10), 565-581. https://doi.org/10.1038/s41582-019-0244-7 Ibrayeva, A., Bay, M., Pu, E., Jörg, D. J., Peng, L., Jun, H., Zhang, N., Aaron, D., Lin, C., Resler, G., Hidalgo, A., Jang, M.-H., Simons, B. D., & Bonaguidi, M. A. (2021). Early stem cell aging in the mature brain. Cell Stem Cell, 28(5), 955-966.e957. https://doi.org/10.1016/j.stem.2021.03.018 Juan, Tatyana, Peunova, N., Park, J.-H., Tordo, J., Daniel, Fishell, G., Koulakov, A., & Enikolopov, G. (2011). Division-Coupled Astrocytic Differentiation and Age-Related Depletion of Neural Stem Cells in the Adult Hippocampus. Cell Stem Cell, 8(5), 566-579. https://doi.org/10.1016/j.stem.2011.03.010 Kaise, T., Fukui, M., Sueda, R., Piao, W., Yamada, M., Kobayashi, T., Imayoshi, I., & Kageyama, R. (2022). Functional rejuvenation of aged neural stem cells by Plagl2 and anti-Dyrk1a activity. Genes & Development, 36(1-2), 23-37. https://doi.org/10.1101/gad.349000.121 Kalamakis, G., Brune, D., Ravichandran, S., Bolz, J., Fan, W., Ziebell, F., Stiehl, T., Catala-Martinez, F., Kupke, J., Zhao, S., Llorens-Bobadilla, E., Bauer, K., Limpert, S., Berger, B., Christen, U., Schmezer, P., Mallm, J. P., Berninger, B., Anders, S., . . . Martin-Villalba, A. (2019). Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell, 176(6), 1407-1419 e1414. https://doi.org/10.1016/j.cell.2019.01.040 Kevin Flurkey, J. M. C., D.E. Harrison. (2007). TThe Mouse in Biomedical Research (Second Edition) (Vol. Volume III, 2007). Kim, H. S., Shin, S. M., Kim, S., Nam, Y., Yoo, A., & Moon, M. (2022). Relationship between adult subventricular neurogenesis and Alzheimer''s disease: Pathologic roles and therapeutic implications. Front Aging Neurosci, 14, 1002281. https://doi.org/10.3389/fnagi.2022.1002281 Kim, J. Y., Lee, J.-H., & Sun, W. (2016). Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. Journal of Visualized Experiments(118). https://doi.org/10.3791/54929 Lee, J. H., Shaker, M. R., Lee, E., Lee, B., & Sun, W. (2020). NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Res, 43, 101691. https://doi.org/10.1016/j.scr.2019.101691 Lugert, S., Basak, O., Knuckles, P., Haussler, U., Fabel, K., Götz, M., Haas, C. A., Kempermann, G., Taylor, V., & Giachino, C. (2010). Quiescent and Active Hippocampal Neural Stem Cells with Distinct Morphologies Respond Selectively to Physiological and Pathological Stimuli and Aging. Cell Stem Cell, 6(5), 445-456. https://doi.org/10.1016/j.stem.2010.03.017 Macnee, W., Rabinovich, R. A., & Choudhury, G. (2014). Ageing and the border between health and disease. European Respiratory Journal, 44(5), 1332-1352. https://doi.org/10.1183/09031936.00134014 Marqués-Torrejón, M. A., Williams, C. A. C., Southgate, B., Alfazema, N., Clements, M. P., Garcia-Diaz, C., Blin, C., Arranz-Emparan, N., Fraser, J., Gammoh, N., Parrinello, S., & Pollard, S. M. (2021). LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells. Nature Communications, 12(1). https://doi.org/ARTN 2594 10.1038/s41467-021-22813-w Maslov, A. Y., Barone, T. A., Plunkett, R. J., & Pruitt, S. C. (2004). Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. Journal of Neuroscience, 24(7), 1726-1733. https://doi.org/10.1523/Jneurosci.4608-03.2004 Mastroeni, D., Chouliaras, L., Van den Hove, D. L., Nolz, J., Rutten, B. P. F., Delvaux, E., & Coleman, P. D. (2016). Increased 5-hydroxymethylation levels in the sub ventricular zone of the Alzheimer''s brain. Neuroepigenetics, 6, 26-31. https://doi.org/10.1016/j.nepig.2016.04.002 McGinn, M. J., Colello, R. J., & Sun, D. (2012). Age-related proteomic changes in the subventricular zone and their association with neural stem/progenitor cell proliferation. J Neurosci Res, 90(6), 1159-1168. https://doi.org/10.1002/jnr.23012 Mich, J. K., Signer, R. A. J., Nakada, D., Pineda, A., Burgess, R. J., Vue, T. Y., Johnson, J. E., & Morrison, S. J. (2014). Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. Elife, 3. https://doi.org/ARTN e02669 10.7554/eLife.02669 Moreno-Cugnon, L., Arrizabalaga, O., Llarena, I., & Matheu, A. (2020). Elevated p38MAPK activity promotes neural stem cell aging. Aging, 12(7), 6030-6036. https://doi.org/10.18632/aging.102994 Negredo, P. N., Yeo, R. W., & Brunet, A. (2020). Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell, 27(2), 202-223. https://doi.org/10.1016/j.stem.2020.07.002 Obernier, K., & Alvarez-Buylla, A. (2019). Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development, 146(4), dev156059. https://doi.org/10.1242/dev.156059 Ree, R., Varland, S., & Arnesen, T. (2018). Spotlight on protein N-terminal acetylation. Experimental & Molecular Medicine, 50(7), 1-13. https://doi.org/10.1038/s12276-018-0116-z Reynolds, B. A., & Weiss, S. (1992). Generation of Neurons and Astrocytes from Isolated Cells of the Adult Mammalian Central-Nervous-System. Science, 255(5052), 1707-1710. https://doi.org/DOI 10.1126/science.1553558 Richards, L. J., Kilpatrick, T. J., & Bartlett, P. F. (1992). De novo generation of neuronal cells from the adult mouse brain. Proceedings of the National Academy of Sciences, 89(18), 8591-8595. https://doi.org/10.1073/pnas.89.18.8591 Rope, A. F., Wang, K., Evjenth, R., Xing, J. C., Johnston, J. J., Swensen, J. J., Johnson, W. E., Moore, B., Huff, C. D., Bird, L. M., Carey, J. C., Opitz, J. M., Stevens, C. A., Jiang, T., Schank, C., Fain, H. D., Robison, R., Dalley, B., Chin, S., . . . Lyon, G. J. (2011). Using VAAST to Identify an X-Linked Disorder Resulting in Lethality in Male Infants Due to N-Terminal Acetyltransferase Deficiency. American Journal of Human Genetics, 89(1), 28-43. https://doi.org/10.1016/j.ajhg.2011.05.017 Satoh, A., Imai, S. I., & Guarente, L. (2017). The brain, sirtuins, and ageing. Nat Rev Neurosci, 18(6), 362-374. https://doi.org/10.1038/nrn.2017.42 Soares, R., Ribeiro, F. F., Lourenço, D. M., Rodrigues, R. S., Moreira, J. B., Sebastiao, A. M., Morais, V. A., & Xapelli, S. (2021). The neurosphere assay: an effective technique to study neural stem cells. Neural Regeneration Research, 16(11), 2229-2231. https://doi.org/10.4103/1673-5374.310678 Steffen, K. K., MacKay, V. L., Kerr, E. O., Tsuchiya, M., Hu, D., Fox, L. A., Dang, N., Johnston, E. D., Oakes, J. A., Tchao, B. N., Pak, D. N., Fields, S., Kennedy, B. K., & Kaeberlein, M. (2008). Yeast life span extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell, 133(2), 292-302. https://doi.org/10.1016/j.cell.2008.02.037 Wachs, F.-P., Couillard-Despres, S., Engelhardt, M., Wilhelm, D., Ploetz, S., Vroemen, M., Kaesbauer, J., Uyanik, G., Klucken, J., Karl, C., Tebbing, J., Svendsen, C., Weidner, N., Kuhn, H.-G., Winkler, J., & Aigner, L. (2003). High Efficacy of Clonal Growth and Expansion of Adult Neural Stem Cells. Laboratory Investigation, 83(7), 949-962. https://doi.org/10.1097/01.lab.0000075556.74231.a5 Walker, T. L., & Kempermann, G. (2014). One Mouse, Two Cultures: Isolation and Culture of Adult Neural Stem Cells from the Two Neurogenic Zones of Individual Mice. Journal of Visualized Experiments(84). https://doi.org/10.3791/51225 Wang, X., Dong, C., Sun, L., Zhu, L., Sun, C., Ma, R., Ning, K., Lu, B., Zhang, J., & Xu, J. (2016). Quantitative proteomic analysis of age-related subventricular zone proteins associated with neurodegenerative disease. Sci Rep, 6, 37443. https://doi.org/10.1038/srep37443 Xiao, D., Zhang, W. F., Wang, Q., Li, X., Zhang, Y., Rasouli, J., Casella, G., Ciric, B., Curtis, M., Rostami, A., & Zhang, G. X. (2021). CRISPR-mediated rapid generation of neural cell-specific knockout mice facilitates research in neurophysiology and pathology. Molecular Therapy-Methods & Clinical Development, 20, 755-764. https://doi.org/10.1016/j.omtm.2021.02.012 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91830 | - |
dc.description.abstract | 成體神經幹細胞(neural stem cells, NSCs)的衰退與認知功能障礙和老化相關的神經退化性疾病有關。最近的研究顯示在成年哺乳動物的大腦中,主要有再生能力的成體神經幹細胞位於側腦室的腦室下區(subventricular zone, SVZ)以及海馬迴的齒狀回(dentate gyrus, DG)。隨著老化的進程,蛋白質體平衡(proteostasis)的失衡增加了異常蛋白聚集的風險,同時也是老化和許多神經退行性疾病的標誌。儘管目前有關於中年老鼠(12個月大)和年輕成年NSCs(2個月大)蛋白質體的研究,但尚未有專門針對高齡老鼠(20-21個月大)和年輕老鼠(2個月大)進行得比較。
在與博士後研究員林文淵博士的合作下,我們對21種不同的NSC培養基進行了神經球(neurosphere)形成效能測試。其中包括8種先前已發表的培養基和13種由三種基礎培養基和兩種常用於神經細胞培養的添加物組合而成的培養基。我們發現其中一種先前被用於將幹細胞分化為神經細胞的培養基(M12),展現了最佳的神經球形成能力。在相同的條件下,它形成了最多且最大的神經球,揭示了其在神經球培養中的重要性和應用性。此外,在13種未被發表過的培養基中,我們的結果顯示其中3種具有形成神經球的能力。在本研究中,我們使用M12培養由年輕和高齡小鼠SVZ細胞形成的神經球做為研究模型。 關於老年老鼠的SVZ細胞形成神經球的能力是否下降一直存在爭議,因此我們比較了老年和年輕老鼠的SVZ細胞形成神經球的能力。我們的結果支持SVZ細胞形成神經球的能力隨年齡下降的論點,顯示老年老鼠的SVZ細胞形成的神經球明顯較年輕的少,並且其增殖能力也顯著降低。此外,與先前的研究一致,經過兩次繼代後,這種老年神經球形成能力下降的特性不復存在。我們的培養系統保留了老年神經幹細胞增殖能力降低的特性,這也與已知的大腦內成年神經新生(neurogenesis)在老化過程中下降的情況一致。 鑒於蛋白質N端乙醯化(N-terminal acetylation,NAc)在老化期間對蛋白質體平衡的重要性,我們還分析了年輕和老年神經球內蛋白質N端乙醯化比例的變化。使用高鹼性逆相層析分離(High pH reversed-phase liquid chromatography, RPLC)搭配液相層析串聯式質譜儀(LC-MS/MS),我們識別出N端乙醯化程度受年齡調控的蛋白。其中,TMSB10(Thymosin beta-10)、PPIA(Peptidyl-prolyl cis-trans isomerase A)、SLC6A11(Sodium- and chloride-dependent GABA transporter 3)和 PSMD1(26S proteasome non-ATPase regulatory subunit1)的N端乙醯化程度在高齡神經球中顯著提高,而DDT(D-dopachrome decarboxylase)則顯著降低。此外我們發現老年神經球中未修飾的蛋白質N端程度降低,暗示其蛋白質N端乙醯化提高的可能,且未修飾的蛋白質N端程度在SVZ和DG中呈現組織特異性。這些發現提供了成年神經幹細胞老化的潛在調節機制,並有助於更深入探討成體神經幹細胞老化的原因。 | zh_TW |
dc.description.abstract | The decline of adult neural stem cell (NSC) has been linked to cognitive impairment and aging-associated neurodegenerative diseases. Recent studies have identified regenerative-capable NSCs in the adult mammalian brain primarily localized within the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus (DG) of the hippocampus. During aging, the loss of proteostasis increases the risk of abnormal protein aggregates, marking a hallmark of aging and many neurodegenerative diseases. Despite current studies on the proteome of middle-aged mice (12 mo.) and young adult NSCs (2 mo.), there has been no comparison specifically for aged mice (20-21 mo.) and young mice (2 mo.).
