Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李妮鍾zh_TW
dc.contributor.advisorNi-Chung Leeen
dc.contributor.author郭靜維zh_TW
dc.contributor.authorJing-Wei Kuoen
dc.date.accessioned2024-02-22T16:47:32Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-01-23-
dc.identifier.citation參考文獻
Uncategorized References
Abdel-Hafez, M., Shimada, M., Lee, P. Y., Johnson, R. J., & Garin, E. H. (2009). Idiopathic nephrotic syndrome and atopy: is there a common link? American Journal of Kidney Diseases, 54(5), 945-953.
Banh, T. H., Hussain-Shamsy, N., Patel, V., Vasilevska-Ristovska, J., Borges, K., Sibbald, C., Lipszyc, D., Brooke, J., Geary, D., & Langlois, V. (2016). Ethnic differences in incidence and outcomes of childhood nephrotic syndrome. Clinical Journal of the American Society of Nephrology, 11(10), 1760-1768.
Bierzynska, A., Bull, K., Miellet, S., Dean, P., Neal, C., Colby, E., McCarthy, H. J., Hegde, S., Sinha, M. D., & Bugarin Diz, C. (2022). Exploring the relevance of NUP93 variants in steroid-resistant nephrotic syndrome using next generation sequencing and a fly kidney model. Pediatric Nephrology, 37(11), 2643-2656.
Braun, D. A., Warejko, J. K., Ashraf, S., Tan, W., Daga, A., Schneider, R., Hermle, T., Jobst-Schwan, T., Widmeier, E., & Majmundar, A. J. (2019). Genetic variants in the LAMA5 gene in pediatric nephrotic syndrome. Nephrology Dialysis Transplantation, 34(3), 485-493.
Cason, R. K., Williams, A., Chryst-Stangl, M., Wu, G., Huggins, K., Brathwaite, K. E., Lane, B. M., Greenbaum, L. A., D’Agati, V. D., & Gbadegesin, R. A. (2022). Collapsing Focal Segmental Glomerulosclerosis in Siblings With Compound Heterozygous Variants in NUP93 Expand the Spectrum of Kidney Phenotypes Associated With Nucleoporin Gene Mutations. Frontiers in Pediatrics, 10.
Chanchlani, R., & Parekh, R. S. (2016). Ethnic differences in childhood nephrotic syndrome. Frontiers in Pediatrics, 4, 39.
Chen, S., Chen, L., & Jiang, H. (2022). Integrated Bioinformatics and Clinical Correlation Analysis of Key Genes, Pathways, and Potential Therapeutic Agents Related to Diabetic Nephropathy. Dis Markers, 2022, 9204201. https://doi.org/10.1155/2022/9204201
DeYoung, V., Singh, K., & Kretz, C. A. (2022). Mechanisms of ADAMTS13 regulation. Journal of Thrombosis and Haemostasis, 20(12), 2722-2732.
Downie, M. L., Gallibois, C., Parekh, R. S., & Noone, D. G. (2017). Nephrotic syndrome in infants and children: pathophysiology and management. Paediatrics and international child health, 37(4), 248-258.
Gbadegesin, R. A., Hall, G., Adeyemo, A., Hanke, N., Tossidou, I., Burchette, J., Wu, G., Homstad, A., Sparks, M. A., & Gomez, J. (2014). Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. Journal of the American Society of Nephrology: JASN, 25(9), 1991.
Gbadegesin, R. A., Hall, G., Adeyemo, A., Hanke, N., Tossidou, I., Burchette, J., Wu, G., Homstad, A., Sparks, M. A., Gomez, J., Jiang, R., Alonso, A., Lavin, P., Conlon, P., Korstanje, R., Stander, M. C., Shamsan, G., Barua, M., Spurney, R., . . . Winn, M. P. (2014). Mutations in the Gene That Encodes the F-Actin Binding Protein Anillin Cause FSGS. Journal of the American Society of Nephrology, 25(9), 1991-2002. https://doi.org/10.1681/asn.2013090976
Hada, I., Shimizu, A., Takematsu, H., Nishibori, Y., Kimura, T., Fukutomi, T., Kudo, A., Ito-Nitta, N., Kiuchi, Z., & Patrakka, J. (2022). A novel mouse model of idiopathic nephrotic syndrome induced by immunization with the podocyte protein Crb2. Journal of the American Society of Nephrology, 33(11), 2008-2025.
