請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳煇 | zh_TW |
| dc.contributor.advisor | Ping-Hei Chen | en |
| dc.contributor.author | 邱洛緯 | zh_TW |
| dc.contributor.author | Luo-Wei Qiu | en |
| dc.date.accessioned | 2024-02-22T16:40:39Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-08 | - |
| dc.identifier.citation | [1] S.-F. Liu, R.-T. Huang, W.-J. Sheu, and C.-C. Wang, "Heat transfer by a piezoelectric fan on a flat surface subject to the influence of horizontal/vertical arrangement," International Journal of Heat and Mass Transfer, vol. 52, no. 11-12, pp. 2565-2570, 2009.
[2] R. Grimes and M. Davies, "Air Flow and Heat Transfer in Fan Cooled Electronic Systems," Journal of Electronic Packaging, vol. 126, no. 1, pp. 124-134, 2004. [3] M. A. Nazari, M. H. Ahmadi, R. Ghasempour, and M. B. Shafii, "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, vol. 91, pp. 630-638, 2018. [4] P. Nemec, A. Čaja, and M. Malcho, "THERMAL PERFORMANCE MEASUREMENT OF HEAT PIPE " Global Journal of Technology & Optimization, vol. 2, 2011. [5] L. L. Vasiliev, "Heat pipes in modern heat exchangers," Appl. Therm. Eng., vol. 25, no. 1, pp. 1-19, 2005/01/01/ 2005. [6] D. A. Reay, "The Perkins Tube—a noteworthy contribution to heat exchanger technology," Journal of Heat Recovery Systems, vol. 2, no. 2, pp. 173-187, 1982/01/01/ 1982. [7] R. S. Gaugler, "Heat Transfer Device," United States Patent US2350348A, 1944. [8] G. M. Grover, "Evaporation-condensation heat transfer device," United States Patent US3229759A, 1963. [9] G. M. Groover, T. P. Cotter, and G. F. Erickson, "STRUCTURE OF VERY HIGH THERMAL CONDUCTANCE," (in English), Journal of Applied Physics (U.S.), vol. Vol: 35, no. LADC-6116; Journal ID: JAPIA; 0021-8979 2009-12-14, pp. Medium: X; Size: Pages: 1990-1, 1964. [10] T. P. Cotter, "Theory of Heat Pipes," 1965. [11] M. G. Semena, A. G. Kostornov, A. N. Gershuni, and V. K. Zaripov, "Contact angles of wicks for low-temperature heat pipes," Journal of engineering physics, vol. 28, no. 2, pp. 147-150, 1975/02/01 1975. [12] D. Khrustalev and A. Faghri, "Thermal Analysis of a Micro Heat Pipe," Journal of Heat Transfer, vol. 116, no. 1, pp. 189-198, 1994. [13] S. Lips, F. Lefèvre, and J. Bonjour, "Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe," International Journal of Heat and Mass Transfer, vol. 53, no. 4, pp. 694-702, 2010/01/31/ 2010. [14] W. Zhou, Y. Li, Z. Chen, L. Deng, and B. Li, "Experimental study on the heat transfer performance of ultra-thin flattened heat pipe with hybrid spiral woven mesh wick structure," Appl. Therm. Eng., vol. 170, p. 115009, 2020. [15] V. O. Ng, X. Hong, H. Yu, H. Wu, and Y. M. Hung, "Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures," Applied Energy, vol. 326, p. 119994, 2022. [16] Z. Zhao, G. Peng, Y. Zhang, and D. Zhang, "Heat transfer performance of flat micro-heat pipe with sintered multi-size copper powder wick," Case Studies in Thermal Engineering, vol. 42, p. 102720, 2023. [17] M.-M. Chen and A. Faghri, "An analysis of the vapor flow and the heat conduction through the liquid-wick and pipe wall in a heat pipe with single or multiple heat sources," International journal of heat and mass transfer, vol. 33, no. 9, pp. 1945-1955, 1990. [18] B. Tan, T. Wong, and K. Ooi, "Analytical effective length study of a flat plate heat pipe using point source approach," Appl. Therm. Eng., vol. 25, no. 14-15, pp. 2272-2284, 2005. [19] F. Lefevre and M. Lallemand, "Coupled thermal and hydrodynamic models of flat micro heat pipes for the cooling of multiple electronic components," International Journal of Heat and Mass Transfer, vol. 49, no. 7-8, pp. 1375-1383, 2006. [20] M. Aghvami and A. Faghri, "Analysis of flat heat pipes with various heating and cooling configurations," Appl. Therm. Eng., vol. 31, no. 14-15, pp. 2645-2655, 2011. [21] P. R. Mashaei, M. Shahryari, H. Fazeli, and S. M. Hosseinalipour, "Numerical simulation of nanofluid application in a horizontal mesh heat pipe with multiple heat sources: A smart fluid for high efficiency thermal system," Appl. Therm. Eng., vol. 100, pp. 1016-1030, 2016/05/05/ 2016. [22] P. Mashaei and M. Shahryari, "Effect of nanofluid on thermal performance of heat pipe with two evaporators; application to satellite equipment cooling," Acta Astronautica, vol. 111, pp. 345-355, 2015. [23] J. H. Park, "A study on thermal performance of heat pipe for optimum placement of satellite equipment," ETRI journal, vol. 19, no. 2, pp. 59-70, 1997. [24] Y. Cai, Z. Li, J. Zhai, Y. Tang, and B. Yu, "Experimental investigation on a novel multi-branch heat pipe for multi-heat source electronics," International Journal of Heat and Mass Transfer, vol. 104, pp. 467-477, 2017. [25] J. H. Boo and H. G. Kim, "Experimental study on the performance characteristics of a cylindrical heat pipe having a screen wick subject to multiple heat sources," Appl. Therm. Eng., vol. 126, pp. 1209-1215, 2017/11/05/ 2017. [26] R. Zhang, L. Yan, and C. Wu, "Experimental study on the effect of various heat source configurations on the thermal performance of an axial swallow-tailed micro-grooved heat pipe," Heat and Mass Transfer, vol. 56, pp. 1237-1248, 2020. [27] H. Tang, Y. Tang, J. Li, Y. Sun, G. Liang, and R. Peng, "Experimental investigation of the thermal performance of heat pipe with multi-heat source and double-end cooling," Appl. Therm. Eng., vol. 131, pp. 159-166, 2018. [28] A. Faghri, Heat pipe science and technology. Global Digital Press, 1995. [29] B. Zohuri, Heat pipe design and technology: Modern applications for practical thermal management. Springer, 2016. [30] P. D. Dunn and D. A. Reay, Heat pipes. New York: Pergamon, 1994. [31] P. Nemec, A. Čaja, and M. Malcho, "Mathematical model for heat transfer limitations of heat pipe," Mathematical and Computer Modelling, vol. 57, no. 1-2, pp. 126-136, 2013, doi: 10.1016/j.mcm.2011.06.047. [32] H. Jouhara, D. Reay, R. McGlen, P. Kew, and J. McDonough, Heat pipes: theory, design and applications. Butterworth-Heinemann, 2023. [33] B. Zohuri, "Design Guide and Heat Pipe Selection," in Heat Pipe Applications in Fission Driven Nuclear Power Plants, 2019, pp. 265-308. [34] "Merit number." http://coolinghouse.com/technologies/heat-pipes/ (accessed. [35] B. Zohuri, S. Lam, and C. Forsberg, "Heat-Pipe Heat Exchangers for Salt-Cooled Fission and Fusion Reactors to Avoid Salt Freezing and Control Tritium: A Review," Nuclear technology, vol. 00, p. 1, 12/11 2019. [36] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, "Waste heat recovery technologies and applications," Thermal Science and Engineering Progress, vol. 6, pp. 268-289, 2018. [37] K. H. Hsu, "Effect of the vacuum pressure and the working fluid inventory to the maximum heat loading (Qmax) of the heat pipe.," Master, National Tsing Hua University, 2011. [38] S. W. Churchill and H. H. Chu, "Correlating equations for laminar and turbulent free convection from a vertical plate," International journal of heat and mass transfer, vol. 18, no. 11, pp. 1323-1329, 1975. [39] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, Fundamentals of heat and mass transfer. Wiley New York, 1996. [40] J. R. Taylor and W. Thompson, An introduction to error analysis: the study of uncertainties in physical measurements. Springer, 1982. [41] H. W. Coleman and W. G. Steele, Experimentation, validation, and uncertainty analysis for engineers. John Wiley & Sons, 2018. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91776 | - |
| dc.description.abstract | 本研究欲探討多個平行放置的扁平熱管於多重熱源與單一冷卻塊下之熱傳表現。隨著對高效能運算的需求不斷增長,安裝多個矽晶片於電子設備中已成為一項高要求且不可避免的挑戰,而透過在冷卻設備上適當分佈總加熱功率可以增強電子設備的散熱能力。研究將熱管之熱傳性能分為兩個部分來探討,分別為不同數量的平行放置熱管以及不同配比下輸入功率分佈對熱管熱傳性能的影響。實驗採用扁平熱管作為測試樣本,其毛細結構為燒結銅粉而工作流體為去離子水。實驗結果表明,平行放置情況下的熱管熱阻值與單一支熱管條件下的熱阻值相比,其存在差異。此外,在兩支和三支熱管平行放置的情況下,結果指出,以不同比例分配每支熱管上的輸入功率是至關重要的,並對熱管上之最高溫度有顯著影響。為了減低運作期間熱管上的最高溫度,本研究提出了輸入功率配置的建議,透過調控每支熱管總輸入功率的比例,以提升熱管的散熱能力。 | zh_TW |
| dc.description.abstract | This study experimentally investigated the thermal performance of parallel-placed flat heat pipes with multiple heat sources and a single cooling section. As the demand for high-performance computing continues to rise, the installation of multiple silicon chips in electronic devices becomes both demanding and inevitable. Achieving a suitable arrangement of total heating power on cooling devices can enhance thermal management in electronic devices. In this paper, the investigation of the thermal performance of the heat pipes is divided into two parts. The first part explores the effect of different numbers of parallel-placed heat pipes, while the second part examines the influence of input power distribution on the heat pipes at different ratios. Flat heat pipes were utilized as test samples in experiments, incorporating sintered copper powder as the wick structure and DI water as the working fluid. The experimental results revealed that the thermal resistance of a heat pipe among parallel-placed heat pipes differs from that of a single heat pipe condition. Additionally, under the conditions of two and three parallel-placed heat pipes, the results indicated that the distribution of input power on each heat pipe in different ratios is critical and has a significant impact on the measured maximum temperature among the heat pipes. To reduce the maximum temperature on heat pipes during operation, a guideline for input power arrangements was proposed. Improved thermal management of heat pipes can be realized by manipulating the proportions of the total input power to each heat pipe. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:40:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:40:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Nomenclature iv Table of Contents viii List of Figures xi List of Tables xiv Chapter 1 Introduction 1 1.1 Preface 1 1.2 Literature Review 3 1.2.1 Heat pipe 3 1.2.2 Multiple heat sources heat pipe 9 1.3 Motivation 15 Chapter 2 Theory 16 2.1 Working Principles of Heat Pipes 16 2.2 Heat Transfer Limitations of Heat Pipes 18 2.2.1 Capillary limit 19 2.2.2 Entrainment limit 21 2.2.3 Sonic limit 22 2.2.4 Viscous limit 22 2.2.5 Boiling limit 23 2.2.6 Condenser limit 24 2.2.7 Frozen startup limit 24 2.2.8 Continuum limit 25 2.3 Heat Pipe Materials and Working Fluids 25 2.3.1 Container 25 2.3.2 Working fluid 26 2.3.3 Compatibility 27 2.3.4 Merit number 28 2.3.5 Wick structure 30 2.4 Non-condensable gas and vacuum degree 30 Chapter 3 Experimental Methodology 32 3.1 Experimental Setup 32 3.2 Experimental Procedures 35 3.3 Experimental Parameters 36 3.3.1 Heat pipe 36 3.3.2 Parallel-placed heat pipe configurations 37 3.3.3 Different Heat Input Ratios 41 3.4 Experimental Data Analysis 45 3.4.1 Thermal performance of heat pipe 45 3.4.2 Energy Balance 47 3.4.3 Uncertainty Analysis 50 Chapter 4 Results and Discussion 51 4.1 Thermal performance of a single heat pipe and multiple parallel-placed heat pipes 51 4.1.1 Thermal performance of heat pipe in C1 condition 51 4.1.2 Thermal performance of heat pipes in C2 condition 53 4.1.3 Thermal performance of heat pipes in C3 condition 56 4.2 Effect of the input power arrangements on the thermal performance of heat pipes 60 4.2.1 Effect of the input power arrangements on the thermal performance under C2 condition 60 4.2.2 Effect of the input power arrangements on the thermal performance under C3 condition 68 Chapter 5 Conclusions and Future Prospects 77 5.1 Conclusions 77 5.2 Future prospects 79 References 80 Appendix 85 | - |
| dc.language.iso | en | - |
| dc.subject | 熱阻值 | zh_TW |
| dc.subject | 平行放置熱管 | zh_TW |
| dc.subject | 溫度分佈 | zh_TW |
| dc.subject | 輸入功率配置 | zh_TW |
| dc.subject | 最大傳熱量 | zh_TW |
| dc.subject | Maximum heat transport capacity | en |
| dc.subject | Input power arrangements | en |
| dc.subject | Temperature distributions | en |
| dc.subject | Thermal resistance | en |
| dc.subject | Parallel-placed heat pipes | en |
| dc.title | 探討多個平行放置熱管於多重熱源與單一冷卻塊下之熱傳表現 | zh_TW |
| dc.title | Experimental investigation of the thermal performance of parallel-placed heat pipes with multiple heat sources and a single cooling section | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張天立;許進吉;江貴鳳 | zh_TW |
| dc.contributor.oralexamcommittee | Tien-Li Chang;Chin-Chi Hsu;Kuei-Feng Chiang | en |
| dc.subject.keyword | 平行放置熱管,熱阻值,最大傳熱量,輸入功率配置,溫度分佈, | zh_TW |
| dc.subject.keyword | Parallel-placed heat pipes,Thermal resistance,Maximum heat transport capacity,Input power arrangements,Temperature distributions, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202400546 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
