請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91721
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蘇國棟 | zh_TW |
dc.contributor.advisor | Guo-Dung J. Su | en |
dc.contributor.author | 黃志維 | zh_TW |
dc.contributor.author | Chih-Wei Huang | en |
dc.date.accessioned | 2024-02-22T16:24:37Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-01 | - |
dc.identifier.citation | [1] Y. Yin, Z. Hu, M. U. Ali, M. Duan, L. Gao, M. Liu, W. Peng, J. Geng, S. Pan, Y. Wu, J. Hou, J. Fan, D. Li, X. Zhang, and H. Meng, "Full-Color Micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers," Advanced Materials Technologies, vol. 5, no. 8, p. 2000251, 2020.
[2] H. C. Shim, J. Kim, S. Y. Park, B. S. Kim, B. Jang, H. J. Lee, A. Kim, S. Hyun, and J. H. Kim, "Full-color micro-LED display with photo-patternable and highly ambient-stable perovskite quantum dot/siloxane composite as color conversion layers," (in eng), Sci Rep, vol. 13, no. 1, p. 4836, 2023. [3] S. Xu, T. Yang, J. Lin, Q. Shen, J. Li, Y. Ye, L. Wang, X. Zhou, E. Chen, Y. Ye, and T. Guo, "Precise theoretical model for quantum-dot color conversion," Opt. Express, vol. 29, no. 12, pp. 18654-18668, 2021. [4] H. Cho, J. A. Pan, H. Wu, X. Lan, I. Coropceanu, Y. Wang, W. Cho, E. A. Hill, J. S. Anderson, and D. V. Talapin, "Direct Optical Patterning of Quantum Dot Light-Emitting Diodes via In Situ Ligand Exchange," (in eng), Adv Mater, vol. 32, no. 46, p. e2003805, 2020. [5] C. Li, H. Luo, and J. Song, "Magnetically Driven Non‐Contact Transfer Printing Based on a Bi‐Stable Elastomeric Stamp," Advanced Materials Technologies, vol. 6, no. 11, p. 2100335, 2021. [6] L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulović, "Contact Printing of Quantum Dot Light-Emitting Devices," Nano Letters, vol. 8, no. 12, pp. 4513-4517, 2008. [7] T. Ma, J. Chen, Z. Chen, L. Liang, J. Hu, W. Shen, Z. Li, and H. Zeng, "Progress in Color Conversion Technology for Micro-LED," Advanced Materials Technologies, vol. 8, no. 1, p. 2200632, 2023. [8] S. Lanceros-Méndez and C. M. Costa, Printed batteries: materials, technologies and applications. John Wiley & Sons, 2018. [9] H. P. Le, "Progress and trends in ink-jet printing technology," Journal of imaging science and technology, vol. 42, no. 1, pp. 49-62, 1998. [10] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, "Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, no. 7, p. S407, 2006. [11] M. Alshareef, Novel Polycyclic Aromatic Hydrocarbon Copolymer for Graphene Exfoliation and Functionalisation. The University of Manchester (United Kingdom), 2021. [12] X. Zhang, A. Chen, T. Yang, J. Cai, Y. Ye, E. Chen, S. Xu, Y. Ye, J. Sun, and Q. Yan, "Tripling light conversion efficiency of μLED displays by light recycling black matrix," IEEE Photonics Journal, vol. 14, no. 2, pp. 1-7, 2022. [13] S. Xu, X. Lin, X. Zhang, E. Chen, Y. Ye, T. Guo, and Q. F. Yan, "Quantum‐dot color conversion towards white‐balanced healthy displays: Theoretical and simulation study," J. Soc. Inf. Disp., vol. 30, no. 11, pp. 837-844, 2022. [14] F. Qin, C. Liu, W. Wu, W. Peng, S. Huo, J. Ye, and S. Gu, "Inkjet printed quantum dots color conversion layers for full-color micro-LED displays," Electronic Materials Letters, vol. 19, no. 1, pp. 19-28, 2023. [15] S.-H. Li, C.-P. Lin, Y.-H. Fang, W.-H. Kuo, M.-H. Wu, C.-L. Chao, R.-H. Horng, and G.-D. J. Su, "Performance analysis of GaN-based micro light-emitting diodes by laser lift-off process," Solid State Electronics Letters, vol. 1, no. 2, pp. 58-63, 2019. [16] T. Jiang, N.-Z. Zhuo, L.-Y. Xie, X.-F. Liu, and H.-B. Wang, "Enhancement of efficiency and uniformity for green remote phosphor films and laminated white LEDs based on ZrO2 microparticles," Journal of Materials Science: Materials in Electronics, vol. 31, no. 14, pp. 11581-11588, 2020. [17] Z. Zhao, X. Wang, K. Yang, F. Fan, D. Wu, S. Liu, and K. Wang, "Analysis of Factors Affecting Optical Performance of GaN-Based Micro-LEDs with Quantum Dots Films," Crystals, vol. 10, no. 3, p. 203, 2020. [18] O. P. Parida and N. Bhat, "Characterization of optical properties of SU-8 and fabrication of optical components," in ICOP International Conference on Optics and Photonics (CISO), Chandigarh, India, 2009. [19] M. Quirk and J. Serda, Semiconductor manufacturing technology. Upper Saddle River, NJ: Prentice Hall Upper Saddle River, NJ (in eng), 2001. [20] D. House and D. Li, "Anisotropic Etching," in Encyclopedia of Microfluidics and Nanofluidics, D. Li Ed. Boston, MA: Springer US, pp. 47-49, 2008. [21] R. Wannemacher, "Confocal Laser Scanning Microscopy," in Encyclopedia of Nanotechnology, B. Bhushan Ed. Dordrecht: Springer Netherlands, pp. 500-516, 2012. [22] M.-M. Laurila, A. Soltani, and M. Mäntysalo, "Inkjet printed single layer high-density circuitry for a MEMS device," in IEEE 65th Electronic Components and Technology Conference (ECTC), pp. 968-972, 2015. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91721 | - |
dc.description.abstract | 在人工智慧時代的推動下,智慧穿戴裝置對於省電、高效能及高解析度顯示器的需求日益增長。微型LED技術因應這些需求,展現出其長壽命、高亮度和低功耗的優勢。本論文介紹了兩種製作高解析度微型發光二極體色彩轉換層的方法,並探討其可行性。第一種方法是利用量子點光阻(QDPR)作為色彩轉換材料,並結合由黑色含碳粒光阻形成的黑色矩陣(Black Matrix)結構。這種方法的優點在於提升了良率,但由於需要在光阻中加入高濃度量子點,會影響其光敏劑的交聯反應,同時高溫製程對量子點的耐熱性也是一大挑戰。
第二種方法則採用超微細噴印(Super Inkjet Printing)技術,將微米級液滴的量子點墨水滴入至色彩轉換層結構中。這方法解決了第一種方法中的部分缺點,但在微米尺寸印刷的精準度和效率方面仍面臨挑戰。此外,我們使用矽穿孔(TSV)結構製作黑色矩陣,能提高色彩轉換層的厚度,並且有效降低光學串擾(Crosstalk),從而提升光轉換效率。 我們模擬的結果顯示量子點薄膜的厚度對光吸收和轉換效率有重要影響,而黑色矩陣材料的吸收度和反射率則是改善光學串擾的關鍵。 | zh_TW |
dc.description.abstract | In the era of artificial intelligence, the demand for power-efficient, high-performance, and high-resolution displays in smart wearable devices is growing rapidly. Micro-LED technology, known for its longevity, high brightness, and low power consumption, addresses these needs effectively. This thesis presents two methodologies for fabricating high-resolution Micro-LED color conversion layers and explores their feasibility. The first method employs Quantum Dot Photoresist (QDPR) as the color conversion material and combines it with a Black Matrix (BM) structure formed by a black carbon-containing photoresist. This approach enhances yield but challenges the crosslinking reaction of the photoresist due to the high concentration of quantum dots required, and the quantum dots'' thermal stability during high-temperature processes poses significant challenges.
The second method utilizes Super Inkjet (SIJ) Printing technology to deposit micrometer-sized droplets of quantum dot ink into the color conversion layer. This technique overcomes some limitations of the first method but still faces challenges in the precision and efficiency of micrometer-scale printing. Furthermore, the incorporation of Through-Silicon Vias (TSV) in the development of the BM structure significantly augments the thickness of the color conversion layer, effectively reducing optical crosstalk and thereby improving the light conversion efficiency. Our simulation results indicate that the thickness of the quantum dot thin film significantly impacts light absorption and conversion efficiency. The optical absorption and reflectivity of the BM material are crucial in mitigating optical crosstalk | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:24:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:24:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvii Chapter 1 Introduction 1 1.1 Color Conversion Technology of Micro Light-Emitting Diodes 1 1.2 Inkjet Printing Technology 3 1.3 Motivation 7 Chapter 2 Structure Design and Simulation 8 2.1 QD Color Conversion Principle 8 2.1.1 Quantum Dot Thin Films 8 2.1.2 Black Matrix Structure 9 2.2 O ptical Simulation 12 2.2.1 Quantum Dot Thin Films 18 2.2.2 QDPR Color-Conversion Layer 25 2.2.3 Color-Conversion Layer with TSV Structure 30 Chapter 3 Materials and Experimental Instruments 36 3.1 Materials 36 3.1.1 Quantum Dots (QDs) 36 3.1.2 SU-8 Photoresist 39 3.1.3 GMC1050 Black Matrix (BM) Photoresist 41 3.1.4 S1813 Photoresist 43 3.2 Experimental Instruments 44 3.2.1 UV Ozone Cleaner 44 3.2.2 Spin Coater 46 3.2.3 Photolithography 48 3.2.4 Plasma Enhanced Chemical Vapor Deposition (PECVD) 52 3.2.5 Reactive Ion Etching (RIE) 55 3.2.6 Inductively Coupled Plasma Reactive Ion Etching (ICP-RIE) 56 3.2.7 Confocal Laser Scanning Microscope (CLSM) 59 3.2.8 Surface Profiler 60 3.2.9 Scanning Electron Microscope (SEM) 61 3.2.10 Focus Ion Beam Microscope (FIB) 63 3.2.11 Photoluminescence Spectrometer (PL) 64 3.2.12 Super Inkjet (SIJ) Printing System 66 Chapter 4 Fabrication Process 70 4.1 Fabrication Process of QDPR Method 71 4.1.1 Black Matrix Structure 71 4.1.2 Synthesis of Quantum Dots Photoresist (QDPR) 74 4.1.3 QDPR Color-Conversion Layer 76 4.2 Fabrication Process of SIJ Method 77 4.2.1 SOG Wafer Manufacturing 78 4.2.2 Quantum-Dot-Color-Conversion Layer 82 Chapter 5 Experimental Results 104 5.1 Experimental Results by QDPR Method 104 5.1.1 PLQY Measurements for the Red QDPR Thin Films 105 5.1.2 Results of QDPR Color-Conversion Layer 109 5.2 Experimental Results by SIJ Method 114 5.2.1 Surface Roughness Measurement of SOG Wafer 114 5.2.2 Results of Quantum-Dot-Color-Conversion Layer 116 5.2.3 Improve Inkjet Printing Performance 122 Chapter 6 Conclusion 132 REFERENCE 135 | - |
dc.language.iso | en | - |
dc.title | 以兩種不同方法製作微發光二極體色彩轉換層之可行性研究 | zh_TW |
dc.title | Feasibility Study of Fabricating Micro Light-Emitting Diode Color Conversion Layer with Two Different Methods | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 吳育任;張子璿 | zh_TW |
dc.contributor.oralexamcommittee | Yuh-Renn Wu;Tzu-Hsuan Chang | en |
dc.subject.keyword | 量子點,色彩轉換層,黑色矩陣,超微細噴印,矽穿孔,微型發光二極體,光學串擾,光轉換效率, | zh_TW |
dc.subject.keyword | quantum dot,color conversion layer,black matrix,super inkjet printing,through-silicon via,micro light-emitting diode,optical crosstalk,light conversion efficiency, | en |
dc.relation.page | 137 | - |
dc.identifier.doi | 10.6342/NTU202400467 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-02-05 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 光電工程學研究所 | - |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 目前未授權公開取用 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。