In collaboration with postdoc Wen-Yuan Lin, we conducted neurosphere-forming efficiency tests on 21 different NSC culture media. These included 8 media previously published and 13 media formulated by combining three basal mediums and two supplements commonly used for neural cell culture. We found that one of the culture media (M12), previously used for differentiating stem cells into neural cells, exhibited the best neurosphere-forming ability. Under the same conditions, it formed the most and largest neurospheres, revealing its importance and applicability in neurosphere culture. Additionally, among the 13 unpublished culture media, we identified three with neurosphere-forming capabilities. Therefore, we used M12 culture medium to cultivate neurospheres formed by young and aged mouse SVZ cells as our research model. Due to controversies in previous research regarding whether the neurosphere-forming ability of SVZ cells in aged mice declines, we initially compared the neurosphere-forming capabilities of SVZ cells from aged and young mice. Supporting the viewpoint that the neurosphere-forming ability of SVZ cells decreases with age, our results showed that SVZ cells from aged mice notably formed fewer neurospheres, with their proliferation capacity decreased. Furthermore, in alignment with previous studies, the age-dependent decline in neurosphere-forming ability ceased after two passages. Our culture system retained the characteristic of decreased proliferation in aged NSCs, consistent with the known in vivo decline in adult neurogenesis with aging. Additionally, owing to the importance of protein N-terminal acetylation (NAc) in proteostasis during aging, we also analyzed the change in protein N-terminal acetylation ratio within young and old neurospheres. We conducted a comprehensive analysis using high pH reversed-phase liquid chromatography (RPLC) coupled with LC-MS/MS. The proteomic analysis identified proteins with a change in the N-terminal acetylation ratio associated with age. In the aged neurospheres, the N-terminal acetylation levels of TMSB10 (Thymosin beta-10), PPIA (Peptidyl-prolyl cis-trans isomerase A), SLC6A11 (Sodium- and chloride-dependent GABA transporter 3), and PSMD1 (26S proteasome non-ATPase regulatory subunit1) were significantly increased, while DDT (D-dopachrome decarboxylase) exhibited a significant decrease. Besides, our study unveiled elevated levels of N-terminal acetylation in aged neurospheres, displaying tissue-specific patterns in DG and SVZ. These findings provide potential regulatory mechanisms underlying the aging process of adult NSCs and contribute to a deeper understanding of the reasons behind it. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-23T16:11:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-23T16:11:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
序言/謝詞 ii 中文摘要 iv Abstract vi 1. Introduction 1 1.1. Global aging leads to increasing prevalence of neurodegenerative diseases 1 1.2. Normal brain aging drives the progressive impairment of cognitive, social and physical abilities through various aspects 1 1.3. The capacity of NSCs to proliferate and generate new neurons declines with age 2 1.4. The functional aging of SVZ is linked to neurodegenerative diseases 2 1.5. Age-related proteostasis imbalance in SVZ is likely to contribute to the diminished proliferative capacity of NSCs 3 1.6. The increase in neurodegenerative diseases, coupled with a decrease in adult neurogenesis, may be a reversible process 4 1.7. Protein N-terminal modification, especially N-terminal acetylation, may play important roles in aging and pathological neurodegeneration 5 2. Results 6 2.1. The most effective adult neurosphere culture system was established 6 2.1.1. The age of the mice was chosen based on the corresponding human age 6 2.1.2. Cells from SVZ of both young and old mice were isolated 7 2.1.3. The optimized neurosphere culture medium was selected from the currently commonly used media 9 2.2. NSCs were characterized within our culture system 17 2.2.1. Cells in adult SVZ-neurospheres expressed NSC markers 17 2.2.2. Cells in adult SVZ-neurospheres exhibited differentiation 17 2.3. The impaired ability of SVZ NSCs from aged mice to form neurospheres could be sustained until P1 in vitro but is lost from P2 and beyond 20 2.4. The dysregulation of protein N-terminal acetylation occurred in adult NSCs both in vitro and in vivo during aging 26 2.4.1. The proteomic analysis uncovered proteins with NAc ratios significantly increased or decreased between young and old mice 26 2.4.2. The amount of protein free N-termini in NSCs from SVZ decreased during aging 28 2.4.3. mRNA levels of Naa20 and Naa35 were significantly higher in SVZ NSCs of aged mice 30 2.4.4. Protein free N-terminal level was altered specifically in different brain regions during aging 33 2.4.5. mRNA levels of Nat genes altered specifically in different brain regions during aging 35 3. Discussion 40 3.1. Neurosphere culture medium screening 40 3.2. Neurosphere forming capacity 40 3.3. Protein N-terminal acetylation 41 3.3.1. Cultured SVZ-NSCs and SVZ tissue 41 3.3.2. SVZ and DG 43 4. Conclusion 44 5. Materials and Methods 45 5.1. Mice 45 5.2. Tissue dissociation 45 5.3. Neurosphere culture 45 5.4. Neurosphere-forming capacity 46 5.5. Immunofluorescence 46 5.6. Cell proliferation and cell survival rate 47 5.7. NBD-Cl assay 48 5.8. RNA isolation and reverse transcriptase-PCR. 48 5.9. Analysis of protein NAc by LC-MS/MS 51 5.10. Data analysis 54 References 55 Appendix 59 Appendix 1. The global elderly population is experiencing rapid and continuous growth. 59 Appendix 2. The prevalence of various chronic diseases increases with age (taken from Macnee et al., 2014). 60 Appendix 3. Normal brain ageing drives the progressive impairment of cognitive, social and physical abilities through various aspects (taken from Satoh et al., 2017). 61 Appendix 4. Adult neurogenesis declines with age (taken from Negredo et al., 2020). 62 Appendix 5. The age of the mice is selected according to the corresponding age of the human (taken from Kevin Flurkey, 2007). 63 | - |
dc.language.iso | en | - |
dc.title | 成體神經幹細胞衰老過程中蛋白質恆定之角色探討 | zh_TW |
dc.title | Investigation of proteostasis in adult neural stem cell aging | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 潘俊良;沈哲鯤;周申如;許邦弘 | zh_TW |
dc.contributor.oralexamcommittee | Chun-Liang Pan;Che-Kun Shen;Shen-Ju Chou;Pang-Hung Hsu | en |
dc.subject.keyword | 神經幹細胞,腦室下區,神經球,蛋白質體,N端乙醯化, | zh_TW |
dc.subject.keyword | Neural stem cells,subventricular zone,neurospheres,proteostasis,N-terminal acetylation, | en |
dc.relation.page | 63 | - |
dc.identifier.doi | 10.6342/NTU202400569 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-16 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 2.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。