請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91753
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃心豪 | zh_TW |
dc.contributor.advisor | Hsin-Haou Huang | en |
dc.contributor.author | 鄭昭玄 | zh_TW |
dc.contributor.author | Chou-Hsuan Cheng | en |
dc.date.accessioned | 2024-02-22T16:33:57Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-31 | - |
dc.identifier.citation | [1] F. Ghezzo, Y. Huang, and S. Nemat-Nasser, "Onset of resin micro-cracks in unidirectional glass fiber laminates with integrated SHM sensors: experimental results," Structural Health Monitoring, vol. 8, no. 6, pp. 477-491, 2009.
[2] A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Optics Communications, vol. 37, no. 5, pp. 326-330, 1981. [3] J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," Journal of biomedical optics, vol. 1, no. 2, pp. 174-179, 1996. [4] D. M. Kennedy, Z. Schauperl, and S. Greene, "Application of ESPI-method for strain analysis in thin wall cylinders," Optics and Lasers in Engineering, vol. 41, no. 3, pp. 585-594, 2004. [5] Y. Hung, "Electronic shearography versus ESPI for nondestructive evaluation," Proc. SPIE B, vol. 1554, pp. 692-700, 1991. [6] R. Růžek, R. Lohonka, and J. Jironč, "Ultrasonic C-Scan and shearography NDI techniques evaluation of impact defects identification," NDT & E International, vol. 39, no. 2, pp. 132-142, 2006. [7] J. van Welzen, F. G. Yuan, and R. Y. Fong, "Hidden damage visualization using laser speckle photometry," NDT & E International, vol. 131, p. 102700, 2022. [8] G. Crammond, S. Boyd, and J. Dulieu-Barton, "Speckle pattern quality assessment for digital image correlation," Optics and Lasers in Engineering, vol. 51, no. 12, pp. 1368-1378, 2013. [9] K. Zaletelj, V. Agrež, J. Slavič, R. Petkovšek, and M. Boltežar, "Laser-light speckle formation for deflection-shape identification using digital image correlation," Mechanical Systems and Signal Processing, vol. 161, p. 107899, 2021. [10] S. Wang, W. Wu, Y. Shen, Y. Liu, and S. Jiang, "Influence of the PZT sensor array configuration on Lamb wave tomography imaging with the RAPID algorithm for hole and crack detection," Sensors, vol. 20, no. 3, p. 860, 2020. [11] 江俊錕, "應用可移動式感應陣列及概率損傷成像法於非平纖維複合材料薄板之隱藏損傷監測," 工程科學及海洋工程學系, 國立臺灣大學, 2023. [12] S. Park, C. B. Yun, and D. J. Inman, "Structural health monitoring using electro‐mechanical impedance sensors," Fatigue & Fracture of Engineering Materials & Structures, vol. 31, no. 8, pp. 714-724, 2008. [13] D. M. Peairs, G. Park, and D. J. Inman, "Improving accessibility of the impedance-based structural health monitoring method," Journal of Intelligent Material Systems and Structures, vol. 15, no. 2, pp. 129-139, 2004. [14] J. L. Abot et al., "Delamination detection with carbon nanotube thread in self-sensing composite materials," Composites Science and Technology, vol. 70, no. 7, pp. 1113-1119, 2010. [15] J. Li, G. Chen, W. Zhang, W. Jin, and W. Pang, "The interaction efficiency evaluation between defect and eddy current induced by different exciting coils of planar eddy current probe," Measurement and Control, vol. 53, no. 5-6, pp. 1031-1037, 2020. [16] R. Pohl, A. Erhard, H.-J. Montag, H.-M. Thomas, and H. Wüstenberg, "NDT techniques for railroad wheel and gauge corner inspection," NDT & e International, vol. 37, no. 2, pp. 89-94, 2004. [17] A. Chrysafi, N. Athanasopoulos, and N. Siakavellas, "Damage detection on composite materials with active thermography and digital image processing," International journal of thermal sciences, vol. 116, pp. 242-253, 2017. [18] A. Stawiarski, M. Chwał, M. Barski, and M. Augustyn, "The Wrinkles Characterization in GFRP Composites by Infrared Active Thermography," Materials, vol. 16, no. 12, p. 4236, 2023. [19] P. Olaszek, "Investigation of the dynamic characteristic of bridge structures using a computer vision method," Measurement, vol. 25, no. 3, pp. 227-236, 1999. [20] B. Pan, D. Wu, and Y. Xia, "An active imaging digital image correlation method for deformation measurement insensitive to ambient light," Optics & Laser Technology, vol. 44, no. 1, pp. 204-209, 2012. [21] A. Khadka, B. Fick, A. Afshar, M. Tavakoli, and J. Baqersad, "Non-contact vibration monitoring of rotating wind turbines using a semi-autonomous UAV," Mechanical Systems and Signal Processing, vol. 138, p. 106446, 2020. [22] J.-I. Kim, Y.-H. Huh, and Y.-H. Kim, "Static Residual Tensile Strength Response of GFRP Composite Laminates Subjected to Low-Velocity Impact," Applied Sciences, vol. 10, no. 16, p. 5480, 2020. [23] A. Abdulqader and D. C. Rizos, "Advantages of using digital image correlation techniques in uniaxial compression tests," Results in Engineering, vol. 6, p. 100109, 2020. [24] T. Chu, W. Ranson, and M. A. Sutton, "Applications of digital-image-correlation techniques to experimental mechanics," Experimental mechanics, vol. 25, pp. 232-244, 1985. [25] H.-J. Huang and A. M. Waas, "Improved speckle method for measuring in-plane displacement and strain fields," Optical Engineering, vol. 46, no. 5, pp. 051005-051005-11, 2007. [26] T. Vaitkunas, P. Griskevicius, and A. Adumitroaie, "Peridynamic Approach to Digital Image Correlation Strain Calculation Algorithm," Applied Sciences, vol. 12, no. 13, p. 6550, 2022. [27] R. B. Berke and J. Lambros, "Ultraviolet digital image correlation (UV-DIC) for high temperature applications," Review of Scientific Instruments, vol. 85, no. 4, 2014. [28] Y. Han, R. Kumon, S. J. Mostafavi Yazdi, N. Zhu, A. Afshar, and J. Baqersad, "Nondestructive evaluation of carbon-fiber composites using digital image correlation, acoustic emission, and optical based modal analysis," Wind Engineering, vol. 46, no. 5, pp. 1618-1628, 2022. [29] M. Malesa, K. Malowany, U. Tomczak, B. Siwek, M. Kujawińska, and A. Siemińska-Lewandowska, "Application of 3D digital image correlation in maintenance and process control in industry," Computers in Industry, vol. 64, no. 9, pp. 1301-1315, 2013. [30] M. Reis, M. Adorna, O. Jiroušek, and A. Jung, "Improving DIC accuracy in experimental setups," Advanced Engineering Materials, vol. 21, no. 7, p. 1900092, 2019. [31] J. Blaber and A. Antoniou. "Ncorr: open-source 2D digital image correlation matlab software v1.2." https://www.ncorr.com/index.php (accessed 2018). [32] J. Blaber, B. Adair, and A. Antoniou, "Ncorr: open-source 2D digital image correlation matlab software," Experimental Mechanics, vol. 55, no. 6, pp. 1105-1122, 2015. [33] M. A. Sutton, J. Yan, V. Tiwari, H. Schreier, and J.-J. Orteu, "The effect of out-of-plane motion on 2D and 3D digital image correlation measurements," Optics and Lasers in Engineering, vol. 46, no. 10, pp. 746-757, 2008. [34] H. Luo, L. Yu, and B. Pan, "Design and Validation of a Compact Bi-Prism-Based Single-Bilateral-Telecentric-Camera Stereo-DIC System," IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1-10, 2022. [35] K. Wei, F. Yuan, X. Shao, Z. Chen, G. Wu, and X. He, "High-speed multi-camera 3D DIC measurement of the deformation of cassette structure with large shaking table," Mechanical Systems and Signal Processing, vol. 177, p. 109273, 2022. [36] F. Rahman, G. Ngaile, and T. Hassan, "Non-contact temperature control and stereo digital image correlation for high-temperature testing of miniature tubular specimens," Review of Scientific Instruments, vol. 92, no. 11, 2021. [37] D. Solav and A. Silverstein, "Duodic: 3d digital image correlation in Matlab," Journal of Open Source Software, vol. 7, no. 74, p. 4279, 2022. [38] J. C. Dainty, Laser speckle and related phenomena. Springer science & business Media, 2013. [39] J. Bernacki, "Automatic exposure algorithms for digital photography," Multimedia Tools and Applications, vol. 79, no. 19-20, pp. 12751-12776, 2020. [40] J. Song, J. Yang, F. Liu, and K. Lu, "Quality assessment of laser speckle patterns for digital image correlation by a Multi-Factor Fusion Index," Optics and Lasers in Engineering, vol. 124, p. 105822, 2020. [41] E. Peli, "Contrast in complex images," JOSA A, vol. 7, no. 10, pp. 2032-2040, 1990. [42] 鏡. 冼, 數位相機 : 觀念、技巧與原理 / 冼鏡光著, 初版 ed. 臺北市: 儒林, 2007. [43] H. Foroosh, J. B. Zerubia, and M. Berthod, "Extension of phase correlation to subpixel registration," IEEE transactions on image processing, vol. 11, no. 3, pp. 188-200, 2002. [44] Y. Su, Q. Zhang, X. Xu, Z. Gao, and S. Wu, "Interpolation bias for the inverse compositional Gauss–Newton algorithm in digital image correlation," Optics and Lasers in Engineering, vol. 100, pp. 267-278, 2018. [45] B. Pan, K. Li, and W. Tong, "Fast, Robust and Accurate Digital Image Correlation Calculation Without Redundant Computations," Experimental Mechanics, vol. 53, no. 7, pp. 1277-1289, 2013. [46] 陳亮至, "建構立體數位影像相關法之基礎理論並應用於結構靜態與動態三維變形精密量測," 機械工程學研究所, 國立臺灣大學, 2016. [47] B. Pan, A. Asundi, H. Xie, and J. Gao, "Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements," Optics and Lasers in Engineering, vol. 47, no. 7-8, pp. 865-874, 2009. [48] 林佳業, "基於標記式與單應式矩陣演算法識別結構應力集中應用於裂縫破壞檢測," 工程科學及海洋工程學系, 國立臺灣大學, 2023. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91753 | - |
dc.description.abstract | 本文提出使用非接觸式雷射散斑方法結合數位影像相關法對複合材料進行損傷檢測,為了優化本套方法,另外開發曝光評估演算法以及損傷定位法,藉此提高量測精度以及降低實驗架設時間成本。
在傳統的數位影像相關法上,通常都是使用人造散斑作為特徵點來進行分析,但這樣的佈設不僅破壞材料本身美感,在進行量測時更有可能會有散斑剝落的情況發生,本研究使用雷射散斑,透過雷射投射在材料表面,材料表面具有一定的粗糙度,使用攝影設備捕捉雷射從於粗糙表面上散射出的光線,形成的影像即是雷射散斑,本研究即是使用此雷射散斑作為特徵點進行分析。 另外,本研究為了獲得較佳散斑品質,在攝影設備的調控上撰寫一套曝光評估演算法,由於相機具有不同的參數會影響成像品質,透過此演算法協助使用者用最低的時間成本調整影像至最佳影像,藉此保證具有較佳的散斑可供分析,以得到較準確的位移應變場進行進一步的分析;而在判斷損傷位置上,為了避免影像噪點造成誤差帶來的影響,使用損傷定位法可去除誤差外,也可以避免使用者直接觀察應變場所帶來的誤判。本研究更對材料內部的損傷進行研究,探討損傷若是發生於材料內部,本系統是否能夠成功定位損傷位置,藉此擴大可檢測的損傷類型。 | zh_TW |
dc.description.abstract | This study introduces a non-contact laser speckle method combined with digital image correlation for damage detection in composite materials. To optimize this approach, exposure and damage localization method were developed, aimed at enhancing measurement accuracy and reducing experimental setup time and costs.
In traditional digital image correlation, artificial speckles are often used as features for analysis. However, such deployments not only compromise the aesthetics of the material but also increase the likelihood of speckle detachment during measurements. In this research, laser speckles are utilized. A laser is projected onto the material's surface, which possesses a certain level of roughness. The camera captures the laser light scattered from this rough surface, forming the laser speckle pattern used as feature points for analysis. Additionally, to improve speckle quality, this study developed an exposure evaluation algorithm for camera control. Considering different parameters influencing image quality, the algorithm aids users in swiftly adjusting images for optimal quality at minimal time cost. This ensures superior speckle patterns for accurate displacement and strain field analysis. For damage localization, a specialized method avoids noise and error impact, eliminating the need for direct user observation and potential misjudgments. The study also studies internal material damage, exploring the system's capability to localize damage within the material, broadening the range of detectable damage types. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:33:57Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:33:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 目 次 v 圖 次 viii 表 次 xi 名詞對照表 xii 符號說明表 xiv 第一章 簡介 1 1.1 動機 1 1.2 研究背景 1 1.3 研究目的 2 1.4 重要性與貢獻 2 1.5 研究架構與流程 3 第二章 文獻探討 5 2.1 文獻回顧 5 2.2 雷射散斑技術 5 2.3 結構健康監測 8 2.4 數位影像相關法 12 第三章 雷射散斑系統建立與參數討論 17 3.1 雷射散斑方法簡介 17 3.1.1 雷射散斑形成 17 3.1.2 雷射散斑相機參數介紹 17 3.2 雷射散斑系統實驗 21 3.2.1 實驗目的 21 3.2.2 實驗架設 22 3.2.3 實驗結果 23 3.3 雷射散斑相機參數實驗 25 3.3.1 實驗目的 25 3.3.2 實驗架設 25 3.3.3 實驗結果 26 3.4 散斑品質算法介紹 30 3.4.1 多因子融合指數 30 3.4.2 曝光評估演算法 32 3.5 實驗儀器及設備 39 第四章 數位影像相關法損傷實驗探討 40 4.1 數位影像相關法簡介 40 4.1.1 數位影像相關法位移計算 40 4.1.2 逆向合成高斯牛頓法 41 4.1.3 數位影像相關法應變計算 45 4.2 數位影像相關法應變分析實驗 47 4.2.1 實驗目的 47 4.2.2 實驗架設 47 4.2.3 實驗結果 48 4.3 數位影像相關法損傷實驗 50 4.3.1 實驗目的 50 4.3.2 實驗架設 50 4.3.3 實驗結果 51 第五章 損傷定位法結果與討論 63 5.1 損傷定位法 63 5.2 損傷定位法結果 63 第六章 結論與未來展望 68 6.1 結論 68 6.2 未來展望 69 參考文獻 71 附錄 79 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於雷射散斑攝影與曝光評估演算法於複合材料損傷檢測 | zh_TW |
dc.title | Damage detection in composite material based on laser speckle photography and exposure evaluation algorithm | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王昭男;李佳翰;施博仁;周光武 | zh_TW |
dc.contributor.oralexamcommittee | Chao-Nan Wang;Jia-Han Li;Po-Jen Shih;Kuang-Wu Chou | en |
dc.subject.keyword | 數位影像相關法,雷射散斑,非接觸式檢測,內部損傷,曝光評估演算法,損傷定位, | zh_TW |
dc.subject.keyword | digital image correlation,laser speckle,non-contact measurement,internal damage,exposure evaluation algorism,damage localization, | en |
dc.relation.page | 79 | - |
dc.identifier.doi | 10.6342/NTU202400335 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-02-02 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.43 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。