Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91738
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖zh_TW
dc.contributor.advisorHsi-Sheng Goanen
dc.contributor.author周士凱zh_TW
dc.contributor.authorShih-Kai Chouen
dc.date.accessioned2024-02-22T16:29:37Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-02-02-
dc.identifier.citationY. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya, et al. Quantum chemistry in the age of quantum computing. Chemical Reviews, 119(19):10856– 10915, 2019.
S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan. Quantum computational chemistry. Reviews of Modern Physics, 92(1):015003, 2020.
K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, et al. Noisy intermediate-scale quantum algorithms. Reviews of Modern Physics, 94(1):015004, 2022.
W. Kutzelnigg. Pair Correlation Theories. In H. F. Schaefer, editor, Methods of Electronic Structure Theory, volume 3 of Modern Theoretical Chemistry, pages 129–188. Plenum Press, New York, 1977.
M. R. Hoffmann and J. Simons. A unitary multiconfigurational coupled-cluster method: Theory and applications. Journal of Chemical Physics, 88(2):993– 1002, 1988.
R. J. Bartlett, S. A. Kucharski, and J. Noga. Alternative coupled-cluster ansätze II. The unitary coupled-cluster method. Chemical Physics Letters, 155(1):133–140, 1989.
W. Kutzelnigg. Error analysis and improvements of coupled-cluster theory. Theoretica Chimica Acta, 80:349–386, 1991.
A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, 2014.
M.-H. Yung, J. Casanova, A. Mezzacapo, J. Mcclean, L. Lamata, A. Aspuru-Guzik, and E. Solano. From transistor to trapped-ion computers for quantum chemistry. Scientific Reports, 4(1):3589, 2014.
J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Science and Technology, 4(1):014008, 2018.
A. Anand, P. Schleich, S. Alperin-Lea, P. W. Jensen, S. Sim, M. Díaz-Tinoco, J. S. Kottmann, M. Degroote, A. F. Izmaylov, and A. Aspuru-Guzik. A quantum computing view on unitary coupled cluster theory. Chemical Society Reviews, 51:1659–1684, 2022.
J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.
O. Sinanoğlu. Many-Electron Theory of Atoms, Molecules and Their Interactions, volume VI, pages 315–412. John Wiley & Sons, 1964.
R. K. Nesbet. Electronic Correlation in Atoms and Molecules, volume IX, pages 321–363. John Wiley & Sons, 1965.
A. Szabo and N. S. Ostlund. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Dover Publications, Inc. Mineola, New York, 1996.
F. Jensen. Introduction to computational chemistry. John Wiley & Sons, third edition, 2017.
T. Helgaker, P. Jorgensen, and J. Olsen. Molecular electronic-structure theory. John Wiley & Sons, 2013.
I. N. Levine. Quantum chemistry. Pearson, seventh edition, 2013.
C. Møller and M. S. Plesset. Note on an approximation treatment for many-electron systems. Physical Review, 46:618–622, 1934.
R. J. Bartlett, C. E. Dykstra, and J. Paldus. Coupled-cluster methods for molecular calculations, volume 133, pages 127–159. Springer Dordrecht, 1984.
C. David Sherrill and H. F. Schaefer. The configuration interaction method: Advances in highly correlated approaches. In P.-O. Löwdin, J. R. Sabin, M. C. Zerner, and E. Brändas, editors, Advances in Quantum Chemistry, volume 34, pages 143–269. Academic Press, 1999.
T. D. Crawford and H. F. Schaefer III. An Introduction to Coupled Cluster Theory for Computational Chemists, pages 33–136. John Wiley & Sons, 2000.
K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon. A fifth-order perturbation comparison of electron correlation theories. Chemical Physics Letters, 157(6):479–483, 1989.
W. Kutzelnigg. Almost variational coupled cluster theory. Molecular Physics, 94(1):65–71, 1998.
A. G. Taube and R. J. Bartlett. New perspectives on unitary coupled-cluster theory. International Journal of Quantum Chemistry, 106(15):3393–3401, 2006.
F. A. Evangelista. Alternative single-reference coupled cluster approaches for multireference problems: The simpler, the better. Journal of Chemical Physics, 134(22):224102, 2011.
B. Cooper and P. J. Knowles. Benchmark studies of variational, unitary and extended coupled cluster methods. Journal of Chemical Physics, 133(23):234102, 2010.
G. Harsha, T. Shiozaki, and G. E. Scuseria. On the difference between variational and unitary coupled cluster theories. Journal of Chemical Physics, 148(4):044107, 2018.
I. Kassal, J. D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, and A. Aspuru-Guzik. Simulating chemistry using quantum computers. Annual Review of Physical Chemistry, 62(1):185–207, 2011.
P. Jordan and E. Wigner. Über das paulische Äquivalenzverbot. Z. Phys., 47:631–651, 1928.
S. B. Bravyi and A. Y. Kitaev. Fermionic quantum computation. Annals of Physics, 298(1):210–226, 2002.
J. T. Seeley, M. J. Richard, and P. J. Love. The Bravyi-Kitaev transformation for quantum computation of electronic structure. Journal of Chemical Physics, 137(22):224109, 2012.
A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon. Simulated quantum computation of molecular energies. Science, 309(5741):1704–1707, 2005.
J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum computers. Molecular Physics, 109(5):735–750, 2011.
A. Y. Kitaev. Quantum measurements and the abelian stabilizer problem, 1995.
D. S. Abrams and S. Lloyd. Simulation of many-body fermi systems on a universal quantum computer. Physical Review Letters, 79:2586–2589, 1997.
D. S. Abrams and S. Lloyd. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Physical Review Letters, 83:5162–5165, 1999.
P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Computing. Oxford University Press, New York, 2007.
M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010.
P. Nickolas. Wavelets: A Student Guide. Australian Mathematical Society Lecture Series. Cambridge University Press, 2017.
G. Benenti, G. Casati, D. Rossini, and G. Strini. Principles of Quantum Computation and Information: A Comprehensive Textbook. World Scientific, 2019.
H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature Communications, 10(1):3007, 2019.
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, 2017.
J. Gambetta et al. Qiskit/qiskit: QISKIT 0.24.0. https://zenodo.org/ records/4582797, 2021.
P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis, A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo, et al. Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions. Physical Review A, 98(2):022322, 2018.
B. T. Gard, L. Zhu, G. S. Barron, N. J. Mayhall, S. E. Economou, and E. Barnes. Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm. npj Quantum Information, 6(1):10, 2020.
M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, et al. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021.
D. A. Fedorov, B. Peng, N. Govind, and Y. Alexeev. VQE method: A short survey and recent developments. Materials Theory, 6(1):2, 2022.
S. Sim, P. D. Johnson, and A. Aspuru-Guzik. Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.
J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven. Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1):4812, 2018.
W. J. Hehre, R. F. Stewart, and J. A. Pople. Self-consistent molecular-orbital methods. I. Use of gaussian expansions of slater-type atomic orbitals. Journal of Chemical Physics, 51(6):2657–2664, 1969.
T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journal of Chemical Physics, 90(2):1007–1023, 1989.
D. E. Woon and T. H. Dunning. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. Journal of Chemical Physics, 98(2):1358–1371, 1993.
A. K. Wilson, D. E. Woon, K. A. Peterson, and T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton. Journal of Chemical Physics, 110(16):7667–7676, 1999.
B. P. Prascher, D. E. Woon, K. A. Peterson, T. H. Dunning, and A. K. Wilson. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theoretical Chemistry Accounts, 128(1):69–82, 2011.
R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin. Multiresolution quantum chemistry: Basic theory and initial applications. Journal of Chemical Physics, 121(23):11587–11598, 2004.
R. J. Harrison et al. MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation. SIAM Journal on Scientific Computing, 38(5):S123–S142, 2016.
J. S. Kottmann, F. A. Bischoff, and E. F. Valeev. Direct determination of optimal pair-natural orbitals in a real-space representation: the second-order Moller–Plesset energy. Journal of Chemical Physics, 152(7):074105, 2020.
J. S. Kottmann, P. Schleich, T. Tamayo-Mendoza, and A. Aspuru-Guzik. Reducing qubit requirements while maintaining numerical precision for the variational quantum eigensolver: A basis-set-free approach. Journal of Physical Chemistry Letters, 12(1):663–673, 2021.
C.-L. Hong, T. Tsai, J.-P. Chou, P.-J. Chen, P.-K. Tsai, Y.-C. Chen, E.-J. Kuo, D. Srolovitz, A. Hu, Y.-C. Cheng, and H.-S. Goan. Accurate and efficient quantum computations of molecular properties using daubechies wavelet molecular orbitals: A benchmark study against experimental data. PRX Quantum, 3(2):020360, 2022.
I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, 1992.
L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, and R. Schneider. Daubechies wavelets as a basis set for density functional pseudopotential calculations. Journal of Chemical Physics, 129(1):014109, 2008.
L. Genovese, B. Videau, M. Ospici, T. Deutsch, S. Goedecker, and J.-F. Méhaut. Daubechies wavelets for high performance electronic structure calculations: The BIGDFT project. Comptes Rendus Mécanique, 339(2-3):149–164, 2011.
S. Mohr, L. E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch, and S. Goedecker. Daubechies wavelets for linear scaling density functional theory. Journal of Chemical Physics, 140(20):204110, 2014.
L. E. Ratcliff, W. Dawson, G. Fisicaro, D. Caliste, S. Mohr, A. Degomme, B. Videau, V. Cristiglio, M. Stella, M. D’Alessandro, et al. Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations. Journal of Chemical Physics, 152(19):194110, 2020.
I. Shavitt. The Method of Configuration Interaction. In H. F. Schaefer, editor, Methods of Electronic Structure Theory, volume 3 of Modern Theoretical Chemistry, pages 189–275. Plenum Press, New York, 1977.
S. Mohr. Fast and accurate electronic structure methods: large systems and applications to boron-carbon heterofullerenes. PhD thesis, University of Basel, 2013.
T. Deutsch and L. Genovese. Wavelets for electronic structure calculations. École thématique de la Société Française de la Neutronique, 12:33–76, 2011.
A. Khedkar and M. Roemelt. Active space selection based on natural orbital occupation numbers from n-electron valence perturbation theory. Journal of Chemical Theory and Computation, 15(6):3522–3536, 2019.
R. Hosteny, T. Dunning Jr, R. Gilman, A. Pipano, and I. Shavitt. Ab initio study of the π-electron states of trans-butadiene. Journal of Chemical Physics, 62(12):4764–4779, 1975.
P.-O. Löwdin. Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Physical Review, 97:1474–1489, Mar 1955.
J. Kim, K. Hong, S. Choi, S.-Y. Hwang, and W. Y. Kim. Configuration interaction singles based on the real-space numerical grid method: Kohn–Sham versus Hartree–Fock orbitals. Physical Chemistry Chemical Physics, 17(47):31434–31443, 2015.
S. Grimme. Density functional calculations with configuration interaction for the excited states of molecules. Chemical Physics Letters, 259(1):128–137, 1996.
S. Grimme and M. Waletzke. A combination of Kohn–Sham density functional theory and multi-reference configuration interaction methods. Journal of Chemical Physics, 111(13):5645–5655, 1999.
P. Bouř. Configuration interaction with Kohn–Sham orbitals and their relation to excited electronic states. Chemical Physics Letters, 345(3):331–337, 2001.
L. Veseth. Molecular excitation energies computed with Kohn–Sham orbitals and exact exchange potentials. Journal of Chemical Physics, 114(20):8789–8795, 2001.
G. J. O. Beran, S. R. Gwaltney, and M. Head-Gordon. Approaching closed-shell accuracy for radicals using coupled cluster theory with perturbative triple substitutions. Physical Chemistry Chemical Physics, 5(12):2488–2493, 2003.
J. Lim, S. Choi, J. Kim, and W. Y. Kim. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method. Journal of Chemical Physics, 145(22):224309, 2016.
L. W. Bertels, J. Lee, and M. Head-Gordon. Polishing the gold standard: The role of orbital choice in CCSD(T) vibrational frequency prediction. Journal of Chemical Theory and Computation, 17(2):742–755, 2021.
R. G. Parr and Y. Weitao. Density-Functional Theory of Atoms and Molecules. International Series of Monographs on Chemistry. Oxford University Press, 1995.
P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review, 136:B864–B871, 1964.
W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 140:A1133–A1138, 1965.
J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters, 77:3865–3868, 1996.
A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics, 98(7):5648–5652, 1993.
C. Adamo and V. Barone. Toward reliable density functional methods without adjustable parameters: The PBE0 model. Journal of Chemical Physics, 110(13):6158–6170, 1999.
S. Goedecker, M. Teter, and J. Hutter. Separable dual-space gaussian pseudopotentials. Physical Review B, 54(3):1703, 1996.
C. Hartwigsen, S. Goedecker, and J. Hutter. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Physical Review B, 58:3641–3662, 1998.
M. Krack. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theoretical Chemistry Accounts, 114(1):145– 152, 2005.
B. Natarajan, L. Genovese, M. E. Casida, T. Deutsch, O. N. Burchak, C. Philouze, and M. Y. Balakirev. Wavelet-based linear-response time-dependent density-functional theory. Chemical Physics, 402:29–40, 2012.
M. P. Do Carmo. Differential geometry of curves and surfaces. Prentice-Hall, 1976.
R. D. Johnson III. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. http: //cccbdb.nist.gov, 2022.
M. K. Kesharwani, B. Brauer, and J. M. Martin. Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): Can anharmonic force fields be avoided? Journal of Physical Chemistry A, 119(9):1701–1714, 2015.
I. Mayer. Charge, bond order and valence in the AB initio SCF theory. Chemical Physics Letters, 97(3):270–274, 1983.
I. Mayer. Simple Theorems, Proofs, and Derivations in Quantum Chemistry. Mathematical and Computational Chemistry. Springer Science & Business Media, 2003.
Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme, and A. Kandala. Evidence for the utility of quantum computing before fault tolerance. Nature, 618(7965):500–505, 2023.
IBM Quantum. The IBM Quantum State of the Union 2022: The 100x100 Challenge. https://research.ibm.com/blog/ next-wave-quantum-centric-supercomputing, 2022.
S.-K. Chou, J.-P. Chou, A. Hu, Y.-C. Cheng, and H.-S. Goan. Accurate harmonic vibrational frequencies for diatomic molecules via quantum computing. Physical Review Research, 5:043216, 2023. (arXiv:2312.12320 [quant-ph]).
S. Bravyi, J. M. Gambetta, A. Mezzacapo, and K. Temme. Tapering off qubits to simulate fermionic Hamiltonians, 2017.
P. Virtanen et al. SCIPY 1.0: Fundamental algorithms for scientific computing in python. Nature Methods, 17:261–272, 2020.
Q. Sun et al. PYSCF: The python-based simulations of chemistry framework. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8(1):e1340, 2018.
B. O. Roos, P. R. Taylor, and P. E. Sigbahn. A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chemical Physics, 48(2):157–173, 1980.
J. Lee, W. J. Huggins, M. Head-Gordon, and K. B. Whaley. Generalized unitary coupled cluster wave functions for quantum computation. Journal of Chemical Theory and Computation, 15(1):311–324, 2019.
G. D. Mahan. Many-Particle Physics. Physics of Solids and Liquids. Springer Science & Business Media, third edition, 2000.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91738-
dc.description.abstract本篇論文的目的是探索研究使用 Daubechies wavelet 基組在量子化學中來進行量子計算。量子化學的量子計算取決於分子哈密頓算符在一組基底上用分子軌道來表示。常見的編碼方法將一個分子軌道編碼為一個量子位元,因此在模擬分子系統時所需的量子位元數量對應於基組中使用分子軌道的數量。在 noisy intermediate-scale quantum (NISQ) 時代,僅有有限的量子資源可用。目前,使用小基組的大多數量子計算所預測分子性質的準確度仍遠遠不及其相應的實驗數據 (未達到化學準確度)。為了獲得準確的結果, 需要使用很大的建構於傳統高斯基底函數之分子軌道基組,這也對應到大量量子位元的使用。因此,需要量子計算方法來克服這一有限量子資源的挑戰,但仍能實現與實驗數據有相當的準確結果。在這工作中,我們提出一個有前景的節省量子位元的量子計算方法,並進行全面性的研究藉由通過對大量中性閉殼雙原子的簡諧振動頻率進行基準測試,其結果與實驗數據非常一致。為此,我們使用從密度泛函理論導出的分子軌道以考慮電子相關性來建構準確的哈密頓算符,且在 Daubechies wavelet基組中展開以在實空間網格點上精確表示,並進一步選擇了一個最佳緊緻的活行空間,以便只需要少量的量子位元即可得到準確的結果。為了驗證這種方法的有效行,我們首先將選定的分子軌道生成之哈密頓算符轉換為量子位元哈密頓算符,然後使用精確對角化方法計算結果,其被視為量子計算可達到的最佳解,以與實驗數據進行比較。此外,在使用構建的量子位元哈密頓算符進行 variational quantum eigensolver 演算法計算,我們展示了 chemistry-inspired UCCSD ansatz 的變分量子電路可以達到與精確對角化方法相同的準確度,除了那些 Mayer 鍵級數大於2的系統。對於這些系統,我們進一步展示了啟發式的 hardware-efficient RealAmplitudes ansatz,即使電路深度明顯較短,能夠有一個相對於UCCSD ansatz顯著的改善,證實了在NISQ時代下可以準確計算簡諧振動頻率。zh_TW
dc.description.abstractThe aim of this thesis is to explore the use of the Daubechies wavelet basis set in quantum computation for quantum chemistry. Quantum computation of quantum chemistry depends on a representation of the molecular Hamiltonian by the molecular orbitals (MOs) in a basis set. Common encoding methods encode a MO into a qubit, and thus the number of qubits needed to simulate a molecular system corresponds to the number of MOs used in a basis set. During the noisy intermediate-scale quantum (NISQ) era, only limited quantum resources are available. Nowadays, the accuracy of the molecular properties predicted by most of the quantum computations using small basis sets is still far off (not within chemical accuracy) compared to their corresponding experimental data. To yield accurate results, a large MO basis set using the traditional Gaussian basis functions is required, consequently corresponding to the use of a large number of qubits. Therefore, quantum computational approaches to overcome this challenge of limited quantum resources but can still achieve accurate results comparable to the experimental data are desirable. In this thesis, we propose a promising qubit-efficient quantum computational approach and present a comprehensive investigation by benchmarking quantum computation of the harmonic vibrational frequencies of a large set of neutral closed-shell diatomic molecules with results in great agreement with their experimental data. To this end, we construct the accurate Hamiltonian using molecular orbitals, derived from density functional theory to account for the electron correlation and expanded in the Daubechies wavelet basis set to allow an accurate representation in real space grid points, where an optimized compact active space is further selected so that only a reduced small number of qubits is sufficient to yield an accurate result. To justify the approach, we benchmark the performance of the Hamiltonians spanned by the selected molecular orbitals by first transforming the molecular Hamiltonians into qubit Hamiltonians and then using the exact diagonalization method to calculate the results, regarded as the best results achievable by quantum computation to compare to the experimental data. Furthermore, using the variational quantum eigensolver algorithm with the constructed qubit Hamiltonians, we show that the variational quantum circuit with the chemistry-inspired UCCSD ansatz can achieve the same accuracy as the exact diagonalization method except for systems whose Mayer bond order indices are larger than 2. For those systems, we then demonstrate that the heuristic hardware-efficient RealAmplitudes ansatz, even with a substantially shorter circuit depth, can provide a significant improvement over the UCCSD ansatz, verifying that the harmonic vibrational frequencies could be calculated accurately by quantum computation in the NISQ era.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:29:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:29:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
List of Figures ix
List of Tables x
I Computational Methods for Quantum Chemistry 1
1 Introduction 2
2 Quantum Chemistry 5
2.1 Electronic Hamiltonian 5
2.2 Second-Quantized Electronic Hamiltonian 7
2.3 Hartree-Fock Theory 8
2.4 Møller-Plesset Perturbation Theory 13
2.4.1 Second Order Møller–Plesset Perturbation Theory 13
2.5 Configuration Interaction Theory 16
2.5.1 Full Configuration Interaction 18
2.6 Coupled-Cluster Theory 20
2.6.1 Traditional Coupled-Cluster Theory 22
2.6.2 Variational Coupled-Cluster Theory 24
2.6.3 Unitary Coupled-Cluster Theory 24
3 Quantum Computing Methods 26
3.1 Qubit Hamiltonian 26
3.2 Quantum Phase Estimation 27
3.3 Variational Quantum Eigensolver 35
3.3.1 Chemistry-Inspired Ansatz: Quantum Unitary Coupled-Cluster 35
3.3.2 Hardware-Efficient Ansatz 39
4 Basis Set 42
4.1 Gaussian-Type Basis Function 43
4.2 The Real-Space Numerical Gird Method: Daubechies Wavelet 46
4.2.1 Daubechies Wavelet Molecular Orbitals from BIGDFT 50
5 Active Space 53
5.1 Frozen Core Approximation 54
5.2 Natural Orbital and Natural Orbital Occupation Number 55
5.3 [MB] Active Space 57
5.4 [IEPA1] Active Space 57
6 Wave Function Theory/Density Functional Theory 61
6.1 Kohn-Sham Density Functional Theory 62
6.1.1 Exchange-Correlation Functional 66
6.1.2 Equivalence to Hartree-Fock Theory 68
6.2 Wave Function Theory Using Kohn-Sham Molecular Orbitals 69
II Accurate Harmonic Vibrational Frequencies for Diatomic Molecules via Quantum Computing 72
7 Benchmark 73
7.1 Benchmark Metric: Harmonic Vibrational Frequency 73
7.1.1 Experimental Vibrational Frequency 76
7.2 Benchmark Dataset: Diatomic Molecules 76
7.2.1 Dataset Classification: Mayer Bond Order 77
8 Results 80
8.1 Computational Methods 82
8.1.1 Quantum Computing 82
8.1.2 Classical Computing 83
8.1.3 Harmonic Vibrational Frequency 83
8.1.4 Notations 83
8.2 Performance of the Daubechies Wavelet Basis Set 84
8.2.1 H2 , LiH, and HF 84
8.2.2 Performance on the Overall Dataset 87
8.3 VQE(UCCSD) Benchmark 92
8.4 VQE(UCCSD) versus VQE(RealAmplitudes) 95
9 Conclusion and Outlook 100
A Second Quantization 103
B Two-Electron Integral from BIGDFT Poisson Solver 110
C Parity Encoding - Two Qubit Reduction 112
D Supplemental Data 115
D.1 Harmonic Vibrational Frequencies 115
D.1.1 EDQC[MB]-XC/Wavelet 115
D.1.2 DFT-XC/Wavelet 118
D.2 Equilibrium Bond Lengths 120
D.2.1 EDQC[MB]-XC/Wavelet 122
D.2.2 DFT-XC/Wavelet 123
D.2.3 VQE(UCCSD) 124
Bibliography 125
-
dc.language.isoen-
dc.subject量子計算zh_TW
dc.subjectVQEzh_TW
dc.subject量子化學zh_TW
dc.subjectDaubechies Waveletzh_TW
dc.subject簡諧振動頻率zh_TW
dc.subjectHarmonic Vibrational Frequencyen
dc.subjectQuantum Chemistryen
dc.subjectVQEen
dc.subjectDaubechies Waveleten
dc.subjectQuantum Computingen
dc.title用 Daubechies Wavelet 分子軌域在量子化學中進行量子計算zh_TW
dc.titleQuantum Computation for Quantum Chemistry Using Daubechies Wavelet Molecular Orbitalsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee鄭原忠;林俊達;胡琪怡;周至品zh_TW
dc.contributor.oralexamcommitteeYuan-Chung Cheng;Guin-Dar Lin;Allice Hu;Jyh-Pin Chouen
dc.subject.keyword量子計算,VQE,量子化學,Daubechies Wavelet,簡諧振動頻率,zh_TW
dc.subject.keywordQuantum Computing,VQE,Quantum Chemistry,Daubechies Wavelet,Harmonic Vibrational Frequency,en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202400473-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-02-06-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved