請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91771完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂明璋 | zh_TW |
| dc.contributor.advisor | Ming-Chang Lu | en |
| dc.contributor.author | 黃柏諺 | zh_TW |
| dc.contributor.author | Po-Yen Huang | en |
| dc.date.accessioned | 2024-02-22T16:39:14Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-31 | - |
| dc.identifier.citation | 1. Yogeswaran, U. and S.M. Chen, A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors, 2008. 8(1): p. 290-313.
2. Rodrigues, V., T. Fuhrer, and D. Ugarte, Signature of atomic structure in the quantum conductance of gold nanowires. Physical Review Letters, 2000. 85(19): p. 4124-4127. 3. Iwai, H., et al., Si nanowire FET and its modeling. Science China-Information Sciences, 2011. 54(5): p. 1004-1011. 4. Chu, C.H., et al., Fabrication of Si and Ge vertical nanowire for transistor applications. International Journal of Nanotechnology, 2015. 12(1-2): p. 74-86. 5. Li, B.B., et al., A novel SiC nanowire aerogel consisted of ultra long SiC nanowires. Materials Research Express, 2019. 6(4). 6. Mamand, S.M., M.S. Omar, and A.J. Muhammad, Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires. Materials Research Bulletin, 2012. 47(5): p. 1264-1272. 7. Ghukasyan, A., et al., Thermal Conductivity of GaAs Nanowire Arrays Measured by the 3ω Method. Nanomaterials, 2022. 12(8). 8. Xu, B., et al., Thermoelectric Performance of SiGe Nanowire Arrays. Ieee Transactions on Electron Devices, 2012. 59(12): p. 3193-3198. 9. Khongwong, W., et al., Synthesis of β-SiC/SiO2 core-shell nanowires by simple thermal evaporation. Journal of the Ceramic Society of Japan, 2009. 117(1362): p. 194-197. 10. Thelander, C., et al., Nanowire-based one-dimensional electronics. Materials Today, 2006. 9(10): p. 28-35. 11. Xu, W., G. Zhang, and B.W. Li, Effects of lithium insertion on thermal conductivity of silicon nanowires. Applied Physics Letters, 2015. 106(17). 12. Yang, P.D., R.X. Yan, and M. Fardy, Semiconductor Nanowire: What''s Next? Nano Letters, 2010. 10(5): p. 1529-1536. 13. Luo, H.S., et al., Electro-responsive silver nanowire-shape memory polymer composites. Materials Letters, 2014. 134: p. 172-175. 14. Chen, Y.X., et al., Shape memory polymer composites (SMPCs) using interconnected nanowire network foams as reinforcements. Nanotechnology, 2023. 34(5). 15. Bayat, N., S. Sanjabi, and Z.H. Barber, Growth of copper nanowire arrays on NiTi shape memory alloy thin film. Surface & Coatings Technology, 2012. 206(19-20): p. 4075-4078. 16. Hicks, L.D. and M.S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Physical Review B, 1993. 47(19): p. 12727-12731. 17. Hicks, L.D. and M.S. Dresselhaus, Thermoelectric Figure of Merit of a One-Dimensional Conductor. Physical Review B, 1993. 47(24): p. 16631-16634. 18. Hsiao, T.K., et al., Observation of room-temperature ballistic thermal conduction persisting over 8.3 μm SiGe nanowires. Nature Nanotechnology, 2013. 8(7): p. 534-538. 19. Vakulov, D., et al., Ballistic Phonons in Ultrathin Nanowires. Nano Letters, 2020. 20(4): p. 2703-2709. 20. Okamoto, N., et al., Semiballistic thermal conduction in polycrystalline SiGe nanowires. Applied Physics Letters, 2019. 115(25). 21. Hsiao, T.K., et al., Micron-scale ballistic thermal conduction and suppressed thermal conductivity in heterogeneously interfaced nanowires. Physical Review B, 2015. 91(3). 22. Rego, L.G.C. and G. Kirczenow, Quantized thermal conductance of dielectric quantum wires. Physical Review Letters, 1998. 81(1): p. 232-235. 23. Huang, B.W., et al., Length-dependent thermal transport and ballistic thermal conduction. Aip Advances, 2015. 5(5). 24. Liu, B.X., et al., Thermally Stable Nanoporous ZrO2/SiO2 Hybrid Aerogels for Thermal Insulation. Acs Applied Nano Materials, 2019. 2(11): p. 7299-7310. 25. Corbino, O.M., Thermal oscillations in lamps of thin fibers with alternating current 76 flowing through them and the resulting effect on the rectifier as a result of the presence of even-numbered harmonics. Physikalische Zeitschrift, 1910. 11: p. 413-417. 26. Frank, R., V. Drach, and J. Fricke, Determination of Thermal-Conductivity and Specific Heat by a Combined 3-Omega Decay Technique. Review of Scientific Instruments, 1993. 64(3): p. 760-765. 27. Cahill, D.G. and R.O. Pohl, Thermal-Conductivity of Amorphous Solids above the Plateau. Physical Review B, 1987. 35(8): p. 4067-4073. 28. Cahill, D.G., Thermal-Conductivity Measurement from 30-K to 750-K - the 3-Omega Method. Review of Scientific Instruments, 1990. 61(2): p. 802-808. 29. Lee, S.M. and S.I. Kwun, Heat-Capacity Measurement of Dielectric Solids Using a Linear Surface Heater - Application to Ferroelectrics. Review of Scientific Instruments, 1994. 65(4): p. 966-970. 30. Kim, J.H., A. Feldman, and D. Novotny, Application of the three omega thermal conductivity measurement method to a film on a substrate of finite thickness. Journal of Applied Physics, 1999. 86(7): p. 3959-3963. 31. Olson, B.W., S. Graham, and K. Chen, A practical extension of the 3ω method to multilayer structures -: art. no. 053901. Review of Scientific Instruments, 2005. 76(5). 32. Alvarez-Quintana, J. and J. Rodríguez-Viejo, Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample. Sensors and Actuators a-Physical, 2008. 142(1): p. 232-236. 33. Chen, F., et al., Thermal conductivity measurement under hydrostatic pressure using the 3ω method. Review of Scientific Instruments, 2004. 75(11): p. 4578-4584. 34. Oh, D.W., et al., Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. International Journal of Heat and Fluid Flow, 2008. 29(5): p. 1456-1461. 35. Choi, S.R., J. Kim, and D. Kim, 3ω method to measure thermal properties of electrically conducting small-volume liquid. Review of Scientific Instruments, 2007. 78(8). 36. Bourgeois, O., T. Fournier, and J. Chaussy, Measurement of the thermal conductance of silicon nanowires at low temperature. Journal of Applied Physics, 2007. 101(1). 37. Choi, T.Y., et al., Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ω method -: art. no. 013108. Applied Physics Letters, 2005. 87(1). 38. Hu, X.J., et al., 3-omega measurements of vertically oriented carbon nanotubes on silicon. Journal of Heat Transfer-Transactions of the Asme, 2006. 128(11): p. 1109-1113. 39. Dedi, et al., Thermoelectric Characteristics of A Single-Crystalline Topological Insulator Bi2Se3 Nanowire. Nanomaterials, 2021. 11(3). 40. Hor, Y.S., et al., p-type Bi2Se3 for topological insulator and low-temperature thermoelectric applications. Physical Review B, 2009. 79(19). 41. Navrátil, J., et al., Conduction band splitting and transport properties of Bi2Se3. Journal of Solid State Chemistry, 2004. 177(4-5): p. 1704-1712. 42. Gooth, J., et al., Thermoelectric performance of classical topological insulator nanowires. Semiconductor Science and Technology, 2015. 30(1). 43. Lu, L., W. Yi, and D.L. Zhang, 3ω method for specific heat and thermal conductivity measurements. Review of Scientific Instruments, 2001. 72(7): p. 2996-3003. 44. Yamane, T., et al., Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method. Journal of Applied Physics, 2002. 91(12): p. 9772-9776. 45. Doerk, G.S., C. Carraro, and R. Maboudian, Single Nanowire Thermal Conductivity Measurements by Raman Thermography. Acs Nano, 2010. 4(8): p. 4908-4914. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91771 | - |
| dc.description.abstract | 近年來,出現了許多實驗技術,用來量測奈米尺度下的溫度。然而,目前還不能確定這些方法能否得到一致的結果,特別是因為接觸熱阻無法從總熱阻中分離出來。在本論文中,提出了一種實驗方法,利用掃描電子顯微鏡(SEM)來量測各奈米線在不同電子束照射位置的溫度與其熱傳輸性質,特別針對碳化矽(SiC)、鎳(Ni)和氮化矽(SiNx)奈米線。我用了兩種不同的分析方法得到一致的結果,確認這種方法的可行性。雖然沒有量測熱裝置的導熱性,但是透過這兩種分析方法,我們仍可以確定兩個熱裝置之間的熱導性差異,最大可高達 19.4%。此外,我們發現用電子束誘導沉積方法到接觸點可以改善接觸熱阻,最大可增強達 241%。實驗結果說明,所有的奈米線都表現出擴散傳輸 (至少平均自由徑少於 200 奈米),最好的表面熱傳導為 56 MWm-2K-1,約等於由時域熱反射(TDTR)方法測得的銠/氧化鋁的表面熱傳導。 | zh_TW |
| dc.description.abstract | In recent times, numerous experimental techniques have emerged for measurements of temperatures at nanoscale levels. Nonetheless, it remains uncertain whether these methods would produce consistent results, especially when the contact thermal resistance cannot be separated from the total thermal resistance. In this study, we invented an experimental approach utilizing a scanning electron microscope (SEM) to determine the local temperature at different electron beam illumination position of nanowires and the thermal transport properties, particularly for silicon carbide (SiC), nickel (Ni), and silicon nitride (SiNx) nanowires. We obtained consistent results using two different analytical methods, confirming the feasibility of this approach. Due to the lack of thermal conductance measurements for the thermal devices, through these two analytical methods, we can still determine the thermal conductance difference between the two measurement devices, which can be as much as 19.4%. Furthermore, we found that applying the electron-beam-induced deposition method to the contact points can improve the contact thermal resistance, with a maximum enhancement of up to 241%. The results show that all nanowires exhibit diffusive transport (phonon mean free path should be less than 200 nm), and the best interfacial thermal conductance is 56 MWm-2K-1, which is approximately equivalent to interfacial thermal conductance of Rh/AL2O3 as measured by time-domain thermoreflectance (TDTR) method. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:39:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:39:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝辭 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Paper Review 2 1.3 Motivation 5 1.4 Chapter Arrangement 6 Chapter 2 Fundamental Theories 15 2.1 Transport Phenomena 15 2.2 Thermal Conductivity 15 2.3 The 3ω Method 16 2.4 Raman Thermography 18 Chapter 3 Experimental Apparatuses 26 3.1 Experimental equipment 26 3.1.1 Scanning Electron Microscope and Nanowire Pickup Device 26 3.1.2 Current Source, and Multimeter 27 3.2 The Wheatstone Bridge 27 3.2.1 Introduction 27 3.2.2 The Revision of the Wheatstone Bridge 28 3.3 Temperature Coefficient of the thermal device 29 Chapter 4 Length-Dependent Thermal Resistance of Various Nanowires and Temperature 40 4.1 experimental Method 40 4.1.1 Method 1 for Calculation Thermal Resistance 42 4.1.2 Method 2 for Calculation Thermal Resistance 43 4.1.3 The Theoretical Derivation of The Temperature Under Electron Beam Illumination 45 4.2 Experiment Result 48 4.2.1 Silicon Carbide (SiC) Nanowire 48 4.2.2 Nickel (Ni) Nanowire 49 4.2.3 Silicon Nitride (SiNx) Microbeam 50 4.2.4 Silicon Nitride (SiNx) Nanowire 50 4.3 Summary 51 Chapter 5 Conclusion 77 REFERENCE 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 局部溫度 | zh_TW |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 熱量測裝置 | zh_TW |
| dc.subject | 接觸熱阻 | zh_TW |
| dc.subject | 熱導率 | zh_TW |
| dc.subject | Thermal conductivity | en |
| dc.subject | Contact thermal resistance | en |
| dc.subject | Thermal measurement device | en |
| dc.subject | Local temperature | en |
| dc.subject | Nanowire | en |
| dc.title | 熱傳導與多種奈米線長度關係的量測 | zh_TW |
| dc.title | Length-dependent thermal transport measurements on various nanowires | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張之威;蕭子綱 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Wei Chang;Tzu-Kan Hsiao | en |
| dc.subject.keyword | 奈米線,局部溫度,熱導率,接觸熱阻,熱量測裝置, | zh_TW |
| dc.subject.keyword | Nanowire,Local temperature,Thermal conductivity,Contact thermal resistance,Thermal measurement device, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202400231 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-02-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
