請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91805完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李銘仁 | zh_TW |
| dc.contributor.advisor | Ming-Jen Lee | en |
| dc.contributor.author | 周修禾 | zh_TW |
| dc.contributor.author | Hsiu-Ho Chou | en |
| dc.date.accessioned | 2024-02-22T16:48:21Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-16 | - |
| dc.identifier.citation | Reference
1. Affymetrix User Manual for AxiomTM Genome-Wide Array Plates. n.d. URL: https://www.affymetrix.com/support/downloads/manuals/axiom_assay_user_manual.pdf 2. Alessandro M., Sarah C., Emiliano D., et al. BRD4 inhibition attenuates obesity-related microvascular dysfunction: role of endothelium and perivescular adipose tissue. Journal of Hypertension, Volume 41, Supplement 3, June 2023, pp. e65-e65(1) 3. Alexopoulos GS, Meyers BS, Young RC, Campbell S, Silbersweig D, Charlson M. ‘Vascular depression’ hypothesis. Arch Gen Psychiatry. 1997qpslcm@ikd54:915–22. 4. Alvarellos ML, Sangkuhl K, Daneshjou R, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for CYP4F2. Pharmacogenet Genomics. 2015 Janqpslcm@ikd25(1):41-7. 5. An SJ, Kim TJ, Yoon BW. Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update. J Stroke 2017qpslcm@ikd19:3–10. 6. Arola A, Levanen T, Laakso HM, Pitkanen J, Koikkalainen J, Lotjonen J, et al. Neuropsychiatric symptoms are associated with exacerbated cognitive impairment in covert cerebral small vessel disease. J Int Neuropsychol Soc. 2022qpslcm@ikd 1–8. 7. atomical rating scale (MARS). Neurology. 2009qpslcm@ikd73:1759-1766. 8. Attems J, Jellinger K, Thal DR and Van Nostrand W. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2011qpslcm@ikd 37: 75–93. 9. Axiom Genotyping Solution Data Analysis User Guide, 2023. Santa Clara, CA, U.S.A. Publication Number: MAN0018363. URL: https://assets.thermofisher.com/TFSAssets/LSG/manuals/axiom_genotyping_solution_analysis_guide.pdf 10. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol 2011qpslcm@ikd71:1018–1039. 11. Barker, Warren W., et al. "Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank." Alzheimer Disease & Associated Disorders 16.4 (2002): 203-212. 12. Berger, U.V., Hediger, M.A. Distribution of the glutamate transporters GLT-1 (SLC1A2) and GLAST (SLC1A3) in peripheral organs. Anat Embryol. 2006. 211, 595–606. 13. Bhagat R, Marini S, Romero JR. Genetic considerations in cerebral small vessel diseases. Front Neurol. 2023 Apr 24qpslcm@ikd14:1080168 14. Biffi A, Sonni A, Anderson CD, et al. (2010). Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol. 68: 934–943. 15. Blochl M, Schaare HL, Kunzmann U, Nestler S. The age-dependent association between vascular risk factors and depressed mood. J Gerontol B Psychol Sci Soc Sci. 2022qpslcm@ikd77:284–94. 16. Bokura H, Yamaguchi S, Iijima K, Nagai A, Oguro H. Metabolic syndrome is associated with silent ischemic brain lesions. Stroke. 2008qpslcm@ikd39:1607–1609. 17. Bower K., Thilarajah S., Pua Y. H., Williams G., Tan D., Mentiplay B., et al.. (2019). Dynamic balance and instrumented gait variables are independent predictors of falls following stroke. J. Neuroeng. Rehabil. 16:3. 10.1186/s12984-018-0478-4 18. Brun G, Hak JF, Coze S, Kaphan E, Carvelli J, Girard N, Stellmann JP. COVID-19-White matter and globus pallidum lesions: Demyelination or small-vessel vasculitis? Neurol Neuroimmunol Neuroinflamm. 2020qpslcm@ikd7:e777. 19. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. (2012) 13:336–49. 10.1038/nrn32142 20. Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF, et al..small vessel disease: a clinical review. Neurology. (2019) 92:1146–56. 21. Chen C-H, Chu Y-T, Chen Y-F, et al. Comparison of clinical and neuroimaging features between NOTCH3 mutations and nongenetic spontaneous intracerebral hemorrhage. Eur J Neurol. 2022qpslcm@ikd00:1-12. 22. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Human Molecular Genetics. 2016qpslcm@ikd25:5321-5331 23. Chen J, Tian W. Explaining the disease phenotype of intergenic SNP through predicted long range regulation. Nucleic Acids Res. 2016 Oct 14qpslcm@ikd 44(18): 8641–8654. 24. Congcong, Wang., Katrin, I., Andreasson. (2022). Odorant receptors in macrophages: potential targets for atherosclerosis. Trends in Immunology. 25. Corcos L, Lucas D, Le JC, et al. Human cytochrome P450 4F3: structure, functions, and prospects. Drug Metabolism and Drug Interactions, vol. 27, no. 2, 2012, pp. 63-71. 26. Creager MA, Luscher TF, Cosentino F, Beckman JA. Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation. 2003qpslcm@ikd108:1527–1532. 27. de Laat K., Reid A., Grim D., Evans A., Kötter R., van Norden A., et al. (2012). Cortical thickness is associated with gait disturbances in cerebral small vessel disease. Neuroimage 59 1478– 1484. 28. Drager LF, McEvoy RD, Barbe F, Lorenzi-Filho G, Redline S, Initiative I. Sleep apnea and cardiovascular disease: lessons from recent trials and need for team science. Circulation. 2017qpslcm@ikd136:1840–1850. 29. Dufouil C, de Kersaint-Gilly A, Besancon V, Levy C, Auffray E, Brunnereau L, Alperovitch A, Tzourio C. Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology. 2001qpslcm@ikd56:921–926. 30. Elisabeth J. Vinke, Pinar Yilmaz, Janine E. van der Toorn, Rahman Fakhry, Kate Frenzen, Florian Dubost, Silvan Licher, Marleen de Bruijne, Maryam Kavousi, M. Arfan Ikram, Meike W.Vernooij, Daniel Bos, Intracranial arteriosclerosis is related to cerebral small vessel disease: a prospective cohort study, Neurobiology of Aging, Volume 105, 2021, Pages 16-24 31. Esiri MM, Joachim C, Sloan C, Christie S, Agacinski G, Bridges LR, Wilcock GK, Smith AD. Cerebral subcortical small vessel disease in subjects with pathologically confirmed Alzheimer disease: a clinicopathologic study in the Oxford Project to Investigate Memory and Ageing (OPTIMA) Alzheimer Dis Assoc Disord. 2014qpslcm@ikd28:30–35. 32. Esiri, M. M., et al. "Pathological correlates of late-onset dementia in a multicentre, communitybased population in England and Wales." Lancet (2001). 33. Evans L. E., Taylor J. L., Smith C. J., Pritchard H. A. T., Greenstein A. S., Allan S. M. (2021). Cardiovascular comorbidities, inflammation, and cerebral small vessel disease. Cardiovasc. Res. 117 2575–2588. 34. Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel". Nature. 1995. 375 (6532): 599–603. 35. Fanning JP, Wong AA, Fraser JF. The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med 2014qpslcm@ikd12:119. 36. Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: a systematic critical update. NeuroImage Clin. (2017) 15:247–63. 37. Feigin, V. L., Brainin, M., Norrving, B., Martins, S., Sacco, R. L., Hacke, W., Fisher, M., Pandian, J., & Lindsay, P. (2022). World Stroke Organization (WSO): Global stroke fact sheet 2022. International Journal of Stroke, 17(1), 18–29. 38. Francis N. S, Saima H, Steven G. V, Anthonin R, Bibek G, Tomotaka T, Mary C. S, Sin L. N, Henri V, Wiesje M. van der Flier, Christopher L.H.C. Neurology Nov 2020, 95 (21) e2845-e2853 39. Frosen J., Joutel A. (2018). Smooth muscle cells of intracranial vessels: From development to disease. Cardiovasc. Res. 114 501–512. 40. Frosen J., Joutel A. (2018). Smooth muscle cells of intracranial vessels: From development to disease. Cardiovasc. Res. 114 501–512. 41. Fu Y, Liu Q, Anrather J, Shi FD. Immune interventions in stroke. Nat Rev Neurol (2015) 11:524–35. 10.1038/nrneurol.2015.144 42. Fu Y, Yan Y. Emerging Role of Immunity in Cerebral Small Vessel Disease. Front Immunol. 2018 Jan 25qpslcm@ikd9:67. 43. Furuta A, Nobuyoshi N, Nishihara Y, Honie A. Medullary arteries in aging and dementia. Stroke. 1991qpslcm@ikd 22: 442–46. 44. Ganesh A, Gutnikov SA, Rothwell PM, Oxford Vascular Study Late functional improvement after lacunar stroke: a population-based study J. Neurol. Neurosurg. Psychiatry, 89 (12) (2018 Dec), pp. 1301-1307 45. Gao F, Jing Y, Zang P, Hu X, et al. Vascular Cognitive Impairment Caused by Cerebral Small Vessel Disease Is Associated with the TLR4 in the Hippocampus. Journal of Alzheimer''s Disease. 2019. vol. 70, no. 2, pp. 563-572. 46. Gorelick, Philip B., et al. "Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association." Stroke 42.9 (2011): 2672-2713. 47. Greenberg SM, Charidimou A. Diagnosis of cerebral amyloid angi- 48. Gregoire SM, Chaudhary UJ, Brown MM, et al. The microbleed an 49. Grewal R.P. Stroke in Fabry’s disease. J. Neurol.1994qpslcm@ikd241:153–156.50. Guey, S., Lesnik Oberstein, S. A. J., Tournier-Lasserve, E., & Chabriat, H. Hereditary Cerebral Small Vessel Diseases and Stroke: A Guide for Diagnosis and Management. Stroke. 2021. Vol. 52,Issue 9, pp. 3025–3032 51. Gunarathne A., Patel J. V., Kausar S., Gammon B., Hughes E. A., Lip G. Y. (2009). Glycemic status underlies increased arterial stiffness and impaired endothelial function in migrant South Asian stroke survivors compared to European Caucasians: Pathophysiological insights from the West Birmingham Stroke Project. Stroke. 40 2298–2306. 52. Habes M., Erus G., Toledo J.B., Zhang T., Bryan N., Launer L.J., Rosseel Y., Janowitz D., Doshi J., Van der Auwera S., et al. White matter hyperintensities and imaging patterns of brain ageing in the general population. Brain. 2016qpslcm@ikd139:1164–1179. 53. Hanafi R, Roger PA, Perin B, Kuchcinski G, Deleval N, Dallery F, Michel D, Hacein-Bey L, Pruvo JP, Outteryck O, Constans JM. COVID-19 Neurologic Complication with CNS vasculitis-like pattern. AJNR Am J Neuroradiol. 2020qpslcm@ikd41:1384–1387. 54. Harshfield EL, Pennells L, Schwartz JE, Willeit P, Kaptoge S, Bell S, et al. Association between depressive symptoms and incident cardiovascular diseases. J Am Med Assoc. 2020qpslcm@ikd324:2396–405. 55. Hazama AF, Amano S, Ozaki T. Pathological changes of cerebral vessel endothelial cells in spontaneously hypertensive rats, with special reference to the role of these cells in the development of hypertensive cerebrovascular lesions. Adv. Neurol. 1978qpslcm@ikd20:359–369. 56. Hejl, A., P. Høgh, and G. Waldemar. "Potentially reversible conditions in 1000 consecutive memory clinic patients." Journal of Neurology, Neurosurgery & Psychiatry 73.4 (2002): 390-394. 57. Heye, A. K., Thrippleton, M. J., Chappell, F. M., Hernández Mdel, C., Armitage, P. A., Makin, S. D., et al. (2015). Blood pressure and sodium: associationwith MRI markers in cerebral small vessel disease. J. Cereb. Blood Flow Metab. 36, 264–274. 58. Hilal S, Mok V, Youn YC, Wong A, Ikram MK, Chen CL. Prevalence, risk factors and consequences of cerebral small vessel diseases: data from three Asian countries. J Neurol Neurosurg Psychiatry. 2017qpslcm@ikd88:669–674. 59. Houde M., Desbiens L., D’Orleans-Juste P. (2016). Endothelin-1: Biosynthesis, signaling and vasoreactivity. Adv. Pharmacol. 77 143–175. 60. Hu, H. H., Sheng, W. Y., Chu, F. L., Lan, C. F., & Chiang, B. N. (1992). Incidence of stroke in Taiwan. Stroke, 23(9), 1237–1241. 61. Huixia G, Bo L, Yanmei W. et al. Association Between the CYP4F2 Gene rs1558139 and rs2108622 Polymorphisms and Hypertension: A Meta-Analysis. Genetic Testing and Molecular Biomarkers. 2019. Vol. 23, Iss: 5, pp 342-347 62. Iadecola C, Anrather J, Kamel H. Effects of COVID-19 on the nervous system. Cell. 2020qpslcm@ikd183(16–27):e11 63. Iadecola C, Davisson RL. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008qpslcm@ikd7(6):476–484. 64. Iadecola C, et al. Impact of hypertension on cognitive function: a scientific statement from the American Heart Association. Hypertension. 2016qpslcm@ikd68(6):e67–e94. 65. Inzitari D., Pracucci G., Poggesi A., Carlucci G., Barkhof F., Chabriat H., Erkinjuntti T., Fazekas F., Ferro J.M., Hennerici M., et al. Changes in white matter as determinant of global functional decline in older independent outpatients: Three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ. 2009qpslcm@ikd339:b2477. 66. Ishikawa M, Vowinkel T, Stokes KY, Arumugam TV, Yilmaz G, Nanda A, Granger DN.CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion.Circulation 2005qpslcm@ikd111:1690–1696. 67. Jayakody O., Breslin M., Beare R., Blumen H. M., Srikanth V. K., Callisaya M. L. (2020). Regional associations of cortical thickness with gait variability-the tasmanian study of cognition and gait. J. Gerontol. A Biol. Sci. Med. Sci. 75 1537–1544. 68. Jeerakathil T, Wolf PA, Beiser A, Massaro J, Seshadri S, D’Agostino RB, DeCarli C. Stroke risk profile predicts white matter hyperintensity volume: the framingham study. Stroke. 2004qpslcm@ikd35:1857–61. 69. Jetten A. M. Recent Advances in the Mechanisms of Action and Physiological Functions of the Retinoid-Related Orphan Receptors (RORs). Current Drug Targets - Inflammation & Allergy, 2004, 3, 395-412 70. Jhun MA, Smith JA, Ware EB, Kardia SLR, Mosley TH, Turner ST, Peyser PA, Park SK. Modeling the causal role of DNA methylation in the association between cigarette smoking and inflammation in African Americans: a 2‐step epigenetic Mendelian randomization study. Am J Epidemiol. 2017qpslcm@ikd 186:1149–1158. 71. Jimenez-Conde J, Biffi A, Rahman R, Kanakis A, Butler C, Sonni S, Massasa E, Cloonan L,Gilson A, Capozzo K, et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke. Stroke. 2010qpslcm@ikd41:437–442 72. Joutel A., Faraci F.M. Cerebral smallv essel disease: Insights and opportunities from mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2014qpslcm@ikd45:1215–1221. 73. Karama S, Ducharme S, Corley J, Chouinard-Decorte F, Starr JM, Wardlaw JM, Bastin ME,Deary IJ. Cigarette smoking and thinning of the brain’s cortex. Mol Psychiatry. 2015qpslcm@ikd20:778–85. 74. Katherine N. Theken a, Robert N. Schuck a, Matthew L. Edin et al. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease. Atherosclerosis Volume 222, Issue 2, June 2012, Pages 530-536 75. King KS, Peshock RM, Rossetti HC, McColl RW, Ayers CR, Hulsey KM, Das SR. Effect of normal aging versus hypertension, abnormal body mass index, and diabetes mellitus on white matter hyperintensity volume. Stroke. 2014qpslcm@ikd45:255–257. 76. Kocher, O. & Gabbiani, G. Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Hum. Pathol. 17, 875–880 (1986). 77. Korczyn AD, Vakhapova V, Grinberg LT. Vascular dementia. J Neurol Sci. 2012qpslcm@ikd 322:2–10. 78. Krishnan KRR, Tayor WD, McQuoid DR, MacFall JR, Payne ME, Provenzale JM, et al. Clinical characteristics of magnetic resonance imaging-defined subcortical ischemic depression. Biol Psychiatry. 2004qpslcm@ikd55:390–7. 79. Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav Immun 2016qpslcm@ikd58:291–309. 80. Kwon SM, Choi KS Yi HJ, Ko Y, Kim YS, Bak KH, et al.. Impact of brain atrophy on 90-day functional outcome after moderate-volume basal ganglia hemorrhage. Sci Rep. (2018) 8:4819. 10.1038/s41598-018-22916-3 81. Lahna D, Schwartz DL, Woltjer R, Black SE, Roese N, Dodge H, Boespflug EL, Keith J, Gao F, Ramirez J, Silbert LC. Venous collagenosis as pathogenesis of white matter hyperintensity. Ann Neurol. 2022qpslcm@ikd92:992–1000. 82. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, Boehm F, Caporaso NE, Cornelis MC, Edenberg HJ, Gabriel SB, Harris EL, Hu FB, Jacobs KB, Kraft P, Landi MT, Lumley T, Manolio TA, McHugh C, Painter I, Paschall J, Rice JP, Rice KM, Zheng X, Weir BS (2010) GENEVA Investigators. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol. 34(6):591-602. 83. Li Y, Li M, Zhang X, Shi Q, Yang S, Fan H, et al. Higher blood–brain barrier permeability is associated with higher white matter hyperintensities burden. J Neurol. (2017) 264:1474–81 84. Litak J, Mazurek M, Kulesza B, Szmygin P, Litak J, Kamieniak P, Grochowski C. Cerebral Small Vessel Disease. Int J Mol Sci. 2020 Dec 20qpslcm@ikd21(24):9729. 85. Ma Y, et al. Blood pressure variability and cerebral small vessel disease: a systematic review and meta-analysis of population-based cohorts. Stroke. 2020qpslcm@ikd51(1):82–89. 86. Mancuso, M., et al. "Monogenic cerebral small‐vessel diseases: diagnosis and therapy. Consensus recommendations of the European Academy of Neurology." European journal of neurology 27.6 (2020): 909-927. 87. Mandal, J., & Chung, S. A. (2017). Primary Angiitis of the Central Nervous System. Rheumatic Disease Clinics of North America, 43(4), 503–518. 88. Manukjan N, Ahmed Z, Fulton D, Blankesteijn WM, Foulquier S. A Systematic Review of WNT Signaling in Endothelial Cell Oligodendrocyte Interactions: Potential Relevance to Cerebral Small Vessel Disease. Cells. 2020 Jun 25qpslcm@ikd9(6):1545. 89. Marco, Orecchioni., Kouji, Kobiyama., et al.(2022). Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science. 90. McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010). 91. Mishra A, Chauhan G, Violleau M‐H, Vojinovic D, Jian X, Bis JC, Li S, Saba Y, Grenier‐Boley B, Yang O, et al. Association of variants in HTRA1 and NOTCH3 with MRI‐defined extremes of cerebral small vessel disease in older subjects. Brain. 2019qpslcm@ikd142:1009–1023. 92. Miura M, Nakajima M, Fujimoto A, Kaku Y, Kawano T, Watanabe M, Kuratsu JI, Ando Y. High prevalence of small vessel disease long after cranial irradiation. J Clin Neurosci. 2017qpslcm@ikd46:129–135. 93. Mo Y, Mao C, Yang D, Ke Z, Huang L, Yang Z, Qin R, Huang Y, Lv W, Hu Z and Xu Y (2023) Altered neuroimaging patterns of cerebellum and cognition underlying the gait and balance dysfunction in cerebral small vessel disease. Front. Aging Neurosci. 15:1117973. 94. Mok V, Srikanth V, Xiong Y et al. Raceethnicity and cerebral small vessel disease – Comparison between Chinese and White populations. Int J Stroke. 2014qpslcm@ikd 9(A100 Suppl.): 36–42. 95. Moody DM, Brown WR, Challa VR, Anderson RL. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 1995qpslcm@ikd 194: 469–76. 96. Moynagh PN. The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J Anat 2005qpslcm@ikd207:265–269. 97. Mu R, Qin X, Guo Z, Meng Z, Liu F, Zhuang Z, Zheng W, Li X, Yang P, Feng Y, Jiang Y, Zhu X. Prevalence and Consequences of Cerebral Small Vessel Diseases: A Cross-Sectional Study Based on Community People Plotted Against 5-Year Age Strata. Neuropsychiatr Dis Treat. 2022 Mar 3qpslcm@ikd18:499-512. 98. Mustapha M, Nassir CMNCM, Aminuddin N, Safri AA, Ghazali MM. Cerebral Small Vessel Disease (CSVD) - Lessons From the Animal Models. Front Physiol. 2019 Oct 24qpslcm@ikd10:1317. 99. Nakajima, N., Nagahiro, S., Sano, T., Satomi, J. & Satoh, K. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls. Acta Neuropathol. (Berl). 100, 475–480 (2000). 100. Nakamura K, Sekijima Y, Nakamura K, Hattori K, Nagamatsu K, Shimizu Y, et al.. P.E66Q mutation in the GLA gene is associated with a high risk of cerebral small-vessel occlusion in elderly Japanese males. Eur J Neurol. (2014) 21:49–56. 101. Nan D, Cheng Y, Feng L, Zhao M, Ma D, Feng J. Potential mechanism of venous system for leukoaraiosis: from post-mortem to in vivo research. Neurodegener Dis. 2019qpslcm@ikd19:101–8. 102. Natalie C. W, Kevin D. C, Ian B. P, Michael P. et al. The effect of a single nucleotide polymorphism of the CYP4F2 gene on blood pressure and 20-hydroxyeicosatetraenoic acid excretion after weight loss. Journal of Hypertension. 2014. Vol. 32, Iss: 7, pp 1495-1502 103. National Center for Genome Medicine (NCGM) Guidelines. 2022. IBMS, Academia Sinica.URL: https://ncgm.sinica.edu.tw/affymetrix_prep_requirements_c_01.html 104. National Organization for Rare Disorders (2023, July 27). Susac syndrome - symptoms, causes,treatment | NORD. 105. Nautiyal J, Christian M, Parker MG. Distinct functions for RIP140 in development,inflammation, and metabolism. Trends Endocrinol Metab. 2013 Sepqpslcm@ikd24(9):451-9. 106. Neale BM, Purcell S. The positives, protocols, and perils of genome-wide association. Am J Med Genet B Neuropsychiatr Genet. 2008 Oct 5qpslcm@ikd147B(7):1288-94. 107. opathy: evolution of the Boston criteria. Stroke. 018qpslcm@ikd49:491-497. 108. Owens, G.K., 1995. Regulation of differentiation of vascular smooth muscle cells. Physiol. Rev. 75, 487–517. 109. Pantoni L, Sarti C, Alafuzoff I, et al. Postmortem examination of vascular lesions in cognitive impairment. A survey among neuropathological services. Stroke. 2006qpslcm@ikd 37: 1005–09. 110. Pantoni L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010qpslcm@ikd 9:689–701. 111. Pantoni L., Gorelick P. B. (2014). Cerebral Small Vessel Disease, First Edn Cambridge: Cambridge University Press. 112. Pavlovic AM, Pekmezovic T, Zidverc Trajkovic J, Svabic Medjedovic T, Veselinovic N, Radojicic A, Mijajlovic M, Tomic G, Jovanovic Z, Norton M, Sternic N. Baseline characteristic of patients presenting with lacunar stroke and cerebral small vessel disease may predict future development of depression. Int J Geriatr Psychiatry. 2015qpslcm@ikd31:58–65. 113. Pelzer N, De Vries B, Boon EM, Kruit MC, Haan J, Ferrari MD, et al.. Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J Neurol. (2013) 260:2188–90. 114. Peter C. Chapter Six - Role of Cytochrome P450s in Inflammation. Advances in Pharmacology. Volume 74, 2015, Pages 163-192 115. Petty GW, Brown RD Jr, Whisnant JP, Sicks JD, O''Fallon WM, Wiebers DO. Ischemic stroke subtypes : a population-based study of functional outcome, survival, and recurrence. Stroke. (2000) 31:1062–8. 10.1161/01.str.31.5.1062 116. Poels MM, Vernooij MW, Ikram MA, et al.. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke 2010qpslcm@ikd41:S103–S106. 117. Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivas- cular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis. 2015qpslcm@ikd39:224-231. 118. Pretnar-Oblak J, Sabovic M, Pogacnik T, Sebestjen M, Zaletel M. Flow-mediated dilatation and intima-media thickness in patients with lacunar infarctions. Acta Neurol Scand. (2006) 113:273–7. 119. Quick S., Moss J., Rajani R. M., Williams A. (2021). A vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neurosci. 44 289–305. 120. Rajeev V, Fann DY, Dinh QN, Kim HA, De Silva TM, Lai MKP, Chen CL, Drummond GR, Sobey CG, Arumugam TV. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics. 2022 Jan 16qpslcm@ikd12(4):1639-1658. 121. Rannikmäe K, Sivakumaran V, Millar H, Malik R, Anderson CD, Chong M, Dave T, Falcone GJ, Fernandez‐Cadenas I, Jimenez‐Conde J, et al. COL4A2 is associated with lacunar ischemic stroke and deep ICH: meta‐analyses among 21,500 cases and 40,600 controls. Neurology.2017qpslcm@ikd89:1829–1839. 122. Rauch P.J., Park H.S., Knisely J.P., Chiang V.L., Vortmeyer A.O. Delayed Radiation-Induced Vasculitic Leukoencephalopathy. Int. J. Radiat. Oncol. 2012qpslcm@ikd83:369–375. 123. Régent, A. et al. Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes. Proteomics 16, 2637–2649 (2016). 124. Ren, B., Tan, L., Song, Y., Li, D., Xue, B., Lai, X., & Gao, Y. (2022). Cerebral small vessel disease: neuroimaging features, biochemical markers, influencing factors, pathological mechanism and treatment. Frontiers in Neurology, 13. 125. Rensen, S. S., Doevendans, P. A. & Van Eys, G. J. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15, 100–108 (2007). 126. Rincon, F., Wright, C.B., 2014. Current pathophysiological concepts in cerebral small vessel disease. Front. Aging Neurosci. 6, 24. 127. Rowbotham GF, Little E. Circulation of the cerebral hemispheres. Br J Surg 1965qpslcm@ikd 52: 8–21. 128. Rutten-Jacobs LCA, Tozer DJ, Duering M, Malik R, Dichgans M, Markus HS, Traylor M. Genetic Study of White Matter Integrity in UK Biobank (N=8448) and the Overlap With Stroke, Depression, and Dementia. Stroke. 2018 Junqpslcm@ikd49(6):1340-1347. 129. Ryu WS, Woo SH, Schellingerhout D, Jang MU, Park KJ, Hong KS, et al.. Stroke outcomes are worse with larger leukoaraiosis volumes. Brain. (2017) 140:158–70. 10.1093/brain/aww259 130. Saridin FN, Hilal S, Villaraza SG, Reilhac A, Gyanwali B, Tanaka T, et al.. Brain amyloid β, cerebral small vessel disease, and cognition: a memory clinic study. Neurology. (2020) 95:e2845– 53. 131. Schenk C., Wuerz T., Lerner A.J. Small vessel disease and memory loss: What the clinician needs to know to preserve patients’ brain health. Curr. Cardiol. Rep. 2013qpslcm@ikd15:427. 132. Schilling S, DeStefano AL, Sachdev PS, et al. (2013). APOE genotype and MRI markers of cerebrovascular disease: systematic review and meta-analysis. Neurology. 81: 292–300. 133. Schmidt H, Zeginigg M, Wiltgen M, Freudenberger P, Petrovic K, Cavalieri M, Gider P, Enzinger C, Fornage M, Debette S, et al. Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age‐related cerebral small vessel disease. Brain. 2011qpslcm@ikd134(Pt 11):3384–3397. 134. Schneider, Julie A., et al. "Mixed brain pathologies account for most dementia cases in community-dwelling older persons." Neurology 69.24 (2007): 2197-2204. 135. Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease?—New insights from a rat model. Exp. Transl. Stroke Med. 2013qpslcm@ikd5(1):4. doi: 10.1186/2040-7378-5-4. 136. Springer TA. Adhesion receptors of the immune system. Nature 1990qpslcm@ikd346:425–434. 137. Staals J, Makin SD, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology. 2014qpslcm@ikd83:1228–1234. 138. T O''Brien, John, et al. "Vascular cognitive impairment." The Lancet Neurology 2.2 (2003): 89-98. 139. Tang, S. C., Chen, Y. R., Chi, N. F., Chen, C. H., Cheng, Y. W., Hsieh, F. I., Hsieh, Y. C., Yeh, H. L., Sung, P. S., Hu, C. J., Chern, C. M., Lin, H. J., Lien, L. M., Peng, G. S., Chiou, H. Y., & Jeng, J. S. Prevalence and clinical characteristics of stroke patients with p.R544C NOTCH3 mutation in Taiwan. Annals of Clinical and Translational Neurology, 2019, 6(1), 121-128. 140. Tarantini S., Valcarcel-Ares N. M., Yabluchanskiy A., Springo Z., Fulop G. A., Ashpole N., et al. (2017). Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell 16 469–479. 141. Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry. 2013qpslcm@ikd18:963–74. 142. Taylor WD, Steffens DC, MacFall JR, McQuoid DR, Payne ME, Provenzale JM, et al. White matter hyperintensity progression and late-life depression outcomes. Arch Gen Psychiatry.2003qpslcm@ikd60:1090–6. 143. TherefmoFisher Scientific, n.d. Axiom 96 Assay Automated Workflow. URL: https://www1.cgmh.org.tw/intr/intr2/c3s000/corelab/sequence/GeneTitan%E5%B9%B3%E5%8F%B0%E4%BB%8B%E7%B4%B9.pdf 144. Tittmann, M., Günther, T., Sacher, J., Himmerich, H., Villringer, A., Hegerl, U., & Schönknecht, P. (2014). Structural brain changes in early-onset and late-onset depression: An update of volumetric MRI findings. International Journal of Imaging Systems and Technology, 24, 149–160. 145. Toth P., Tarantini S., Springo Z., Tucsek Z., Gautam T., Giles C. B., et al. (2015). Aging exacerbates hypertension-induced cerebral microhemorrhages in mice: Role of resveratrol treatment in vasoprotection. Aging Cell 14 400–408. 146. Tudorascu, D. L., Rosano, C., Venkatraman, V. K., MacCloud, R. L., Harris, T., Yaffe, K., Aizenstein, H. J. (2014). Multimodal MRI markers support a model of small vessel ischemia for depressive symptoms in very old adults. Psychiatry Research, 224, 73–80. 147. Tully PJ, et al. Association between blood pressure variability and cerebral small-vessel disease: a systematic review and meta-analysis. J. Am. Heart Assoc. 2020qpslcm@ikd9(1):e013841. 148. Turley, E. A. Extracellular matrix remodeling: Multiple paradigms in vascular disease. Circ.Res. 88, 2–4 (2001). 149. Turner, S., Armstrong, L. L., Bradford, Y., Carlsony, C. S., Crawford, D. C., Crenshaw, A. T.,et al. (2011). Quality control procedures for genome-wide association studies. Curr. Protoc. Hum. Genet. 68, 1.19.1–1.19.18. 150. Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., Martin, H.C., Lappalainen, T., & Posthuma, D. (2021, August 26). Genome-wide association studies. Nature Reviews Methods Primers, 1(1). 151. Ungvari Z, Toth P, Tarantini S, Prodan CI, Sorond F, Merkely B, Csiszar A. Hypertensioninduced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol.2021qpslcm@ikd17:639–654 152. Vacisa T, Norab K, Agnec G, Viliusa S, Valdasc J, Vaidotasc Z, qpslcm@ikd Vaivaa L. The impact of CYP2C19*2, CYP4F2*3, and clinical factors on platelet aggregation, CYP4F2 enzyme activity, and 20-hydroxyeicosatetraenoic acid concentration in patients treated with dual antiplatelet therapy.Blood Coagulation & Fibrinolysis. December 2017. 28(8):p 658-664. 153. van Agtmaal, M. J., Houben, A. J., Pouwer, F., Stehouwer, C. D., & Schram, M. T. (2017). Association of microvascular dysfunction with late-life depression: A systematic review and metaanalysis. JAMA Psychiatry, 74, 729–739. 154. van der Holst H. M., van Uden I. W., Tuladhar A. M., de Laat K. F., van Norden A. G., Norris D. G., et al.. (2016). Factors associated with 8-year mortality in older patients with cerebral small vessel disease: the radboud university nijmegen diffusion tensor and magnetic resonance cohort (RUN DMC) study. JAMA Neurol. 73, 402–409. 155. van Sloten TT, Sigurdsson S, van Buchem MA, Phillips CL, Jonsson PV, Ding J, Schram MT, Harris TB, Gudnason V, Launer LJ. Cerebral small vessel disease and association with higher incidence of depressive symptoms in a general elderly population: the Ages-Reykjavik study. Am J Psychiatry. 2015qpslcm@ikd172:570–8. 156. van Veluw SJ, Hilal S, Kuijf HJ, Ikram MK, Xin X, Yeow TB, et al. Cortical microinfarcts on 3T MRI: clinical correlates in memory-clinic patients. Alzheimers Dement. 2015qpslcm@ikd11:1500–1509. 157. Veluw SJ, Shih AY, Smith EEet al. . Detection, risk factors, and functional consequences of cerebral microinfarcts. Lancet Neurol 2017qpslcm@ikd 16: 730–40. 158. Venketasubramanian N, Yoon BW, Pandian J, Navarro JC. Stroke epidemiology in South, East, and South-East Asia: a review. J Stroke 2017qpslcm@ikd19:286–294. 159. Vernooij MW, van der Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology. 2008qpslcm@ikd70:1208–1214. 160. Vinters H.V. Cerebral amyloid angiopathy. A critical review. Stroke. 1987qpslcm@ikd18:311–324. doi: 10.1161/01.STR.18.2.311. 161. Virdis A., Neves M. F., Amiri F., Touyz R. M., Schiffrin E. L. (2004). Role of NAD(P)Hoxidase on vascular alterations in angiotensin II-infused mice. J. Hypertens. 22 535–542. 162. Viswanathan A., Greenberg S.M. Cerebral amyloid angiopathy in the elderly. Ann. Neurol. 2011qpslcm@ikd70:871–880. 163. Wang S., Liu J., Wu D. I., Pang X., Zhao J., Zhang X. (2015). Pro-inflammatory effect of fibrinogen on vascular smooth muscle cells by regulating the expression of PPARalpha, PPARgamma and MMP-9. Biomed. Rep. 3 513–518. 164. Wang Z, Chen Q, Chen J, Yang N, Zheng K. Risk factors of cerebral small vessel disease: a systematic review and meta-analysis. Medicine (Baltimore) 2021qpslcm@ikd100:e28229 165. Wardlaw J.M., Smith C., Dichgans M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 2019qpslcm@ikd18:684–696. doi: 10.1016/S1474-4422(19)30079-1. 166. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013qpslcm@ikd12:822-838. 167. Wenzel J, Lampe J, Muller-Fielitz H, Schuster R, Zille M, Muller K, Krohn M, Korbelin J, Zhang L, Ozorhan U, et al. The SARS-CoV-2 main protease M(pro) causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci. 2021qpslcm@ikd24:1522–1533. 168. White WB, Wolfson L, Wakefield DB, Hall CB, Campbell P, Moscufo N, Schmidt J, Kaplan RF, Pearlson G, Guttmann CR. Average daily blood pressure, not office blood pressure, is associated with progression of cerebrovascular disease and cognitive decline in older people. Circulation.2011qpslcm@ikd124:2312–2319 169. Wight TN, (2002). Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 14: 617–623. 170. World Health Organization. (2022, October 29). World stroke day 2022. World Health Organization. URL: https://www.who.int/srilanka/news/detail/29-10-2022-world-stroke-day-2022#:~:text=Stroke%20is%20the%20leading%20cause,a%20stroke%20in%20their%20lifetime. 171. Xiong J, Li XR, Tian R, Zhu YH. Imaging features and risk factors of youth ischemic cerebral small vessel disease. Chin J Prev Contr Chron Dis. (2014) 22:257–9. 172. Yang Y, Knol MJ, Wang R, Mishra A, et al. Epigenetic and integrative cross-omics analyses of cerebral white matter hyperintensities on MRI. Brain. 2023 Feb 13qpslcm@ikd146(2):492-506. 173. Yang YY, Cai X, Zhou MY, Chen Y, Pi JT, Zhao MX, Shi YL, Wang SY, Jing J, Chen WQ, Xia M, Wang YJ, Pan YS, Wang YL. Prevalence and Risk Factors of Cerebral Small Vessel Disease from a Population-Based Cohort in China : Prevalence and risk factor of cerebral small vessel disease. Neuroepidemiology. 2023. 174. Yi Zhou, Yang Gu, and Jianming Liu, BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis, Biochemical and Biophysical Research Communications, Volume 519, Issue 3, 2019, Pages 481-488 175. Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology. (2008) 71:804–11. 176. Zahodne LB, Gilsanz P, Glymour MM, Gibbons LE, Brewster P, Hamilton J, et al. Comparing variability, severity, and persistence of depressive symptoms as predictors of future stroke risk. Am J Geriatr Psychiatry. 2017qpslcm@ikd25:120–8. 177. Zanon Zotin MC, Sveikata L, Viswanathan A, Yilmaz P. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr Opin Neurol. 2021qpslcm@ikd34:246–57. 178. Zhang, MJ., Liu, Y., Hu, ZC. et al. TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension. Histochem Cell Biol 147, 511–521 (2017). 179. Zheng X, Diktonaite K, and Qiu H. Epigenetic Reader Bromodomain-Containing Protein 4 in Aging-Related Vascular Pathologies and Diseases: Molecular Basis, Functional Relevance, and Clinical Potential. Biomolecules. 2023 Jul 15qpslcm@ikd13(7):1135. [Original source: https://studycrumb.com/alphabetizer] | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91805 | - |
| dc.description.abstract | 腦內小血管疾病是一種複雜卻常見的神經系統疾病,其特徵是腦內小血管的病理發生變化,是造成中風、認知障礙、和癡呆的主要原因。現階段的挑戰在於了解台灣人群特異性的複雜遺傳結構以及這些基因變異與疾病臨床表現之間的關係。本研究採用了全基因組關聯分析研究,目標為找出潛在的疾病亞型和易感性變異及遺傳異質性問題。研究組別為在國立台灣大學收案之病例樣本(n = 695, 59.2 ±18.3 歲) 與對照組為台灣人體生物資料庫的樣本對比(n = 14,495, 47.8 ± 15.4 歲),利用自動化分裝試劑儀器Nimbus™) 及自動化晶片儀器(GeneTitan™) 運行Axiom 全基因組TWB 2.0 鑑定晶片分析兩組別之差異。本篇在全基因組關聯性分析研究發現,病例樣本與人體資料庫比較中,在19 號染色體上有10 個顯著差異之單一核苷酸多型性(SNP),分別位於六個內含子(Intron regions)以及四個基因間隔區(Intergenic regions)。這些SNP 變異和嗅覺受體、代謝酵素和蛋白質受體等基因相關,而其對腦內小血管疾病的病理影響仍然未知。過去研究指出這些基因和動脈粥狀硬化之形成、脂肪代謝、血管功能、或谷氨酸運輸蛋白(glutamate transporter)有關,而這些基因也間接影響腦內小血管產生病變。然而,腦內小血管病變與SNP 及其關聯的這些基因背後的分子機轉仍需再探討研究。整體而言,本篇之關聯性分析研究協助提高了對台灣人群中腦內小血管分子遺傳學的理解,以及SNP 在個體易感於疾病中扮演的潛在角色。這些結果可能為未來疾病預防和個人化的治療策略提供重要資訊。 | zh_TW |
| dc.description.abstract | Cerebral Small Vessel Disease (CSVD) is a prevalent neurological condition characterized by pathological alterations in the small vessels of the brain, which significantly contribute to the incidence of stroke, cognitive decline, and vascular dementia. This study addresses the existing challenges in deciphering the intricate genetic landscape specific to the Taiwanese population and its correlation with the clinical phenotypes of CSVD. Employing a genome-wide association study (GWAS), the research aims to mitigate genetic heterogeneity and identify potential disease subtypes and susceptibility variations.
The study population comprised case samples from National Taiwan University (n = 695, mean age 59.2 ± 18.3 years) and control samples from Taiwan BioBank (n = 14,495, mean age 47.8 ± 15.4 years). Utilizing the Axiom Genome-Wide TWB 2.0 Array Plate on Nimbus™ and GeneTitan™ instruments, followed by PLINK analysis, the GWAS unveiled 10 significant single nucleotide polymorphisms (SNPs) primarily situated on chromosome 19, with predominant occurrences in intronic regions (n = 6) and intergenic regions (n = 4). These identified variants may potentially influence genes encoding protein transporters, metabolic enzymes, and olfactory receptors, some of which are implicated in atherosclerosis, lipid metabolism, and vascular function, thereby potentially exacerbating CSVD. Further elucidation of the underlying biological mechanisms associated with CSVD is imperative. This investigation contributes to an enhanced comprehension of CSVD genetics within the Taiwanese populace, elucidating the role of genetic variants in predisposing individuals to this condition. The insights garnered from this study may inform the development of targeted interventions and personalized treatment modalities in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:48:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:48:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
Acknowledgements 2 摘要 3 Abstract 4 List of Tables 8 List of Figures 8 List of Abbreviations 9 1. Introduction 11 1.1 Background 11 1.2 Clinical Manifestations and Consequences of CSVD 19 1.3 Pathophysiology of CSVD 24 1.4 Genetics of CSVD 28 1.5 Current Approaches in CSVD Research and Treatments 34 1.6 Research Gaps and Objectives 35 2. Materials and Methods 37 2.1 Study Design 37 2.2 Inclusion criteria for case samples 37 2.3 Exclusion criteria for case samples 39 2.4 Control sample from the Taiwan Biobank 40 2.5 DNA Extraction from Whole Blood and Concentration 41 2.6 Genome-Wide Association Study (GWAS) 42 3. Results 52 3.1 Demographic Data in CSVD GWAS 52 3.2 Study Design Workflow 52 3.3 Participants QC exclusion with heterozygosity and missing rate 54 3.4 Kinship test and relatedness analysis for CSVD GWAS 54 3.5 Principal component analysis (PCA) for CSVD GWAS population 55 3.6 Principal Component Analysis (PCA) between Case-Control Groups 56 3.7 Removal of SNPs with excess missing genotypes 56 3.8 Removal of SNPs with extreme MAF and HWE 57 3.9 Manhattan Plot for CSVD GWAS 57 3.10 Quantile-quantile (QQ) Plot 61 4. Discussion 63 Appendices 73 Reference 90 Supplementary Data 103 | - |
| dc.language.iso | en | - |
| dc.subject | 全基因組關聯分析 | zh_TW |
| dc.subject | 腦內小血管疾病 | zh_TW |
| dc.subject | 蛋白質受體 | zh_TW |
| dc.subject | 代謝酵素 | zh_TW |
| dc.subject | 嗅覺受體 | zh_TW |
| dc.subject | 中風 | zh_TW |
| dc.subject | 單一核苷酸多型性 | zh_TW |
| dc.subject | olfactory receptors | en |
| dc.subject | CSVD | en |
| dc.subject | protein transporters | en |
| dc.subject | metabolic enzymes | en |
| dc.subject | stroke | en |
| dc.subject | SNPs | en |
| dc.subject | GWAS | en |
| dc.title | 台灣族群腦部小血管疾病之全基因組關聯分析: 識別疾病易感性的遺傳風險因子 | zh_TW |
| dc.title | GWAS Analysis of Taiwanese Cerebral Small Vessel Disease (CSVD): Identifying Novel Genetic Loci Contributing to Disease Susceptibility | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 湯頌君;李妮鍾 | zh_TW |
| dc.contributor.oralexamcommittee | Sung-Chun Tang;Ni-Chung Lee | en |
| dc.subject.keyword | 腦內小血管疾病,全基因組關聯分析,單一核苷酸多型性,中風,嗅覺受體,代謝酵素,蛋白質受體, | zh_TW |
| dc.subject.keyword | CSVD,GWAS,SNPs,stroke,olfactory receptors,metabolic enzymes,protein transporters, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202400669 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-17 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 分子醫學研究所 | - |
| dc.date.embargo-lift | 2029-01-01 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 2.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
