請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91794完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭智馨 | zh_TW |
| dc.contributor.advisor | Chih-Hsin Cheng | en |
| dc.contributor.author | 魏子穎 | zh_TW |
| dc.contributor.author | Zi-Ying Wei | en |
| dc.date.accessioned | 2024-02-22T16:45:26Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-02 | - |
| dc.identifier.citation | 中央氣象署 (2023) 觀測資料查詢系統,CWB Observation Data Inquire System。
金絜之 (2008) 南仁山低地雨林凋落物之時空變化研究。屏東科技大學森林學系研究所碩士論文。 林苡涵 (2017) 臺灣農地廢耕造林對土壤有機碳儲存量及形態劃分的影響。台灣大學森林環境暨資源學研究所碩士論文。 林國銓、杜清澤、黃菊美 (2009) 台東地區相思樹與楓香兩人工林碳累積量。林業研究季刊,31,55-68。 林國銓、杜清澤、黃菊美 (2010) 光蠟樹人工林碳貯存量和吸存量之估算。中華林學季刊,43,261-276。 陳財輝、洪富文 (2000) 苗栗海岸沙丘木麻黃人工林枯枝落葉及其養分之季節性變動。中華林學季刊 33,37-52。 張朝婷 (2005) 臺灣地區不同海拔之森林土壤碳及養分庫存的研究。台灣大學森林環境暨資源學研究所碩士論文。 蕭怡茹 (2005) 烏來地區次生林、柳杉林、桂竹林三種林分枯落物量之動態變化。台灣大學森林環境暨資源學研究所碩士論文。 國立中興大學土壤學系 (1969) 彰化縣土壤調查報告。台中。 國立中興大學土壤學系 (1971) 嘉義縣土壤調查報告。台中。 Abegaz, A., Tamene, L., Abera, W., Yaekob, T., Hailu, H., Nyawira, S. S., Da Silva, M., & Sommer, R. (2020). Soil organic carbon dynamics along chrono-sequence land-use systems in the highlands of Ethiopia. Agriculture, Ecosystems & Environment, 300, 106997. Almajmaie, A., Hardie, M., Doyle, R., Birch, C., & Acuna, T. (2017). Influence of soil properties on the aggregate stability of cultivated sandy clay loams. Journal of Soils and Sediments, 17, 800-809. Angers, D. A., Bullock, M. S., & Mehuys, G. R. (1993). Aggregate stability to water. In, Carter, M. R. (Eds.), Soil sampling and methods of analysis, pp. 651–658., Lewis Publishers, Boca Raton. Angers, D. A., Recous, S., & Aita, C. (1997). Fate of carbon and nitrogen in water‐stable aggregates during decomposition of 13C15N‐labelled wheat straw in situ. European Journal of Soil Science, 48, 295-300. Balesdent, J., & Mariotti, A. (1996). Measurement of soil organic matter turnover using 13C natural abundance. In, T. W. Boutton and S. Yamasaki (Eds.), Mass Spectrometry of Soils, pp. 83-111., I. Dekker, New York. Barto, E. K., Alt, F., Oelmann, Y., Wilcke, W., & Rillig, M. C. (2010). Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biology and Biochemistry, 42, 2316-2324. Berthrong, S. T., Jobbágy, E. G., & Jackson, R. B. (2009). A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 19, 2228-2241. Blagodatskaya, E., Yuyukina, T., Blagodatsky, S., & Kuzyakov, Y. (2011). Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biology and Biochemistry, 43, 159-166. Boström, B., Comstedt, D., & Ekblad, A. (2007). Isotope fractionation and 13 C enrichment in soil profiles during the decomposition of soil organic matter. Oecologia, 153, 89-98. Bronick, C. J., & Lal, R. (2005). Soil structure and management: a review. Geoderma, 124, 3-22. Carter, M. R., & Gregorich, E. G. (Eds.). (2007). Soil sampling and methods of analysis. CRC press, Boca Raton. Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 21, 3200-3209. Chen, C. P., Juang, K. W., Cheng, C. H., & Pai, C. W. (2016). Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan. Botanical Studies, 57, 1-8. Chen, S., Feng, X., Lin, Q., Liu, C., Cheng, K., Zhang, X., Bian, R., Liu, X., Wang, Y., & Drosos, M. (2022). Pool complexity and molecular diversity shaped topsoil organic matter accumulation following decadal forest restoration in a karst terrain. Soil Biology and Biochemistry, 166, 108553. Chen, Z. S., Hseu, Z. Y., & Tsai, C. C. (2015). Inceptisols. In, The Soils of Taiwan., pp.63-72., World Soils Book Series. Springer, New York. Cheng, X., Luo, Y., Xu, X., Sherry, R., & Zhang, Q. (2011). Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences, 8, 1487-1498. Cheng, C. H., Huang, Y. H., Menyailo, O. V., & Chen, C. T. (2016). Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan Journal of Forest Science, 31, 105-118. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 12, 989-994. Craig, M. E., Mayes, M. A., Sulman, B. N., & Walker, A. P. (2021). Biological mechanisms may contribute to soil carbon saturation patterns. Global Change Biology, 27, 2633-2644. de Kerchove, A. J., & Elimelech, M. (2007). Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: Measurements and mechanisms. Biomacromolecules, 8, 113-121. Dijkstra, P., Ishizu, A., Doucett, R., Hart, S. C., Schwartz, E., Menyailo, O. V., & Hungate, B. A. (2006). 13C and 15N natural abundance of the soil microbial biomass. Soil Biology and Biochemistry, 38, 3257-3266. Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land-use change on soil organic carbon stocks-a meta-analysis. Global Change Biology, 17, 1658-1670. Dong, X., Zhao, K., Wang, J., Gui, H., Xiao, Y., Chen, Z., Miao, Y., & Han, S. (2023). Effects of forest types on soil carbon content in aggregate faction under climate transition zone. Frontiers in Environmental Science, 10, 1052175. Dou, X., Xu, X., Shu, X., Zhang, Q., & Cheng, X. (2016). Shifts in soil organic carbon and nitrogen dynamics for afforestation in central China. Ecological Engineering, 87, 263-270. Dou, X., Cheng, X., He, P., Zhu, P., Zhou, W., & Wang, L. (2017). Dynamics of physically- separated soil organic carbon pools assessed from δ13C changes under 25 years of cropping systems. Soil and Tillage Research, 174, 6-13. Engedal, T., Magid, J., Hansen, V., Rasmussen, J., Sørensen, H., & Stoumann Jensen, L. (2023). Cover crop root morphology rather than quality controls the fate of root and rhizodeposition C into distinct soil C pools. Global Change Biology, 29, 5677-5690. Erktan, A., Balmot, J., Merino-Martín, L., Monnier, Y., Pailler, F., Coq, S., Abiven, S., Stokes, A. & Le Bissonnais, Y. (2017). Immediate and long-term effect of tannins on the stabilization of soil aggregates. Soil Biology and Biochemistry, 105, 197-205. Fernández-Ondoño, E., Rojo Serrano, L., Jiménez, M. N., Navarro, F. B., Díez, M., Martín, F., Fernández, J., Martínez, F. J., Roca, A. & Aguilar, J. (2010). Afforestation improves soil fertility in south-eastern Spain. European Journal of Forest Research, 129, 707-717. Fukushima, Y., & Chen, S. P. (2009). A decision support tool for modifications in crop cultivation method based on life cycle assessment: a case study on greenhouse gas emission reduction in Taiwanese sugarcane cultivation. The International Journal of Life Cycle Assessment, 14, 639-655. Gee, G. W., & Or, D. (2002). Particle‐size analysis. In, Dane, J.H. and Topp, G.C., (Eds.), Methods of soil analysis: Part 4 physical methods, pp. 255-293., Soils Science Society of America, Madison. Georgiou, K., Jackson, R.B., Vindušková, O., Abramoff, R.Z., Ahlström, A., Feng, W., Harden, J.W., Pellegrini, A.F., Polley, H.W., Soong, J.L. (2022). Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications, 13, 3797. Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H., Shoch, D., Siikamäki, J.V., Smith, P. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences, 114, 11645-11650. Gulde, S., Chung, H., Amelung, W., Chang, C., & Six, J. (2008). Soil carbon saturation controls labile and stable carbon pool dynamics. Soil Science Society of America Journal, 72, 605-612. Gunina, A., & Kuzyakov, Y. (2014). Pathways of litter C by formation of aggregates and SOM density fractions: implications from 13C natural abundance. Soil Biology and Biochemistry, 71, 95-104. Guo, G., Li, X., Zhu, X., Xu, Y., Dai, Q., Zeng, G., & Lin, J. (2021). Effect of forest management operations on aggregate-associated SOC dynamics using a 137Cs tracing method. Forests, 12, 859-875. Hernandez-Ramirez, G., Sauer, T. J., Chendev, Y. G., & Gennadiev, A. N. (2021). Nonlinear turnover rates of soil carbon following cultivation of native grasslands and subsequent afforestation of croplands. Soil, 7, 415-431. Hoogmoed, M., Cunningham, S. C., Baker, P. J., Beringer, J., & Cavagnaro, T. R. (2014). Is there more soil carbon under nitrogen-fixing trees than under non-nitrogen-fixing trees in mixed-species restoration plantings? Agriculture, Ecosystems & Environment, 188, 80-84. Hu, Y., Huang, Y., Xu, Z., Ma, Y., Chen, H., Cui, D., Su, J. & Nan, Z. (2021). Redistribution of calcium and sodium in calcareous soil profile and their effects on copper and lead uptake: a poplar-based phytomanagement. Science of the Total Environment, 755, 142535. Huang, W. S., Liang, C. S., Tsai, H., Hseu, Z. Y., & Huang, S. T. (2023). Pedogenesis of Fluvial Terrace Soils Related to Geomorphic Processes in Central Taiwan. Land, 12, 535. Huang, Z., Davis, M. R., Condron, L. M., & Clinton, P. W. (2011). Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biology and Biochemistry, 43, 1341-1349. Huang, X., Jia, Z., Guo, J., Li, T., Sun, D., Meng, H., Yu, G., He, X., Ran, W., Zhang, S., Hong, J.,Shen, Q (2019). Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol. Geoderma, 355, 113880. Huntington, T. G., Hooper, R. P., Johnson, C. E., Aulenbach, B. T., Cappellato, R., & Blum, A. E. (2000). Calcium depletion in a southeastern United States forest ecosystem. Soil Science Society of America Journal, 64, 1845-1858. Huygens, D., Boeckx, P., Van Cleemput, O., Oyarzun, C., & Godoy, R. (2005). Aggregate and soil organic carbon dynamics in South Chilean Andisols. Biogeosciences, 2, 159-174. Jiang, R., Gunina, A., Qu, D., Kuzyakov, Y., Yu, Y., Hatano, R., Frimpong, K. A., & Li, M. (2019). Afforestation of loess soils: Old and new organic carbon in aggregates and density fractions. Catena, 177, 49-56. Kan, Z. R., Liu, W. X., Liu, W. S., Lal, R., Dang, Y. P., Zhao, X., & Zhang, H. L. (2022). Mechanisms of soil organic carbon stability and its response to no till: A global synthesis and perspective. Global Change Biology, 28, 693-710. Laganiere, J., Angers, D. A., & Pare, D. (2010). Carbon accumulation in agricultural soils after afforestation: a meta‐analysis. Global Change Biology, 16, 439-453. Lavallee, J. M., Soong, J. L., & Cotrufo, M. F. (2020). Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273. Lin, Y., Ye, G., Kuzyakov, Y., Liu, D., Fan, J., & Ding, W. (2019). Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biology and Biochemistry, 134, 187-196. Lin, Y. H., Lee, P. C., Menyailo, O. V., & Cheng, C. H. (2021). Changes in soil organic carbon concentration and stock after forest regeneration of agricultural fields in Taiwan. Forests, 12, 1222. Liu, Y., Liu, W., Wu, L., Liu, C., Wang, L., Chen, F., & Li, Z. (2018). Soil aggregate-associated organic carbon dynamics subjected to different types of land use: Evidence from 13C natural abundance. Ecological Engineering, 122, 295-302. Luo, X., Hou, E., Zhang, L., & Wen, D. (2020). Soil carbon dynamics in different types of subtropical forests as determined by density fractionation and stable isotope analysis. Forest Ecology and Management, 475, 118401. Lützow, M. v., Kögel‐Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. European Journal of Soil Science, 57, 426-445. Lützow, M. v., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., & Marschner, B. (2007). SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 39, 2183-2207. Oades, J. M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil, 76, 319-337. Oades, J., & Waters, A. (1991). Aggregate hierarchy in soils. Soil Research, 29, 815-828. Paul, K. I., Polglase, P. J., Nyakuengama, J. G., & Khanna, P. K. (2002). Change in soil carbon following afforestation. Forest Ecology and Management, 168, 241-257. Pelz, O., Abraham, W. R., Saurer, M., Siegwolf, R., & Zeyer, J. (2005). Microbial assimilation of plant-derived carbon in soil traced by isotope analysis. Biology and Fertility of Soils, 41, 153-162. Plaza, C., Giannetta, B., Benavente, I., Vischetti, C., & Zaccone, C. (2019). Density-based fractionation of soil organic matter: effects of heavy liquid and heavy fraction washing. Scientific Reports, 9, 10146. Prescott, C. E. (2010). Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry, 101, 133-149. Puget, P., Chenu, C., & Balesdent, J. (1995). Total and young organic matter distributions in aggregates of silty cultivated soils. European Journal of Soil Science, 46, 449-459. Puget, P., Chenu, C., & Balesdent, J. (2000). Dynamics of soil organic matter associated with particle‐size fractions of water‐stable aggregates. European Journal of Soil Science, 51, 595-605. Puget, P., & Lal, R. (2005). Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research, 80, 201-213 Rasmussen, C., K. Heckman, W. R. Wieder, M. Keiluweit, C. R. Lawrence, A. A. Berhe, J. C. Blankinship, S. E. Crow, J. L. Druhan & C. E. Hicks Pries (2018). Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry, 137, 297-306. Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137, 27-49. Rumpel, C., & Kögel-Knabner, I. (2011). Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil, 338, 143-158. Rytter, R. M., & Rytter, L. (2020). Changes in soil chemistry in an afforestation experiment with five tree species. Plant and Soil, 456, 425-437. Sauer, T. J., James, D. E., Cambardella, C. A., & Hernandez-Ramirez, G. (2012). Soil properties following reforestation or afforestation of marginal cropland. Plant and Soil, 360, 375-390. Sheng, M., Han, X., Zhang, Y., Long, J., & Li, N. (2020). 31-year contrasting agricultural managements affect the distribution of organic carbon in aggregate-sized fractions of a Mollisol. Scientific Reports, 10, 9041. Schmidt, M. W., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-Knabner, J. Lehmann, D. A. Manning, Nannipier, P., Rasse D., P., Weiner, S. & Trumbore, S. E. (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. Schweizer, M., Fear, J., & Cadisch, G. (1999). Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Communications in Mass Spectrometry, 13, 1284-1290. Simelton, E., Carew-Reid, J., Coulier, M., Damen, B., Howell, J., Pottinger-Glass, C., Tran, H. V., & Van Der Meiren, M. (2021). NBS framework for agricultural landscapes. Frontiers in Environmental Science, 9, 678367. Six, J., Elliott, E. T., Paustian, K., & Doran, J. W. (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62, 1367-1377. Six, J., Conant, R. T., Paul, E. A., & Paustian, K. (2002a). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176. Six, J., Callewaert, P., Lenders, S., De Gryze, S., Morris, S., Gregorich, E., Paul, E., & Paustian, K. (2002b). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science society of America Journal, 66, 1981-1987. Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7-31. Smith, P. (2008). Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81, 169-178. Thibault, M., Thiffault, E., Bergeron, Y., Ouimet, R., & Tremblay, S. (2022). Afforestation of abandoned agricultural lands for carbon sequestration: how does it compare with natural succession? Plant and Soil, 475, 605-621 Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water‐stable aggregates in soils. Journal of Soil Science, 33, 141-163. Tsai, C. C., Hu, T. E., Lin, K. C., & Chen, Z. S. (2009). Estimation of soil organic carbon stocks in plantation forest soils of Northern Taiwan. Taiwan Journal of Forest Science, 24, 103-115. Vrdoljak, G., & Sposito, G. (2002). Soil aggregate hierarchy in a Brazilian Oxisol. Developments in Soil Science, 28, 197-217. Wagner, S., Cattle, S. R., & Scholten, T. (2007). Soil-aggregate formation as influenced by clay content and organic‐matter amendment. Journal of Plant Nutrition and Soil Science, 170, 173-180. Wang, S., Liu, J., Zhang, C., Yi, C., & Wu, W. (2011). Effects of afforestation on soil carbon turnover in China’s subtropical region. Journal of Geographical Sciences, 21, 118-134. Whalen, J. K., Hu, Q., & Liu, A. (2003). Compost applications increase water‐stable aggregates in conventional and no‐tillage systems. Soil Science Society of America Journal, 67, 1842-1847. Yamashita, T., Flessa, H., John, B., Helfrich, M., & Ludwig, B. (2006). Organic matter in density fractions of water-stable aggregates in silty soils: effect of land use. Soil Biology and Biochemistry, 38, 3222-3234. Zhao, F., Fan, X., Ren, C., Zhang, L., Han, X., Yang, G., Wang, J., & Doughty, R. (2018). Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation. Catena, 171, 622-631. Zhu, D., Yang, Q., Zhao, Y., Cao, Z., Han, Y., Li, R., Ni, J., & Wu, Z. (2023). Afforestation Influences Soil Aggregate Stability by Regulating Aggregate Transformation in Karst Rocky Desertification Areas. Forests, 14, 1356. Zhu, G. Y., Shangguan, Z. P., & Deng, L. (2017). Soil aggregate stability and aggregate-associated carbon and nitrogen in natural restoration grassland and Chinese red pine plantation on the Loess Plateau. Catena, 149, 253-260. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91794 | - |
| dc.description.abstract | 土壤有機碳庫的增減,受到土地利用改變的影響。在農地造林之後,除了簡易量測的土壤碳匯變化,這些變化在土壤團粒與團粒間物質之間仍有資訊空缺。本研究樣區位於嘉義太保與彰化溪洲地區,為近18年的蔗田平地造林,並以C4 (甘蔗)與C3 (造林)植群轉換對土壤進行的自然δ13C標記,檢視土壤有機碳動態。樣區包含了嘉義地區持續耕作的甘蔗田區與三種林木 (茄冬、桃花心木與櫸木),以及彰化地區的四種林木 (水黃皮、阿勃勒、苦苓與台灣欒樹)與鄰近甘蔗田區。土壤團粒以濕篩法取得,分成穩定大團粒 (Water Stable Macroaggregate, > 250 µm)與穩定小團粒 (Water Stable Microaggregate, < 250 µm),並進一步以密度劃分取得團粒內的顆粒有機質 (Particle Organic Matter, POM)與礦物有機質 (Mineral associated Organic matter, mSOM),。
結果顯示在18年的平地造林在表層土壤 (0-20 cm) 影響程度較甘蔗樣區大,具有降低的土壤容積密度、增加的土壤碳含量與碳氮比,但下層 (20-30 cm)土壤則與甘蔗樣區相近。在0-30 cm土層中,嘉義與彰化造林樣區的土壤有機碳儲存量分別介於44.1-65.2 Mg ha-1與33.4.2-38.8 Mg ha-1,平均較甘蔗田區增加了21.0 Mg ha-1與12.7 Mg ha-1的有機碳儲存量。嘉義造林樣區中,黏粒與交換性鈣含量高於彰化造林樣區,也反應在嘉義樣區具較高的碳儲存量、團粒平均重量直徑 (Mean weight diameter, MWD)。 甘蔗樣區中的土壤穩定團粒主要由小團粒 (Microaggregate)所組成,嘉義造林活動使穩定團粒分布由小團粒變為大團粒 (Macroaggregate)所主導。經由13C數值計算,林木來源的有機碳量在團粒內的POM與mSOM相當;彰化造林區域中由於較弱的團粒化作用,土壤結構組成仍以小團粒為主,然而林木來源POM主要分布於大團粒,在團粒內大於礦質有機質的碳儲存量。兩地的農地造林的過程顯現一致的特徵,使造林樣區逐漸形成大團粒,並於大團粒中積聚POM。縱使過往研究多顯示造林將主要增加在POM的碳庫上,然而在本研究中,嘉義與彰化樣區中林木累積的mSOM碳庫量仍大於POM的形式,顯示經過18年的造林,不只有增加土壤有機碳庫,這些「新」有機碳已經以較穩定的有機碳形式儲存。 | zh_TW |
| dc.description.abstract | Land use change is often reported to strongly affect the dynamic of soil organic carbon pools. Afforestation of farmland could be a net carbon sink, yet questions persist about its influence on soil aggregates and intra-aggregate substances. This study is aim to get insight into dynamics of soil organic carbon after land use change, especially in size and density aggregates fractions. Our sample area was located at Taibao in Chiayi County and Hsichou in Changhua County, where plain afforestation of sugarcane field has been ongoing for nearly 18 years. The sample plot included continuous sugarcane cultivation fields and three tree species (Swietenia macrophylla, Zelkova serrata and Bischofia javanica) at Chiayi, four tree species (Melia azedarach, Cassia fistula, Millettia pinnata and Koelreuteria henryi) at Changhua. We separate soil into water stable macroaggregate (> 250 µm) and microaggregate (< 250 µm), and further conduct density separation to get intra-aggregate Particulate Organic Matter (POM) and Mineral-associated Organic Matter (mSOM) in each aggregate fraction.
The results showed that the impact of afforestation was more significant in the surface soil (0-20 cm), with decreased soil bulk density, increased soil carbon content and CN ratio. However, the physic and chemical property of the subsoil (20-30 cm) remained similar to the sugarcane control area. In the 0-30 cm soil layer, the soil organic carbon storage in the afforested areas of Chiayi and Changhua ranged from 44.1-65.2 Mg ha-1 and 33.4-38.8 Mg ha-1, respectively, and the average increase in organic carbon storage is 21.0 Mg ha-1 and 12.7 Mg ha-1 in Chiayi and Changhua, respectively. In the Chiayi afforested area, the high content of clay and exchangeable calcium appeared to affect the carbon storage and mean weight diameter (MWD) of aggregates. In the sugarcane field, stable soil aggregates were mainly composed of microaggregates, but afforestation in Chiayi led to a shift of aggregate mass distribution from microaggregates to macroaggregates. The amount of afforestation derived organic carbon shortage was comparable between POM and mSOM. In the afforested area of Changhua, the distribution of aggregate mass was still predominantly composed of microaggregates due to weaker aggregation processes. However, the mass proportion of macroaggregates in the afforested area remained higher than that in the sugarcane field. Afforestation derived POM was mainly accumulated in macroaggregates, resulting in higher carbon storage in aggregates. The afforestation process in both areas displayed consistent characteristics. After establishment of afforestation, the aggregate mass distribution gradually shifts toward macroaggregates with the accumulation of intra-aggregate POM. Despite prior studies suggesting that afforestation primarily increases particle organic matter, our study found that the amounts of forest-derived mSOM in Chiayi and Changhua were still greater than those in POM. This suggest that after 18 years of afforestation, the newly accumulated organic carbon could have been stored in a more stable form. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:45:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:45:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目次 V 圖次 VII 表次 VIII 1. 前言 1 2. 材料與方法 6 2.1 實驗地點 6 2.2 土壤採樣方法 8 2.3 土壤基本性質量測 9 2.3.1 土壤總體密度 9 2.3.2 土壤pH值測定-玻璃電極法 (Carter & Gregorich, 2007) 9 2.3.3土壤質地測定 9 2.3.4土壤陽離子交換容量 (Cation exchange capcity, CEC)與交換性陽離子測定 10 2.4 土壤團粒分離-濕篩法 (WET SIEVING METHOD) 10 2.5 土壤團粒密度劃分與分散 11 2.6 碳氮含量與Δ 13C、Δ 15N同位素分析 12 2.7 資料處理與計算 13 2.7.1 δ13C (‰) 數據計算:造林樣區土壤新舊有機碳比例 13 2.7.2 土壤與團粒碳庫計算 14 2.7.3 統計分析 14 3. 結果 15 3.1 土壤基本性質 15 3.2 土壤碳氮含量與同位素分析 21 3.3 蔗田造林後的團粒重量與分布 25 3.4 團粒碳氮含量與同位素分析 27 3.5 土壤碳庫於團粒間的分布 32 3.6 密度粒徑劃分部分: 碳含量與Δ13C (‰) 37 4. 討論 45 4.1 土地利用對土壤物理化學性質的影響 45 4.2 農地造林對土壤碳庫的影響 46 4.3 農地造林對土壤團粒與團粒有機碳庫的影響 48 4.4 農地造林在輕質部 (LF)、團粒內顆粒有機質 (POM)與礦質有機質 (MSOM)的影響 50 4.5 實驗不確定性 51 5. 結論 53 6. 引用文獻 54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 造林 | zh_TW |
| dc.subject | 土壤團粒 | zh_TW |
| dc.subject | 團粒與密度劃分 | zh_TW |
| dc.subject | 土壤有機碳 | zh_TW |
| dc.subject | 13C自然豐度 | zh_TW |
| dc.subject | Soil Organic Carbon | en |
| dc.subject | Afforestation | en |
| dc.subject | Soil Aggregates | en |
| dc.subject | 13C Natural Abundance | en |
| dc.subject | Aggregate and density fractions | en |
| dc.title | 以物理分餾與穩定同位素分析檢視臺灣平地造林之土壤有機碳動態 | zh_TW |
| dc.title | Soil Organic Matter Dynamics Analysis in Taiwan Plain Afforestation Areas Using Physical Fractionation and Stable Isotope | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳秋萍;陳建德 | zh_TW |
| dc.contributor.oralexamcommittee | Chiou-Pin Chen;Chien-Der Chen | en |
| dc.subject.keyword | 造林,土壤團粒,團粒與密度劃分,土壤有機碳,13C自然豐度, | zh_TW |
| dc.subject.keyword | Afforestation,Soil Aggregates,Aggregate and density fractions,Soil Organic Carbon,13C Natural Abundance, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202400289 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 2.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