Horaček, M., Nikuševa Martić, T., Šenjug, P., Šenjug Perica, M., Oroz, M., Kuzmac, S., Klarić, D., Glavina Durdov, M., Saraga, M., Milošević, D., Batinić, D., Ćorić, M., Paić, F., & Galešić Ljubanović, D. (2023). Clinical and histopathological characteristics of COL4A3 c.2881+1G>A variant causing Alport spectrum disorders in Croatian population. Biomol Biomed, 23(1), 89-100. https://doi.org/10.17305/bjbms.2022.7567
Horinouchi, T., Yamamura, T., Sakakibara, N., Ishiko, S., Aoto, Y., Rossanti, R., Nakanishi, K., Shima, Y., Morisada, N., & Iijima, K. (2020). Heterozygous Urinary Abnormality–Causing Variants of COL4A3 and COL4A4 Affect Severity of Autosomal Recessive Alport Syndrome. Kidney360, 1(9), 936.
Huang, C. W., & Lo, S. H. (2023). Tensins in Kidney Function and Diseases. Life (Basel), 13(6). https://doi.org/10.3390/life13061244
Hudson, B. G., Tryggvason, K., Sundaramoorthy, M., & Neilson, E. G. (2003). Alport''s syndrome, Goodpasture''s syndrome, and type IV collagen. New England Journal of Medicine, 348(25), 2543-2556.
Jones, L. K., Lam, R., McKee, K. K., Aleksandrova, M., Dowling, J., Alexander, S. I., Mallawaarachchi, A., Cottle, D. L., Short, K. M., & Pais, L. (2020). A mutation affecting laminin alpha 5 polymerisation gives rise to a syndromic developmental disorder. Development, 147(21), dev189183.
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587-D592. https://doi.org/10.1093/nar/gkac963
Kohler, J., Omachi, K., Charu, V., Miner, J. H., & Bhalla, V. (2022). A COL4A4-G394S Variant and Impaired Collagen IV Trimerization in a Patient with Mild Alport Syndrome. Kidney360, 3(11), 1899-1908. https://doi.org/10.34067/kid.0005472022
Lane, B. M., Cason, R., Esezobor, C. I., & Gbadegesin, R. A. (2019). Genetics of Childhood Steroid Sensitive Nephrotic Syndrome: An Update [Review]. Frontiers in Pediatrics, 7. https://doi.org/10.3389/fped.2019.00008
Li, Q., & Wang, K. (2017). InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. The American Journal of Human Genetics, 100(2), 267-280. https://doi.org/https://doi.org/10.1016/j.ajhg.2017.01.004
Li, Z., Sun, Z., Chang, D., Zhu, L., Chen, M., & Zhao, M. (2022). Association between COL4A3 variant rs55703767 and susceptibility to diabetic kidney disease in patients with type 2 diabetes mellitus: results from the INDEED cohort study. Chin Med J (Engl), 135(9), 1129-1130. https://doi.org/10.1097/cm9.0000000000001955
Lin, F.-J., Yao, L., Hu, X.-Q., Bian, F., Ji, G., Jiang, G.-R., Gale, D. P., & Ren, H.-Q. (2019). First identification of PODXL nonsense mutations in autosomal dominant focal segmental glomerulosclerosis. Clinical Science, 133(1), 9-21.
Liu, P. J., Gunther, L. K., Garone, M. E., Zhang, C., Perez, D., Bi-Karchin, J., Pellenz, C. D., Chase, S. E., Presti, M. F., Plante, E. L., Martin, C. E., Lovric, S., Yengo, C. M., Hildebrandt, F., & Krendel, M. (2022). Steroid-Resistant Nephrotic Syndrome-Associated <i>MYO1E</i> Mutations Have Differential Effects on Myosin 1e Localization, Dynamics, and Activity. J Am Soc Nephrol, 33(11), 1989-2007. https://doi.org/10.1681/asn.2021111505
Marolt, M., Zimmermann, H.-D., Žnidaršič, A., & Pucihar, A. (2020). Exploring social customer relationship management adoption in micro, small and medium-sized enterprises. Journal of theoretical and applied electronic commerce research, 15(2), 38-58.
Marx, D., Caillard, S., Olagne, J., Moulin, B., Hannedouche, T., Touchard, G., Dupuis, A., Gachet, C., Molitor, A., & Bahram, S. (2021). Atypical focal segmental glomerulosclerosis associated with a new PODXL nonsense variant. Molecular Genetics & Genomic Medicine, 9(5), e1658.
Mason, A. E., Sen, E. S., Bierzynska, A., Colby, E., Afzal, M., Dorval, G., Koziell, A. B., Williams, M., Boyer, O., Welsh, G. I., & Saleem, M. A. (2020). Response to First Course of Intensified Immunosuppression in Genetically Stratified Steroid Resistant Nephrotic Syndrome. Clin J Am Soc Nephrol, 15(7), 983-994. https://doi.org/10.2215/cjn.13371019
Miner, J. H., Li, C., Mudd, J. L., Go, G., & Sutherland, A. E. (2004). Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation.
Miner, J. H., & Sanes, J. R. (1996). Molecular and functional defects in kidneys of mice lacking collagen alpha 3 (IV): implications for Alport syndrome. The Journal of cell biology, 135(5), 1403-1413.
Mohamed, M., Tellez, J., Bergmann, C., Gale, D. P., Sayer, J. A., & Olinger, E. (2022). Pseudodominant Alport syndrome caused by pathogenic homozygous and compound heterozygous COL4A3 splicing variants. Ann Hum Genet, 86(3), 145-152. https://doi.org/10.1111/ahg.12454
Möller-Kerutt, A., Rodriguez-Gatica, J. E., Wacker, K., Bhatia, R., Siebrasse, J.-P., Boon, N., Van Marck, V., Boor, P., Kubitscheck, U., & Wijnholds, J. (2021). Crumbs2 is an essential slit diaphragm protein of the renal filtration barrier. Journal of the American Society of Nephrology, 32(5), 1053-1070.
Nandlal, L., Winkler, C. A., Bhimma, R., Cho, S., Nelson, G. W., Haripershad, S., & Naicker, T. (2022). Causal and putative pathogenic mutations identified in 39% of children with primary steroid-resistant nephrotic syndrome in South Africa. Eur J Pediatr, 181(10), 3595-3606. https://doi.org/10.1007/s00431-022-04581-x
Niitsuma, S., Kudo, H., Kikuchi, A., Hayashi, T., Kumakura, S., Kobayashi, S., Okuyama, Y., Kumagai, N., Niihori, T., Aoki, Y., So, T., Funayama, R., Nakayama, K., Shirota, M., Kondo, S., Kagami, S., Tsukaguchi, H., Iijima, K., Kure, S., & Ishii, N. (2020). Biallelic variants/mutations of IL1RAP in patients with steroid-sensitive nephrotic syndrome. Int Immunol, 32(4), 283-292. https://doi.org/10.1093/intimm/dxz081
Ning, L., Suleiman, H. Y., & Miner, J. H. (2021). Synaptopodin deficiency exacerbates kidney disease in a mouse model of Alport syndrome. Am J Physiol Renal Physiol, 321(1), F12-f25. https://doi.org/10.1152/ajprenal.00035.2021
Oegema, K., Savoian, M. S., Mitchison, T. J., & Field, C. M. (2000). Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis. The Journal of cell biology, 150(3), 539-552.
Park, J. H., Kwon, H. M., Nam, D. E., Kim, H. J., Nam, S. H., Kim, S. B., Choi, B. O., & Chung, K. W. (2023). INF2 mutations in patients with a broad phenotypic spectrum of Charcot-Marie-Tooth disease and focal segmental glomerulosclerosis. J Peripher Nerv Syst, 28(1), 108-118. https://doi.org/10.1111/jns.12530
Plevová, P., Gut, J., & Janda, J. (2017). Familial hematuria: A review. Medicina (Kaunas), 53(1), 1-10. https://doi.org/10.1016/j.medici.2017.01.002
Pollak, M. R., & Friedman, D. J. (2020). The Genetic Architecture of Kidney Disease. Clinical journal of the American Society of Nephrology : CJASN.
Preston, R., Stuart, H. M., & Lennon, R. (2019). Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Pediatr Nephrol, 34(2), 195-210. https://doi.org/10.1007/s00467-017-3838-6
Rong, L., Chen, L., Rao, J., Shen, Q., Li, G., Liu, J., Mao, J., Feng, C., Wang, X., Wang, S., Kuang, X., Huang, W., Ma, Q., Liu, X., Ling, C., Fu, R., Gao, X., Ding, G., Yang, H., . . . Xu, H. (2021). Genetic Variations and Clinical Features of NPHS1-Related Nephrotic Syndrome in Chinese Children: A Multicenter, Retrospective Study. Front Med (Lausanne), 8, 771227. https://doi.org/10.3389/fmed.2021.771227
Rossanti, R., Shono, A., Miura, K., Hattori, M., Yamamura, T., Nakanishi, K., Minamikawa, S., Fujimura, J., Horinouchi, T., & Nagano, C. (2019). Molecular assay for an intronic variant in NUP93 that causes steroid resistant nephrotic syndrome. Journal of Human Genetics, 64(7), 673-679.
Sadowski, C. E., Lovric, S., Ashraf, S., Pabst, W. L., Gee, H. Y., Kohl, S., Engelmann, S., Vega-Warner, V., Fang, H., & Halbritter, J. (2015). A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. Journal of the American Society of Nephrology, 26(6), 1279-1289.
Sasaki, H., & Sasaki, N. (2022). Tensin 2-deficient nephropathy: mechanosensitive nephropathy, genetic susceptibility. Exp Anim, 71(3), 252-263. https://doi.org/10.1538/expanim.22-0031
Savige, J., & Harraka, P. (2021). Pathogenic LAMA5 Variants and Kidney Disease. Kidney360, 2(12), 1876-1879. https://doi.org/10.34067/kid.0007312021
Sen, E. S., Dean, P., Yarram-Smith, L., Bierzynska, A., Woodward, G., Buxton, C., Dennis, G., Welsh, G. I., Williams, M., & Saleem, M. A. (2017). Clinical genetic testing using a custom-designed steroid-resistant nephrotic syndrome gene panel: analysis and recommendations. J Med Genet, 54(12), 795-804. https://doi.org/10.1136/jmedgenet-2017-104811
Shen, H., Bao, Y., Feng, C., Fu, H., & Mao, J. (2020). Overexpression of Myo1e promotes albumin endocytosis by mouse glomerular podocytes mediated by Dynamin. PeerJ, 8, e8599.
Siemens, T. A., Riella, M. C., Moraes, T. P., & Riella, C. V. (2018). APOL1 risk variants and kidney disease: what we know so far. J Bras Nefrol, 40(4), 388-402. https://doi.org/10.1590/2175-8239-jbn-2017-0033
Suh, J. H., Jarad, G., VanDeVoorde, R. G., & Miner, J. H. (2011). Forced expression of laminin β1 in podocytes prevents nephrotic syndrome in mice lacking laminin β2, a model for Pierson syndrome. Proceedings of the National Academy of Sciences, 108(37), 15348-15353.
Tanoue, A., Katayama, K., Ito, Y., Joh, K., Toda, M., Yasuma, T., D’Alessandro-Gabazza, C. N., Kawachi, H., Yan, K., & Ito, M. (2021). Podocyte-specific Crb2 knockout mice develop focal segmental glomerulosclerosis. Scientific Reports, 11(1), 20556.
Thomas, M. M., Ahmed, H. M., El-Dessouky, S. H., Ramadan, A., Botrous, O. E., & Abdel-Hamid, M. S. (2022). Spectrum of NPHS1 and NPHS2 variants in egyptian children with focal segmental glomerular sclerosis: identification of six novel variants and founder effect. Mol Genet Genomics, 297(3), 689-698. https://doi.org/10.1007/s00438-022-01877-3
Tseng, M.-H., Huang, S.-M., Konrad, M., Huang, J.-L., Shaw, S. W., Tian, Y.-C., Chueh, H.-Y., Fan, W.-L., Wu, T.-W., & Ding, J.-J. (2021). Effect of Hydrocortisone on Angiotensinogen (AGT) Mutation–Causing Autosomal Recessive Renal Tubular Dysgenesis. Cells, 10(4), 782.
Vázquez-Moreno, M., Locia-Morales, D., Peralta-Romero, J., Sharma, T., Meyre, D., Cruz, M., Flores-Alfaro, E., & Valladares-Salgado, A. (2021). AGT rs4762 is associated with diastolic blood pressure in Mexicans with diabetic nephropathy. Journal of Diabetes and its Complications, 35(3), 107826. https://doi.org/https://doi.org/10.1016/j.jdiacomp.2020.107826
Xia, L., Cao, Y., Guo, Y., Ba, G., Luo, Q., Shi, H., Feng, Y., & Yin, S. (2019). A Novel Heterozygous Mutation of the <i>COL4A3</i> Gene Causes a Peculiar Phenotype without Hematuria and Renal Function Impairment in a Chinese Family. Disease Markers, 2019, 8705989. https://doi.org/10.1155/2019/8705989
Zhao, W., Ma, X., Zhang, X., Luo, D., Zhang, J., Li, M., Ye, Z., & Peng, H. (2021). INF2 p.Arg214Cys mutation in a Chinese family with rapidly progressive renal failure and follow-up of renal transplantation: case report and literature review. BMC Nephrol, 22(1), 51. https://doi.org/10.1186/s12882-021-02254-9
網路資料
American College of Medical Genetics and Genomics. (n.d.). Home page. Retrieved from https://www.acmg.net/
Broad Institute. (n.d.). GnomAD. Retrieved from https://gnomad.broadinstitute.org/
Institute of Medical Genetics in Cardiff. (n.d.). Human Gene Mutation Database. Johns Hopkins University. (n.d.). Online Mendelian Inheritance in Man. Retrieved from http://www.omim.org/
National Center for Biotechnology Information. (n.d.). ClinVar. Retrieved from https://www.ncbi.nlm.nih.gov/clinvar/
Retrieved from http://www.hgmd.cf.ac.uk/
Taiwan Biobank. (n.d.). Retrieved from https://taiwanview.twbiobank.org.tw/
Variant Combination Pathogenicity Predictor (VarCoPP 2.0). (n.d.). Retrieved, from https://bio.tools/Variant_Combinaton_Pathogenicity_Predictor
1000 Genomes Project. (n.d.). Retrieved from http://www.1000genomes.org/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91802-
dc.description.abstract背景
原發性兒童腎病症候群(Idiopathic Nephrotic Syndrome, INS)是一種常見的兒童腎臟疾病,其典型特徵包含蛋白尿(proteinuria)、低白蛋白血症 (hypoalbuminemia)、水腫(edema)與與高血脂 (hyperlipidemia)。目前對於INS的病因學仍然不完全清楚,但基因變異被認為是導致此病的關鍵因素之一。

研究目的
本研究旨在分析20例INS患兒的基因變異分析與判讀,通過次世代基因定序探索INS的基因變異特徵,以及這些變異對疾病發生、發展和治療反應的影響。

方法
研究對象為20例INS患兒,使用全外顯子定序分析對其基因進行了深入分析。並探討了AGT、APOL1、ANLN、CAPN12、COL4A3、COL4A4、CRB2、IL1RAP、INF2、LAMA5、MYO1E、NPHS1、NUP93、PODXL、SMARCAL1、SYNPO、TNS2 WDR73和等基因的變異與INS關連及臨床表徵之相關性。

結果
在進行20例INS患兒的基因變異分析中,本研究發現18位患兒帶有疾病相關的潛在變異,並確認四個顯著相關基因,其中單基因變異的檢出率達到20%。臨床反應觀察顯示,65%(13/20)的患兒對類固醇治療反應良好。本研究觀察到LAMA5是20例患兒中變異數目最多的基因(共四例),第二為CAPN12(共兩例)、NUP93(共兩例)、SYNPO(共兩例)。6位(30%)患兒帶有雙基因變異。攜帶LAMA5和CAPN12雙基因變異的患兒,表現出較早的發病年齡和較輕微的臨床症狀,且對藥物治療有更佳反應。然而,基於VarCoPP評估,這些雙重基因變異的致病性分數未顯示統計上顯著意義(99%信賴區間要求 VarCoPP 分數至少為0.647(hg38)),顯示其致病機轉尚需進一步研究。
在SRNS患者群體中,根據基因變異與臨床表現的關聯性,將變異分為三類(category1:確定有文獻報導過為致病點位,或已經很明確是疾病相關致病基因。category2:目前文獻未報導過,但不能排除和病人臨床症狀相關的罕見變異。category3:和臨床症狀相關的已知易感性變異或危險因子。),分別占總變異數的25%、62.5%及12.5%。相對的,在SSNS患者群體中,這三類變異則分別占總變異數的17.65%、76.47%及5.88%。此外,NUP93與SYNPO基因變異與SRNS的致病途徑相關。SYNPO基因變異的案例進一步凸顯了其在維持腎小球足細胞功能和結構的重要性,近期文獻顯示與糖尿病腎病變相關度高。
最後本研究也探討LAMA5與異位性皮膚炎(Atopic dermatitis, AD)的相關性時,發現帶有LAMA5變異的患者出現AD症狀,這可能顯示LAMA5在皮膚組織基底膜結構和功能中的關鍵作用。LAMA5變異可能影響皮膚屏障的完整性,加劇AD症狀,並潛在地與氣喘及其他過敏性疾病相關。此可能可以解釋INS病童常會合併有異位性體質的情況。

結論
本研究透過對20例原發性兒童腎病症候群(Idiopathic Nephrotic Syndrome, INS)患兒的基因變異分析,深入了解INS的基因變異特徵及其對疾病發生、發展和治療反應的影響。結果顯示,大部分患兒帶有至少一種與疾病相關的潛在變異,其中尤以LAMA5、CAPN12、NUP93和SYNPO等基因的變異較為常見。 此外,還發現INS患兒中存在不同類型的基因變異,這些變異根據其與疾病的相關性被分為三大類,分別是確定致病之單基因基因、雙基因以及已知易感性變異或危險因子。這一分類有助於更精確地理解INS的遺傳異質性,並為個體化治療提供參考。
值得注意的是,本研究發現攜帶LAMA5和CAPN12雙基因變異的患兒表現出較早的發病年齡和較輕微的臨床症狀,且對藥物治療有較好反應。然而,這些雙重基因變異的致病性分數在統計上並未達到顯著意義,因此其致病機轉仍需進一步研究。本研究還觀察到LAMA5基因變異與異位性皮膚炎(Atopic dermatitis, AD)的相關性,顯示LAMA5可能在皮膚組織的基底膜結構和功能中發揮重要作用。這一發現可理解INS病童常見的異位性體質,也為進一步探討腎病與皮膚疾病之間的相互作用有新的研究方向。
zh_TW
dc.description.abstractBackground
Idiopathic Nephrotic Syndrome (INS) is a prevalent kidney disease, characterized by proteinuria, hypoalbuminemia, generalized edema and hyperlipidemia. The etiology of INS is still not completely understood; however, genetic variations is considered to be a key factor in the onset of the disease.

Research Objective
This study aims to analyze the genomes of 20 children with INS using next-generation sequencing to explore the genetic variation characteristics of INS and the impact of these variations on the onset, progression, and treatment response of the disease.

Methods
The study involved 20 children with INS, for whom a deep analysis of their targeted genes was conducted using whole exome sequencing. The focus was on the variations of genes such as COL4A3, WDR73, MYO1E, APOL1, INF2, SMARCAL1, CRB2, PODXL, AGT, ADAMTS13, IL1RAP, NPHS1, ANLN, CAPN12, SYNPO, NUP93, COL4A4 and LAMA5.

Results
In the genetic variation analysis of 20 children with INS, this study found that 18 of the children exhibited potential disease-related variations, and confirmed four significantly associated genes, with a detection rate of single-gene variations reaching 20%.Clinical response observations revealed that the vast majority patients responded well to steroid treatment. The study observed that LAMA5 had the highest number of variations among the 20 children (four cases), followed by CAPN12 (two cases), NUP93 (two cases), and SYNPO (two cases)。We also identified 6 children (30%) have digenic inheritance. Children carrying dual gene variations in LAMA5 and CAPN12 showed earlier onset of the disease and milder clinical symptoms, and had better response to drug treatment. However, based on VarCoPP assessment, the pathogenicity scores of these dual gene variations did not show statistical significance(To achieve a 99% confidence interval, the VarCoPP score must be at least 0.647(hg38。),indicating that further research is needed on their pathogenic mechanisms.

In the SRNS patient population, genetic variations are categorized into three groups based on their association with clinical manifestations. These groups include: category2: Variants not reported in the literature cannot be ruled out as rare variants related to the patient''s clinical symptoms. Category 3: Known susceptibility variants or risk factors associated with clinical symptoms. The factors account for 25%,62.5%, and 12.5% of the total variations, respectively. In contrast, within the SSNS patient population, these three types of variations account for 17.65%,76.47%,and 5.88% of the total variations, respectively.
Additionally, variations in the NUP93 and SYNPO genes are associated with the pathogenic pathway of SRNS. The case of SYNPO gene variations further highlights its importance in maintaining the function and structure of glomerular podocytes. Recent literature shows a strong correlation with diabetic nephropathy. Finally, when exploring the relationship between LAMA5 and atopic dermatitis (AD), this study found that patients with LAMA5 variations exhibited symptoms of AD, possibly indicating a key role of LAMA5 in the structure and function of the skin basement membrane. LAMA5 variations may affect the integrity of the skin barrier, exacerbate AD symptoms, and potentially be associated with asthma and other allergic diseases. And this might explain most of the INS patients had atopy characteristics.

Conclusion
This study conducted genetic variation analysis on 20 cases of idiopathic nephrotic syndrome (INS) in children to gain a deeper understanding of the genetic characteristics of INS and their impact on the occurrence, development, and treatment response of the disease. The results showed that the majority of the patients carried at least one potential variation associated with the disease, with variations in genes such as LAMA5, CAPN12, NUP93, and SYNPO being particularly significant.
Furthermore, it was found that there are different types of genetic variations in INS patients, which were classified into three categories based on their relevance to the disease: definitive pathogenic monogenic condition, potentially digenic condition, and known susceptibility variations or risk factors. This classification helps to improve the understanding of the genetic heterogeneity of INS and serves as a reference for personalized treatment. It is worth noting that the study revealed that patients with dual gene variations in LAMA5 and CAPN12 exhibited an earlier onset age and milder clinical symptoms, as well as a better response to drug treatment. However, the pathogenicity scores of these dual gene variations did not reach statistical significance. Therefore, further research is needed to understand their pathogenic mechanisms. The study also examined the relationship between variations in the LAMA5 gene and atopic dermatitis (AD), suggesting that LAMA5 may have a significant impact on the structure and function of the basement membrane in skin tissue. This finding helps us understand the common atopic constitution in children with INS and opens up new research directions for further exploring the interaction between kidney disease and skin disorders.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:47:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:47:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 vi
第一章 緒論 1
第二章 文獻探討 3
2.1原發性類固醇抗藥型腎病症候群的遺傳因素 3
2.2目前已知與腎病症候群相關的基因介紹 3
2.3原發性腎病症候群(Idiopathic Nephrotic Syndrome,INS)在基因檢測判讀上的挑戰 4
第三章 材料與方法 6
3.1全外顯子定序(Whole Exome Sequencing, WES) 6
3.2基因變異判讀與分析 7
3.3統計分析 8
3.4 KEGG(Kyoto Encyclopedia of Genes and Genomes) 9
3.5 Variant Combination Pathogenicity Predictor (VarCoPP) 9
第四章 研究結果 11
4.1次世代定序結果統計與分析 11
4.2基因檢視 11
4.2.1 COL4A3, collagen type IV alpha 3 chain 12
4.2.2 INF2, inverted formin 2 13
4.2.3 NPHS1, NPHS1 adhesion molecule, nephrin 14
4.2.4 APOL1, apolipoprotein L1 14
4.2.5 SYNPO, synaptopodin 15
4.2.6 COL4A4, collagen type IV alpha 4 chain 16
4.2.7 CAPN12, calpain 12 17
4.2.8 LAMA5, Laminin, alpha 5 17
4.2.9 CRB2, crumbs cell polarity complex component 2 18
4.2.10 NUP93, nucleoporin 93 19
4.2.11 SMARCAL1, SWI/SNF related 20
4.2.12 MYO1E, myosin 1E 20
4.2.13 IL1RAP, interleukin 1 receptor accessory protein 21
4.2.14 WDR73, WD repeat domain 73 21
4.2.15 AGT, angiotensinogen 22
4.2.16 ANLN, anillin, actin binding protein 23
4.2.17 PODXL,podocalyxin 23
4.2.18 TNS2, tensin-2 24
第五章 討論 25
5.1 NUP93及SYNPO在INS角色 25
5.2 LAMA5角色 25
5.2.1 KEGG資料庫檢視LAMA5基因途徑 27
5.2.2 Atopic dermatitis與LAMA5的相關性 29
5.2.3攜帶LAMA5與CAPN12變異之案例分析 30
5.2.4 LAMA5和CAPN12基因突變對INS患兒健康的影響 32
5.3研究限制 33
5.4未來展望 33
5.5結論 34
參考文獻 36

 
圖 次
圖1與INS有關的足細胞基因突變之示意圖:INS相關的各種蛋白質的相互作用和定位。上圖每個紅框代表腎細胞結構內的不同細胞區域與基因作用(Ha, T. S.,2017)。 43
圖2與SRNS相關的基因突變根據腎小球濾過屏障內的位置和功能進行分組(Preston, R., Stuart,H. M., & Lennon, R., 2019)。 44
圖3收案流程 45
圖4本研究之基因報告結果統計 46
圖5本研究之基因類別統計 47
圖6本研究之基因變異臨床相關度分類圖 48

 
表 次
表 1本研究之SRNS患兒的基因型-表型清單 49
表 2本研究之SSNS患兒的基因型-表型清單 51
表 3個案臨床表徵統計表 54
-
dc.language.isozh_TW-
dc.title原發性兒童腎病症候群之基因探討: 從臨床觀察到次世代基因定序研究zh_TW
dc.titleGenetic Investigation of Idiopathic Nephrotic Syndrome in Children: From Clinical Observations to Next-Generation Sequencing Studiesen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.coadvisor蔡宜蓉zh_TW
dc.contributor.coadvisorI-Jung Tsaien
dc.contributor.oralexamcommittee陳怡婷zh_TW
dc.contributor.oralexamcommitteeYi-Ting Chenen
dc.subject.keyword原發性兒童腎病症候群,致病性變異點位,次世代基因定序技術,協同作用,治療效果,發病機制,zh_TW
dc.subject.keywordchildhood nephrotic syndrome,pathogenic variants,next-generation sequencing technology,synergistic effect,treatment efficacy,pathogenesis,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202400189-
dc.rights.note未授權-
dc.date.accepted2024-01-24-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  目前未授權公開取用
751.96 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved