Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91795
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor隋中興zh_TW
dc.contributor.advisorChung-Hsiung Suien
dc.contributor.author黃冠慈zh_TW
dc.contributor.authorKuan-Tzu Huangen
dc.date.accessioned2024-02-22T16:45:42Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-02-05-
dc.identifier.citationAnnamalai, H., Hafner, J., Sooraj, K., & Pillai, P. (2013). Global warming shifts the monsoon circulation, drying South Asia. Journal of Climate, 26(9), 2701-2718. doi:10.1175/JCLI-D-12-00208.1
Badarinath, K., Kharol, S. K., Kaskaoutis, D., Sharma, A. R., Ramaswamy, V., & Kambezidis, H. (2010). Long-range transport of dust aerosols over the Arabian Sea and Indian region—A case study using satellite data and ground-based measurements. Global and Planetary Change, 72(3), 164-181.
Bollasina, M., Nigam, S., & Lau, K. (2008). Absorbing aerosols and summer monsoon evolution over South Asia: An observational portrayal. Journal of Climate, 21(13), 3221-3239. doi:10.1175/2007JCLI2094.1
Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2011). Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science, 334(6055), 502-505. doi:10.1126/science.1204994
Bollasina, M. A., Ming, Y., & Ramaswamy, V. (2013). Earlier onset of the Indian monsoon in the late twentieth century: The role of anthropogenic aerosols. Geophysical Research Letters, 40(14), 3715-3720. doi:10.1002/grl.50719
Bretherton, C. S., & Park, S. (2009). A new moist turbulence parameterization in the Community Atmosphere Model. Journal of Climate, 22(12), 3422-3448. doi:10.1175/2008JCLI2556.1
Chang, C.-P., Wang, Z., McBride, J., & Liu, C.-H. (2005). Annual cycle of Southeast Asia—Maritime Continent rainfall and the asymmetric monsoon transition. Journal of Climate, 18(2), 287-301. doi:10.1175/JCLI-3257.1
Chen, W.-T., Huang, K.-T., Lo, M.-H., & LinHo, L. (2018). Post-Monsoon Season Precipitation Reduction over South Asia: Impacts of Anthropogenic Aerosols and Irrigation. Atmosphere, 9(8). doi:10.3390/atmos9080311
Cheng, Q., & Zhou, T. (2014). Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. Journal of Climate, 27(3), 1210-1222. doi:10.1175/JCLI-D-13-00235.1
Chung, C. E., & Ramanathan, V. (2006). Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. Journal of Climate, 19(10), 2036-2045. doi:10.1175/JCLI3820.1
Cowan, T., & Cai, W. (2011). The impact of Asian and non‐Asian anthropogenic aerosols on 20th century Asian summer monsoon. Geophysical Research Letters, 38(11). doi:10.1029/2011GL047268
Ding, Y., Sun, Y., Wang, Z., Zhu, Y., & Song, Y. (2009). Inter‐decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(13), 1926-1944. doi:10.1002/joc.1759
Ding, Y., Wang, Z., & Sun, Y. (2008). Inter‐decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology: A Journal of the Royal Meteorological Society, 28(9), 1139-1161. doi:10.1002/joc.1615
Ganguly, D., Rasch, P. J., Wang, H., & Yoon, J. H. (2012). Climate response of the South Asian monsoon system to anthropogenic aerosols. Journal of Geophysical Research: Atmospheres, 117(D13). doi:10.1029/2012JD017508
Goyal, M. K. (2014). Statistical analysis of long term trends of rainfall during 1901–2002 at Assam, India. Water resources management, 28(6), 1501-1515. doi:10.1007/s11269-014-0529-y
Guo, J., Deng, M., Lee, S. S., Wang, F., Li, Z., Zhai, P., Liu, H., Lv, W., Yao, W., & Li, X. (2016). Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. Journal of Geophysical Research: Atmospheres, 121(11), 6472-6488. doi:10.1002/2015JD023257
Huang, J., Wang, T., Wang, W., Li, Z., & Yan, H. (2014). Climate effects of dust aerosols over East Asian arid and semiarid regions. Journal of Geophysical Research: Atmospheres, 119(19), 11,398-311,416. doi:10.1002/2014JD021796
Hung, C.-w., Liu, X., & Yanai, M. (2004). Symmetry and asymmetry of the Asian and Australian summer monsoons. Journal of Climate, 17(12), 2413-2426. doi: 10.1175/1520-0442(2004)017<2413:SAAOTA>2.0.CO;2
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113(D13). doi:10.1029/2008JD009944
Jiang, J., & Zhou, T. (2019). Global monsoon responses to decadal sea surface temperature variations during the twentieth century: Evidence from AGCM simulations. Journal of Climate, 32(22), 7675-7695. doi:10.1175/JCLI-D-18-0890.1
Krishnan, R., Sabin, T., Ayantika, D., Kitoh, A., Sugi, M., Murakami, H., Turner, A., Slingo, J., & Rajendran, K. (2013). Will the South Asian monsoon overturning circulation stabilize any further? Climate Dynamics, 40(1-2), 187-211. doi:10.1007/s00382-012-1317-0
Krishnan, R., Sabin, T., Vellore, R., Mujumdar, M., Sanjay, J., Goswami, B., Hourdin, F., Dufresne, J.-L., & Terray, P. (2016). Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Climate Dynamics, 47(3), 1007-1027. doi:10.1007/s00382-015-2886-5
Krishnan, R., & Sugi, M. (2003). Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dynamics, 21(3-4), 233-242. doi:10.1007/s00382-003-03
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., & Owen, B. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 10(15), 7017-7039. doi:10.5194/acp-10-7017-2010
Lau, K.-M., Ramanathan, V., Wu, G.-X., Li, Z., Tsay, S., Hsu, C., Sikka, R., Holben, B., Lu, D., & Tartari, G. (2008). The Joint Aerosol–Monsoon Experiment: A new challenge for monsoon climate research. Bulletin of the American Meteorological Society, 89(3), 369-384. doi:10.1175/BAMS-89-3-369
Lau, K. M., & Kim, K. M. (2006). Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33(21). doi:10.1029/2006gl027546
Lau, K. M., Kim, M. K., & Kim, K. M. (2006). Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Climate Dynamics, 26(7-8), 855-864. doi:10.1007/s00382-006-0114-z
Lau, K.-M., & Chan, P. H. (1983). Short-term climate variability and atmospheric teleconnections from satellite-observed outgoing longwave radiation. Part I: Simultaneous relationships. Journal of the atmospheric sciences, 40(12), 2735-2750. doi:10.1175/1520-0469(1983)040<2735:STCVAA>2.0.CO;2
Lau, W. K. M., Kim, K. M., Shi, J. J., Matsui, T., Chin, M., Tan, Q., Peters-Lidard, C., & Tao, W. K. (2017). Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. Clim Dyn, 49, 1945-1960. doi:10.1007/s00382-016-3430-y
Lau, W. K. M., Kim, K.-M., Chern, J.-D., Tao, W. K., & Leung, L. R. (2019). Structural changes and variability of the ITCZ induced by radiation–cloud–convection–circulation interactions: inferences from the Goddard Multi-scale Modeling Framework (GMMF) experiments. Climate Dynamics, 54(1-2), 211-229. doi:10.1007/s00382-019-05000-y
Lawrence, D. M., et al. (2011), Parameterization improvements and functional and structural advances in version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3, M03001, doi:10.1029/2011MS000045.
Lee, J.-Y., & Wang, B. (2014). Future change of global monsoon in the CMIP5. Climate Dynamics, 42(1-2), 101-119. doi:10.1007/s00382-012-1564-0
Li, Z. (2004). Aerosol and Climate: A Perspective from East Asia, Observation, Theory and Modeling of Atmospheric Variability. World Sci., Hackensack, NJ, 501-525.
Li, Z., Chen, H., Cribb, M., Dickerson, R., Holben, B., Li, C., Lu, D., Luo, Y., Maring, H., & Shi, G. (2007a). Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EAST‐AIRE). Journal of Geophysical Research: Atmospheres, 112(D22). doi:10.1029/2007JD008853
Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., Zhang, F., Yang, X., Zhao, C., Takemura, T., Wang, K., Xia, X., Yin, Y., Zhang, H., Guo, J., Zhai, P. M., Sugimoto, N., Babu, S. S., & Brasseur, G. P. (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929. doi:10.1002/2015rg000500
Li, Z., Li, C., Chen, H., Tsay, S. C., Holben, B., Huang, J., Li, B., Maring, H., Qian, Y., & Shi, G. (2011a). East Asian studies of tropospheric aerosols and their impact on regional climate (EAST‐AIRC): An overview. Journal of Geophysical Research: Atmospheres, 116(D7). doi:10.1029/2010JD015257
Li, Z., Niu, F., Fan, J., Liu, Y., Rosenfeld, D., & Ding, Y. (2011b). Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature geoscience, 4(12), 888-894. doi:10.1038/NGEO
LinHo, & Wang, B. (2002). The time–space structure of the Asian–Pacific summer monsoon: A fast annual cycle view. Journal of Climate, 15(15), 2001-2019. doi:10.1175/1520-0442(2002)015<2001:TTSSOT>2.0.CO;2
Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., & Vitt, F. (2012). Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5(3), 709-739. doi:10.5194/gmd-5-709-2012
Liu, Y., Sun, J., & Yang, B. (2009). The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons. Tellus B: Chemical and Physical Meteorology, 61(4), 642-656. doi:10.1111/j.1600-0889.2009.00427.x
Meehl, G. A., Arblaster, J. M., & Collins, W. D. (2008). Effects of black carbon aerosols on the Indian monsoon. Journal of Climate, 21(12), 2869-2882. doi:10.1175/2007JCLI1777.1
Menon, S., Hansen, J., Nazarenko, L., & Luo, Y. (2002). Climate effects of black carbon aerosols in China and India. Science, 297(5590), 2250-2253. doi:10.1126/science.1075159
Morrison, H., & Gettelman, A. (2008). A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate, 21(15), 3642-3659. doi:10.1175/2008JCLI2105.1
Nakajima, T., Yoon, S. C., Ramanathan, V., Shi, G. Y., Takemura, T., Higurashi, A., Takamura, T., Aoki, K., Sohn, B. J., & Kim, S. W. (2007). Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in east Asia. Journal of Geophysical Research: Atmospheres, 112(D24). doi:10.1029/2007JD009009
Neale, R. B., Chen, C.-C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., & Lamarque, J.-F. (2010). Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+ STR, 1(1), 1-12.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thorn, P. E. (2010), Technical description of version 4.0 of theCommunity Land Model (CLM), NCAR Tech. Note NCAR/TN‐478+STR, 257 pp., Natl. Cent. for Atmos. Res., Boulder, Colo. doi:10.5065/D6FB50WZ
Park, S. (2010). Revised stratiform macrophysics in the Community Atmosphere Model. J. Clim.
Park, S., & Bretherton, C. S. (2009). The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. Journal of Climate, 22(12), 3449-3469. doi:10.1175/2008JCLI2557.1
Praveen, B., Talukdar, S., Mahato, S., Mondal, J., Sharma, P., Islam, A. R. M. T., & Rahman, A. (2020). Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Scientific reports, 10(1), 1-21. doi:10.1038/s41598-020-67228-7
Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature geoscience, 1(4), 221-227.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W. M., Fu, Q., Sikka, D. R., & Wild, M. (2005). Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences, 102(15), 5326-5333. doi:10.1073/pnas.0500656102
Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A., Althausen, D., Anderson, J., Andreae, M., Cantrell, W., Cass, G., & Chung, C. (2001b). Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo‐Asian haze. Journal of Geophysical Research: Atmospheres, 106(D22), 28371-28398. doi:10.1029/2001JD900133
Rosenfeld, D. (2000). Suppression of rain and snow by urban and industrial air pollution. Science, 287(5459), 1793-1796. doi:10.1126/science.287.5459.1793
Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K., & Goswami, B. (2015). Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature communications, 6(1), 1-10. doi:10.1038/ncomms8423
Sabeerali, C., & Ajayamohan, R. (2017). On the shortening of Indian summer monsoon season in a warming scenario. Climate Dynamics, 50(5), 1609-1624. doi:10.1007/s00382-017-37
Salzmann, M., & Cherian, R. (2015). On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century. Journal of Geophysical Research: Atmospheres, 120(18), 9103-9118. doi:10.1002/2015JD023313
Salzmann, M., Weser, H., & Cherian, R. (2014). Robust response of Asian summer monsoon to anthropogenic aerosols in CMIP5 models. Journal of Geophysical Research: Atmospheres, 119(19), 11,321-311,337. doi:10.1002/2014JD021783
Satheesh, S., & Srinivasan, J. (2002). Enhanced aerosol loading over Arabian Sea during the pre‐monsoon season: Natural or anthropogenic? Geophysical Research Letters, 29(18), 21-21-21-24. doi:10.1029/2002G L0156 87
Shi, H., Wang, B., Cook, E. R., Liu, J., & Liu, F. (2018). Asian summer precipitation over the past 544 years reconstructed by merging tree rings and historical documentary records. Journal of Climate, 31(19), 7845-7861. doi:10.1175/JCLI-D-18-0003.1
Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press.
Wang, B., Biasutti, M., Byrne, M. P., Castro, C., Chang, C.-P., Cook, K., Fu, R., Grimm, A. M., Ha, K.-J., Hendon, H., Kitoh, A., Krishnan, R., Lee, J.-Y., Li, J., Liu, J., Moise, A., Pascale, S., Roxy, M. K., Seth, A., Sui, C.-H., Turner, A., Yang, S., Yun, K.-S., Zhang, L., & Zhou, T. (2021). Monsoons Climate Change Assessment. Bulletin of the American Meteorological Society, 102(1), E1-E19. doi:10.1175/bams-d-19-0335.1.
Wang, B., Huang, F., Wu, Z., Yang, J., Fu, X., & Kikuchi, K. (2009). Multi-scale climate variability of the South China Sea monsoon: A review. Dynamics of Atmospheres and Oceans, 47(1-3), 15-37. doi:10.1016/j.dynatmoce.2008.09.004
Wang, B., Wu, R., & Lau, K. (2001). Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. Journal of Climate, 14(20), 4073-4090. doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
Wang, C., Kim, D., Ekman, A. M., Barth, M. C., & Rasch, P. J. (2009). Impact of anthropogenic aerosols on Indian summer monsoon. Geophysical Research Letters, 36(21). doi:10.1029/2009GL040114
Wang, S.-Y., Yoon, J.-H., Gillies, R. R., & Cho, C. (2013). What caused the winter drought in western Nepal during recent years? Journal of Climate, 26(21), 8241-8256. doi: 10.1175/JCLI-D-12-00800.1
Wei, L., Lu, Z., Wang, Y., Liu, X., Wang, W., Wu, C., Zhao, X., Rahimi, S., Xia, W., & Jiang, Y. (2022). Black carbon-climate interactions regulate dust burdens over India revealed during COVID-19. Nature communications, 13(1), 1839.
Wu, M., Liu, X., Yu, H., Wang, H., Shi, Y., Yang, K., Darmenov, A., Wu, C., Wang, Z., & Luo, T. (2020). Understanding processes that control dust spatial distributions with global climate models and satellite observations. Atmospheric Chemistry and Physics, 20(22), 13835-13855.
Yang, Y., Ren, L., Wu, M., Wang, H., Song, F., Leung, L. R., Hao, X., Li, J., Chen, L., & Li, H. (2022). Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China. Nature communications, 13(1), 959.
Zhang, G. J., and N. A. McFarlane, Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model, Atmosphere-Ocean, 33, 407–446, 1995.
Zhou, T., Yu, R., Li, H., & Wang, B. (2008). Ocean forcing to changes in global monsoon precipitation over the recent half-century. Journal of Climate, 21(15), 3833-3852. doi:10.1175/2008JCLI2067.1
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91795-
dc.description.abstract本研究使用國家大氣研究中心(NCAR)社區地球系統模式來研究人為氣膠對印度夏季季風的影響。研究中設計兩組實驗皆以氣候年循環海溫為模式下邊界條件進行30年模擬,實驗組(AERO)以2000年氣候平均人為氣膠排放資料驅動印度地區人為氣膠排放,控制組(CTL)則以1850年氣候平均人為氣膠排放資料驅動,實驗中僅考慮氣膠直接效應。實驗結果顯示在AERO中的印度夏季季風集合平均肇始日與CTL相似,各年的肇始日機率分佈相比CTL分佈更廣。與CTL相比,AERO中印度夏季季風於初春肇始期間環流轉變較急遽,而於初秋減退期間轉變較平緩。印度夏季季風肇始前,氣膠驅使的環流變化特徵於東北印度半島上空顯示上升運動以及阿拉伯海上空反旋式環流加強。阿拉伯海上空增強之反旋式環流導致季風肇始前增加16%自然源沙塵自中亞地區傳送至北印度地區。季風肇始前境外沙塵沿反氣旋環流由境外移入印度半島加上人為排放氣膠在青藏高原南側累積的輻射加熱(elevated heat pump)效應與半島上的氣膠黯化(aerosol dimming)效應影響區域氣候:高原南側氣流受輻射加熱上升;印度半島上氣膠吸收輻射增溫大氣冷卻地面,使得大氣受到氣膠輻射加熱導致海陸溫差加大產生氣旋式上升運動。前述氣膠-輻射-環流的交互作用越強則印度夏季季風肇始日期越早發生。在夏季季風期間,氣膠因降雨洗除作用及季節環流改變(南風分量增加)而使濃度降低且向北延伸,導致高原輻射加熱效應局限於西北印度地區且半島上氣膠黯淡效應減弱季風氣旋環流與降水(氣膠增加低層大氣穩定度、中高層大氣氣膠輻射改變海陸溫差效應不明顯)。夏季季風消退期間類似的氣膠黯淡效應持續作用,使得印度半島東側跟孟加拉灣產生南(0°-10°N)-北(10°-25°N)氣旋-反氣旋距平,此情況與印度夏季季風於九月消退時之環流特徵相似有利於季風消退提前。zh_TW
dc.description.abstractThe NCAR Community Earth System Model is used to study the influences of anthropogenic aerosols on the Indian summer monsoon (ISM). We perform two sets of 30-year simulations subject to the prescribed perpetual SST annual cycle. One is triggered by the year 2000 climatology anthropogenic aerosol emissions data over the Indian Peninsula (referred to as AERO), and the other one is by the year 1850 (referred to as CTL). Only aerosol direct effects are included in the experiments. In our results, the transition of ISM in AERO relative to the CTL exhibits a similar ensemble-mean onset date with a larger spread, and more abrupt onset in late spring, and an earlier but more gradual withdrawal in early fall. The aerosols-induced circulation changes feature an upward motion over the northeastern Indian Peninsula and strengthened anticyclonic circulation over the Arabia Sea in the pre-monsoon season, and a northward shift of monsoon flow in the developed monsoon period along with strengthened local meridional circulation over northern India. The strengthened anticyclonic circulation over Arabia Sea caused a 16% increase in natural dust transport from the Middle East in the pre-monsoon season. In the pre-monsoon period, dust transported along anticyclonic circulation into India and the accumulation of anthropogenic aerosols influence regional climate by elevated heat pump over the Tibet and the aerosol dimming effect over India Peninsula. The elevated aerosol heating induces ascending motion over the southern Tibetan area, while aerosol dimming-induced surface cooling and atmospheric warming leads to an increased land-sea temperature difference and cyclonic ascent over India. The stronger aerosols-radiation-circulation interaction corresponds to earlier onset of the Indian Summer Monsoon. During the developed monsoon period, aerosol concentrations decrease due to rainfall washout effects and shift northward by southwesterly monsoon flow. As a result, the radiative heating effect on the plateau is limited to the northwestern region of India, and the dimming effect over the peninsula weakens cyclonic monsoon circulation and precipitation due to the increased atmospheric stability and insignificant land-sea temperature difference. During the monsoon withdrawal, similar aerosol dimming effect results in a dipole pattern of south (0°-10°N) to north (10°-25°N) cyclonic-anticyclonic anomalies in Eastern Indian Peninsula and the Bay of Bengal. The above aerosol induced circulation change resembles the tendency change of flow in September, favoring early monsoon withdrawal.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:45:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:45:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents國立台灣大學博士學位論文口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
Chapter 2 Model and experiment designs 8
2.1 Model 8
2.2 Experiment designs 9
Chapter 3 Simulated and observed climate of ISM 12
3.1 Climatological evolution over India Peninsula 12
3.2 Evolution of ISM 13
Chapter 4 Effect of anthropogenic aerosols on Indian Summer Monsoon 19
4.1 Effect of anthropogenic aerosols on pre-monsoon climate 19
4.2 Effect of anthropogenic aerosols on developed monsoon climate 23
4.3 Moisture budget analysis in the developed monsoon period 26
4.4 Effect of anthropogenic aerosols on monsoon withdrawal and post-monsoon climate 28
Chapter 5 Circulation changed influence on natural dust distribution in monsoon evolution 31
Chapter 6 Discussion 34
6.1 Comparison of the EHP and dimming effect over India 34
6.2 The larger variability of onset date in AERO 36
Chapter 7 Summary 38
Reference 42
-
dc.language.isoen-
dc.title人為氣膠對印度夏季季風自肇始前至消退之影響zh_TW
dc.titleEffects of anthropogenic aerosols on the Indian Summer Monsoon from pre-onset to withdrawalen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee羅敏輝;陳正平;陳維婷;盧孟明;張瓊文;劉清煌zh_TW
dc.contributor.oralexamcommitteeMin-Hui Lo;Jen-Ping Chen;Wei-Ting Chen;Mong-Ming Lu;Chiung-Wen Chang;Ching-Hwang Liuen
dc.subject.keyword印度區域氣候變化,印度夏季季風,人為氣膠,氣膠輻射驅力,自然源氣膠分布,zh_TW
dc.subject.keywordIndian local climate change,Indian Summer Monsoon,anthropogenic aerosols,aerosol radiative forcing,natural dust distribution,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202400504-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-02-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf5.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved