Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃耀輝zh_TW
dc.contributor.advisorYaw-Huei Hwangen
dc.contributor.author郭佳蓉zh_TW
dc.contributor.authorJia-Rong Kuoen
dc.date.accessioned2024-02-22T16:49:43Z-
dc.date.available2024-03-09-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-02-16-
dc.identifier.citation行政院原子能委員會:輻射對健康的影響[網路資料]。新北市:行政院原子能委員會,2023。引用:2024/01/08。Available from: https://www.nusc.gov.tw/緊急應變/對人的影響/輻射對健康的影響--5_40_872.html。
許彬杰:游離輻射防護與偵檢。第一版。合記圖書出版社,2006;1-48。
陳證中、吳政龍:職業曝露游離輻射引起之疾病認定參考指引[網路資料]。新北市:勞動部職業安全衛生署,2021。引用:2023/07/10。Available from: https://www.osha.gov.tw/media/3qzievsx/13職業曝露游離輻射引起之疾病認定參考指引.pdf?mediaDL=true。
鐘順輝、錢葉忠、施慧中:我國及世界各國環境測定之採樣及分析機構制度比較研究。初版。新北市:勞動部勞動及職業安全衛生研究所,2015。
Babatain W, Bhattacharjee S, Hussain AM, Hussain MM. Acceleration sensors: Sensing mechanisms, emerging fabrication strategies, materials, and applications. ACS Applied Electronic Materials 2021;3(2):504-31. doi: 10.1021/acsaelm.0c00746
Chen KY, Bassett DR Jr. The technology of accelerometry-based activity monitors: Current and future. Med Sci Sports Exerc 2005;37(11 Suppl):S490-S500. doi:10.1249/01.mss.0000185571.49104.82
Finkbeiner S. MEMS for automotive and consumer electronics. In: Proceedings of the ESSCIRC (ESSCIRC), 2013, Buchares. United States: IEEE,2013:9-14. doi:10.1109/ESSCIRC.2013.6649059
Fortune E, Lugade VA, Kaufman KR. Posture and movement classification: The comparison of tri-axial accelerometer numbers and anatomical placement. J Biomech Eng 2014;136(5):051003. doi:10.1115/1.4026230
Ghaffari A, Rahbek O, Lauritsen REK, Kappel A, Kold S, Rasmussen J. Criterion validity of linear accelerations measured with low-sampling-frequency accelerometers during overground walking in elderly patients with knee osteoarthritis. Sensors (Basel) 2022;22(14):5289. doi:10.3390/s22145289
Gould CF, Mujtaba MN, Yang Q, Boamah-Kaali E, Quinn AK, Manu G, Lee AG, Ae-Ngibise KA, Carrión D, Kaali S, Kinney PL, Jack DW, Chillrud SN, Asante KP. Using time-resolved monitor wearing data to study the effect of clean cooking interventions on personal air pollution exposures. J Expo Sci Environ Epidemiol 2023;33(3):386-395. doi: 10.1038/s41370-022-00483-0
Hong YJ, Kim IJ, Ahn SC, Kim HG. Mobile health monitoring system based on activity recognition using accelerometer. Simulation Modelling Practice and Theory 2010;18(4):446-55. doi: https://doi.org/10.1016/j.simpat.2009.09.002
ICRP. ICRP Publication 26:Recommendations of the ICRP. Annals of the ICRP 1977;1(3).
Jentzsch T, Pietsch CM, Stigler B, Ramseier LE, Seifert B, Werner CML. The compliance with and knowledge about radiation protection in operating room personnel: A cross-sectional study with a questionnaire. Archives of Orthopaedic and Trauma Surgery 2015;135(9):1233-40. doi: 10.1007/s00402-015-2257-z.
Jolly MR, Prabhakar A, Sturzu B, Hollstein K, Singh R, Thomas S, Foote O, Shaw A. Review of non-destructive testing (NDT) techniques and their applicability to thick walled composites. Procedia CIRP 2015;38:129-36. doi: https://doi.org/10.1016/j.procir.2015.07.043
Junker H, Lukowicz P, Troster G. Sampling frequency, signal resolution and the accuracy of wearable context recognition systems. In: Proceedings of the International Symposium on Wearable Computers (ISWC), 2004, Arlington. NW Washington: IEEE Computer Society,2004;176-177. doi:10.1109/ISWC.2004.38
Khan A, Hammerla N, Mellor S, Plötz T. Optimising sampling rates for accelerometer-based human activity recognition. Pattern Recognition Letters 2016;73:33-40. doi:https://doi.org/10.1016/j.patrec.2016.01.001
Kim SH, Wang C, Min SD, Lee SH. Safety helmet wearing management system for construction workers using three-axis accelerometer sensor. Applied Sciences 2018; 8(12):2400. doi:10.3390/app8122400
Klein LW, Tra Y, Garratt KN, Powell W, Lopez-Cruz G, Chambers C, Goldstein JA; Society for Cardiovascular Angiography and Interventions. Occupational health hazards of interventional cardiologists in the current decade: Results of the 2014 SCAI membership survey. Catheter Cardiovasc Interv 2015;86(5):913-24. doi: 10.1002/ccd.25927
Ko S, Kim KP, Cho SB, Bang YJ, Ha YW, Lee WJ. Occupational radiation exposure and validity of national dosimetry registry among Korean interventional radiologists. Int J Environ Res Public Health 2021;18(8):4195. doi: 10.3390/ijerph18084195
Landreani F, Caiani EG. Smartphone accelerometers for the detection of heart rate. Expert Rev Med Devices 2017;14(12):935-948. doi:10.1080/17434440.2017.1407647
Lawless P, Thornburg J, Rodes C, Williams R. Personal exposure monitoring wearing protocol compliance: an initial assessment of quantitative measurement. J Expo Sci Environ Epidemiol 2012;22(3):274-80. doi: 10.1038/jes.2012.8
Lee WJ, Jang EJ, Kim KS, Bang YJ. Underestimation of radiation doses by compliance of wearing dosimeters among fluoroscopically-guided interventional medical workers in Korea. Int J Environ Res Public Health 2022;19(14):8393. doi: 10.3390/ijerph19148393
Li Q, Zhang LN, Tao XM, Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Advanced Healthcare Materials 2017;6(12). doi: 10.1002/adhm.201601371
Maffiuletti NA, Agosti F, Proietti M, Riva D, Resnik M, Lafortuna CL, Sartorio A. Postural instability of extremely obese individuals improves after a body weight reduction program entailing specific balance training. J Endocrinol Invest 2005;28(1):2-7. doi:10.1007/BF03345521
McCulloch MM, Fischer KW, Kearfott KJ. Medical professional radiation dosimeter usage: Reasons for noncompliance. Health Phys 2018;115(5):646-651. doi:10.1097/HP.0000000000000957
Murata Manufacturing. Low-g accelerometers [Internet]. Nagaokakyo City:Murata Manufacturing; n.d.[cited 2023 Dec 25]. Available from: https://www.murata.com/en-us/products/sensor/library/mems-basic/accelerometer.
Reynard F, Christe D, Terrier P. Postural control in healthy adults: Determinants of trunk sway assessed with a chest-worn accelerometer in 12 quiet standing tasks. PLOS One 2019;14(1):e0211051. doi:10.1371/journal.pone.0211051
Rodes CE, Chillrud SN, Haskell WL, Intille SS, Albinali F, Rosenberger M. Predicting adult pulmonary ventilation volume and wearing compliance by on-board accelerometry during personal level exposure assessments. Atmos Environ 2012;57:126-137. doi: 10.1016/j.atmosenv.2012.03.057
Rodes CE, Lawless PA, Thornburg JW, Williams RW, Croghan CW. DEARS particulate matter relationships for personal, indoor, outdoor, and central site settings for a general population. Atmospheric Environment 2010;44(11):1386-99. doi: https://doi.org/10.1016/j.atmosenv.2010.02.002
Rivera T. Thermoluminescence in medical dosimetry. Appl Radiat Isot 2012;71 Suppl:30-4. doi: 10.1016/j.apradiso.2012.04.018
Sherwood RJ, Greenhalgh DMS. A personal air sampler. The Annals of Occupational Hygiene 1960;2(2):127-132. doi:10.1093/annhyg/2.2.127
Sood A, Klein A, Kaveeshwar S, Jones DL, Duvall G, Hovis JP, Weir TB, Enobun B, Hasan SA, Henn RF 3rd, Packer JD, Gilotra MN. An accurate method of measuring shoulder sling compliance: A validation study. BMC Musculoskeletal Disorders 2021;22(1):524. doi:10.1186/s12891-021-04396-1
Speier W, Dzubur E, Zide M, Shufelt C, Joung S, Van Eyk JE, Bairey Merz CN, Lopez M, Spiegel B, Arnold C. Evaluating utility and compliance in a patient-based ehealth study using continuous-time heart rate and activity trackers. J Am Med Inform Assoc 2018;25(10):1386-1391. doi:10.1093/jamia/ocy067
Stager M, Lukowicz P, Troster G. Implementation and evaluation of a low-power sound-based user activity recognition system. In: Proceedings of the International Symposium on Wearable Computers (ISWC), 2004, Arlington. NW Washington: IEEE Computer Society,2004;138-141. doi:10.1109/ISWC.2004.25
Teasdale N, Hue O, Marcotte J, Berrigan F, Simoneau M, Doré J, Marceau P, Marceau S, Tremblay A. Reducing weight increases postural stability in obese and morbid obese men. Int J Obes (Lond) 2007;31(1):153-160. doi:10.1038/sj.ijo.0803360
Xu W, Xu H. Review of the high-power vacuum tube microwave sources based on Cherenkov radiation. arXiv preprint arXiv 2020;200304288. doi: https://doi.org/10.48550/arXiv.2003.04288
Wright BM. The measurement of dust exposure for the control of pneumoconiosis. In: Proceedings of the Second Conference of the British Occupational Hygiene Society, 1954. Derby. London: British Journal of Industrial Medicine,1954:20-21.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91810-
dc.description.abstract在輻射暴露相關工作中常以輻射劑量佩章作為個人輻射暴露監測的測量儀器。然而,工作者在佩戴輻射劑量佩章時,常不依規定佩戴輻射劑量佩章,導致佩戴輻射劑量佩章的合規佩戴遵從性低,且佩章取得之數據也不足以正確代表受試者實際暴露劑量。因此,本研究欲開發能有效評估輻射劑量佩章合規佩戴遵從性的系統。
為了完成此目的,本研究分為兩部分。第一,測試三軸加速度計作為評估合規佩戴性工具的適合度,本研究設計四項實驗單元來確認三軸加速度計適合作為評估合規佩戴遵從性的工具,分別為靜置狀態穩定度測試、收樣頻率測試、佩戴位置測試、特定動作記錄樣態測試。第二,受試者在模擬場域中長時間佩戴三軸加速度計時三軸加速度計紀錄合宜性之評估。在第二部分研究中招募7名受試者進行為期一日的收樣,並且使用攝影機記錄受試者活動以作為黃金驗證標準。利用第一部分實驗單元得到之數據訂定出能將三軸加速度計取得之數據判讀為與影片記錄內容結果最相近的判讀基準。
本研究除了驗證不論將三軸加速度計置放於身體何處,皆能有效地區別出是否為被佩戴狀態外,也觀察到將移動觀察時間區段設為4分鐘來分析資料,並以三軸加速度計主要參考軸向量測角度標準差0.8°作為有無佩戴狀態的判斷基準,能判讀出與實際影片觀察未佩戴時間最相近的結果,兩者間差異值小於3%。使用此判讀基準來判讀數據將能夠評估大多數正常情形下的受試者佩戴遵從性監測數據,也確認了此輻射劑量佩章合規佩戴遵從性評估系統的有效性。
本評估系統在使用上簡單且快速,能取得更貼近實際暴露狀態的採樣樣本,協助職安人員實施更適當的預防措施,保障工作者的健康。
zh_TW
dc.description.abstractRadiation badge is often used as personal monitor for radiation exposure at work. However, workers who are required to wear radiation badges usually don’t comply with the rules of badge-wearing. This results in low compliance of radiation badge-wearing, and the monitored radiation dosage isn’t accurate enough to account for the exposure dosage of the worker. Therefore, this study was aimed to develop a device to effectively assess the compliance with the compulsory radiation badge-wearing regulation in order to ensure the effectiveness of radiation badge monitoring at workplace.
To achieve this study goal, two parts of experiments were conducted. The first part was performed to test the suitability of accelerometer as a device for badge-wearing compliance assessment, and composed of four tests for stationary stability, sampling frequency, wearing position, and specific action recording pattern, respectively.
The second was conducted to evaluate the suitability of accelerometer being worn by the study subjects for a period of time in the simulated radiation workplace for badge-wearing compliance assessment. Seven study subjects were recruited for one-day monitoring with accelerometer in this part of experiment, and a camera was used to record the study subjects'' real activities as gold standard for comparison. The data from the first part of experiment were used to derive the criteria in interpreting the monitored data obtained by accelerometer for radiation badge-wearing compliance by comparing with the results of the film recorded real activity.
This study confirmed that accelerometers is an effective device in differentiating whether it is worn or not worn, regardless of where it is placed on the human body. Furthermore, it was observed that with moving observation time segment set at 4 minutes for data analysis, along with a standard deviation of 0.8° for the accelerometer''s main reference axial angle as the criteria in differentiating accelerator being worn or not being worn status, it is capable to interpret the monitored results for the not being worn time as close as to that shown in the film with difference less than 3%. Using these criteria to interpret the monitor data, the badge-wearing compliance of most subjects under general situations could be assessed and the validity of this monitoring system was therefore confirmed for assessing the radiation badge-wearing compliance.
The monitoring system developed in this study is simple and fast to use. It could help obtain exposure samples reflecting closer to the real exposure situations and assist occupational safety personnel to implement more appropriate preventive measures to protect the health of workers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:49:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:49:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract iii
圖目錄 viii
表目錄 ix
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻探討 5
2.1作業環境監測 5
2.1.1個人採樣 5
2.1.2 合規佩戴遵從性 6
2.2 游離輻射 7
2.2.1 輻射對人體造成的危害 7
2.2.2 法規上的生物效應 8
2.2.3暴露在輻射下的工作 8
2.3 合規佩戴遵從性監測工具 12
2.3.1 三軸加速度計 12
第三章 材料與方法 15
3.1 研究架構與流程 15
3.2 研究對象 17
3.3 三軸加速度計 17
3.3.1 監測資料收集時使用之電腦規格 17
3.3.2 電腦控制程式與其要求 18
3.4 三軸加速度計做為監測合規佩戴遵從性工具之適合度測試 20
3.4.1 靜置實驗測試 20
3.4.2 三軸加速度計收樣頻率測試 23
3.4.3 特定動作測試 23
3.4.4 佩戴位置 25
3.5 模擬工作場域中三軸加速度計紀錄合宜性評估實驗 25
3.5.1 工作類型 26
3.6 統計分析 26
3.6.1資料前處理 26
3.6.2描述性統計分析 27
第四章 結果 29
4.1 靜置實驗 29
4.2 三軸加速度計收樣頻率測試 32
4.3 佩戴位置 36
4.4 特定動作實驗 38
4.5 模擬工作場域測試 40
第五章 討論 66
5.1 評估合規佩戴遵從性之工具的選擇 66
5.2 評估合規佩戴遵從性方法之探討 67
5.3 影響合規佩戴遵從性紀錄工具準確度因子之探討 69
5.3.1 佩戴位置 70
5.3.2 數據收樣頻率 74
5.3.3 三軸加速度計使用數量對精準度的影響 75
5.3.4 佩戴者生理特徵與習慣行為 78
5.4 影響合規佩戴遵從性原因之探討 80
5.4.1 影響輻射劑量佩章合規佩戴遵從性的因素 80
5.5 本研究之優勢與限制 81
5.6 未來應用 83
第六章 結論 84
第七章 參考文獻 86
-
dc.language.isozh_TW-
dc.subject輻射劑量佩章zh_TW
dc.subject合規佩戴遵從性zh_TW
dc.subject實際暴露劑量zh_TW
dc.subject佩戴狀態zh_TW
dc.subject三軸加速度計zh_TW
dc.subjectcompliance of badge-wearingen
dc.subjectreal exposure doseen
dc.subjectbadge-wearing statusen
dc.subjecttri-axial accelerometeren
dc.subjectradiation badgeen
dc.title輻射佩章佩戴遵從性監測系統開發與測試zh_TW
dc.titleDevelopment of a Device to Monitor User’s Compliance with the Compulsory Radiation Badge-Wearing Regulation at Workplaceen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張大元;劉立文;陳佳堃zh_TW
dc.contributor.oralexamcommitteeTa-Yuan Chang;Li-Wen Liu;Jia-Kun Chenen
dc.subject.keyword輻射劑量佩章,合規佩戴遵從性,三軸加速度計,佩戴狀態,實際暴露劑量,zh_TW
dc.subject.keywordradiation badge,compliance of badge-wearing,tri-axial accelerometer,badge-wearing status,real exposure dose,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202400671-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-16-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved