請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91715
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳凱儀 | zh_TW |
dc.contributor.advisor | Kai-Yi Cheng | en |
dc.contributor.author | 林宥任 | zh_TW |
dc.contributor.author | Yu-Jen Lin | en |
dc.date.accessioned | 2024-02-22T16:22:51Z | - |
dc.date.available | 2024-02-23 | - |
dc.date.copyright | 2024-02-22 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-02-04 | - |
dc.identifier.citation | 李牧忱。2023年。番茄品種Siberia在熱逆境下維持花粉數目及花粉活性之遺傳因子的研究。國立臺灣大學農藝學研究所學位論文。
洪瑛穗, 周明燕, 郭宏遠, 劉明宗, & 李美娟. (2019). 番茄生產, 抗病育種及品種育成概況. 種苗科技專訊, (105), 2-5. Adams, S. R., Cockshull, K. E., & Cave, C. R. J. (2001). Effect of temperature on the growth and development of tomato fruits. Annals of botany, 88(5), 869-877. Agarwal, M., Shrivastava, N., & Padh, H. (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant cell reports, 27, 617-631. Ali, O. A., O’Rourke, S. M., Amish, S. J., Meek, M. H., Luikart, G., Jeffres, C., & Miller, M. R. (2016). RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics, 202(2), 389-400. Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi journal of biological sciences, 28(3), 1654-1663. Ayenan, M. A. T., Danquah, A., Agre, P. A., Hanson, P., Asante, I. K., & Danquah, E. Y. (2021). Genomic and phenotypic diversity of cultivated and wild tomatoes with varying levels of heat tolerance. Genes, 12(4), 503. Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., & Danquah, E. Y. (2019). Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): an integrated approach. Agronomy, 9(11), 720. Ayenan, M. A. T., Danquah, A., Hanson, P., Asante, I. K., & Danquah, E. Y. (2022). Tomato (Solanum lycopersicum L.) genotypes respond differently to long-term dry and humid heat stress. Horticulturae, 8(2), 118. Bineau, E., Diouf, I., Carretero, Y., Duboscq, R., Bitton, F., Djari, A., ... & Causse, M. (2021). Genetic diversity of tomato response to heat stress at the QTL and transcriptome levels. The Plant Journal, 107(4), 1213-1227. Brown, D., & Vision, T. (2000). MapPop 1.0: software for selective mapping and bin mapping. Computer program available from http://www. bio. unc. edu/faculty/vision/lab/mappop/.[Accessed 29 June 2008]. Cammarano, D., Jamshidi, S., Hoogenboom, G., Ruane, A. C., Niyogi, D., & Ronga, D. (2022). Processing tomato production is expected to decrease by 2050 due to the projected increase in temperature. Nature Food, 3(6), 437-444. Ceccarelli, S., Acevedo, E., & Grando, S. (1991). Breeding for yield stability in unpredictable environments: single traits, interaction between traits, and architecture of genotypes. Euphytica, 56, 169-185. Collard, B. C., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, 142, 169-196. Cullis, B. R., Smith, A. B., & Coombes, N. E. (2006). On the design of early generation variety trials with correlated data. Journal of agricultural, biological, and environmental statistics, 11, 381-393. El-Bassiony, A. M., Fawzy, Z. F., Riad, G. S., & Ghoname, A. A. (2014). Mitigation of high temperature stress on growth, yield and fruit quality of tomato plants by different shading level. Middle East Journal of Applied Sciences, 4(4), 1034-1040. FAOSTAT. (2021). Value of Agricultural Production. URL https://www.fao.org/faostat/en/#data/QV IPCC, 2023: Summary for Policymakers. In: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 36 pages. (in press). Jerca, O. I., Drăghici, E. M., Cîmpeanu, S. M., Teodorescu, R. I., Țiu, J., Postamentel, M., & Bădulescu, L. (2022). The Combined Effect of Temperature and Light Variation on some Quality Parameters in Cherry Tomatoes. Scientific Papers. Series B. Horticulture, 66(2). Jones Jr, J. B. (2007). Tomato plant culture: in the field, greenhouse, and home garden. CRC press. Kinet, J. M. (1977). Effect of light conditions on the development of the inflorescence in tomato. Scientia Horticulturae, 6(1), 15-26. Lee, K., Rajametov, S. N., Jeong, H. B., Cho, M. C., Lee, O. J., Kim, S. G., ... & Chae, W. B. (2022). Comprehensive understanding of selecting traits for heat tolerance during vegetative and reproductive growth stages in tomato. Agronomy, 12(4), 834. Lin, K. H., Yeh, W. L., Chen, H. M., & Lo, H. F. (2010). Quantitative trait loci influencing fruit-related characteristics of tomato grown in high-temperature conditions. Euphytica, 174, 119-135. Lohar, D. P., & Peat, W. E. (1998). Floral characteristics of heat-tolerant and heat-sensitive tomato (Lycopersicon esculentum Mill.) cultivars at high temperature. Scientia horticulturae, 73(1), 53-60. Lozano-Isla, F. (2021). inti: Tools and statistical procedures in plant science. R Package Version 0.1, 3. Mammadov, J., Aggarwal, R., Buyyarapu, R., & Kumpatla, S. (2012). SNP markers and their impact on plant breeding. International journal of plant genomics, 2012. Mariotti, L., Picciarelli, P., Lombardi, L., & Ceccarelli, N. (2011). Fruit-set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin, and bioactive gibberellin contents. Journal of Plant Growth Regulation, 30, 405-415. Mesihovic, A., Iannacone, R., Firon, N., & Fragkostefanakis, S. (2016). Heat stress regimes for the investigation of pollen thermotolerance in crop plants. Plant reproduction, 29, 93-105. Newton, P., Sahraoui, R., & Economakis, C. (1999, February). The influence of air temperature on truss weight of tomatoes. In III International Workshop on Models for Plant Growth and Control of the Shoot and Root Environments in Greenhouses 507 (pp. 43-50). Nyquist, W. E., & Baker, R. J. (1991). Estimation of heritability and prediction of selection response in plant populations. Critical reviews in plant sciences, 10(3), 235-322. Peet, M., Sato, S., Clément, C., & Pressman, E. (2002, August). Heat stress increases sensitivity of pollen, fruit and seed production in tomatoes (Lycopersicon esculentum Mill.) to non-optimal vapor pressure deficits. In XXVI International Horticultural Congress: Environmental Stress and Horticulture Crops 618 (pp. 209-215). Peet, M., Willits, D. H., & Gardner, R. (1997). Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. Journal of experimental botany, 48(1), 101-111. Pereira, L., Zhang, L., Sapkota, M., Ramos, A., Razifard, H., Caicedo, A. L., & van Der Knaap, E. (2021). Unraveling the genetics of tomato fruit weight during crop domestication and diversification. Theoretical and Applied Genetics, 134, 3363-3378. Picken, A. J. F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). Journal of Horticultural Science, 59(1), 1-13. Powell, A. L., Nguyen, C. V., Hill, T., Cheng, K. L., Figueroa-Balderas, R., Aktas, H., ... & Bennett, A. B. (2012). Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science, 336(6089), 1711-1715. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. Ro, S., Chea, L., Ngoun, S., Stewart, Z. P., Roeurn, S., Theam, P., ... & Prasad, P. V. (2021). Response of tomato genotypes under different high temperatures in field and greenhouse conditions. Plants, 10(3), 449. Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa, H., & Ikeda, H. (2006). Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Annals of botany, 97(5), 731-738. Sato, S., Peet, M. M., & Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, cell & environment, 23(7), 719-726. Schmidt, P., Hartung, J., Rath, J., & Piepho, H. P. (2019). Estimating broad‐sense heritability with unbalanced data from agricultural cultivar trials. Crop Science, 59(2), 525-536. Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International agrophysics, 32(2), 287-302. Silva, R. S., Kumar, L., Shabani, F., & Picanço, M. C. (2017). Assessing the impact of global warming on worldwide open field tomato cultivation through CSIRO-Mk3· 0 global climate model. The Journal of Agricultural Science, 155(3), 407-420. Van der Knaap, E., Chakrabarti, M., Chu, Y. H., Clevenger, J. P., Illa-Berenguer, E., Huang, Z., ... & Wu, S. (2014). What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Frontiers in Plant Science, 5, 227. Van Ploeg, D., & Heuvelink, E. (2005). Influence of sub-optimal temperature on tomato growth and yield: a review. The Journal of Horticultural Science and Biotechnology, 80(6), 652-659. Xu, J., Driedonks, N., Rutten, M. J., Vriezen, W. H., de Boer, G. J., & Rieu, I. (2017a). Mapping quantitative trait loci for heat tolerance of reproductive traits in tomato (Solanum lycopersicum). Molecular Breeding, 37, 1-9. Xu, J., Jansma, S. Y., Wolters-Arts, M., de Groot, P. F., Jansen, M. J., & Rieu, I. (2022). Long-term mild heat causes post-mitotic pollen abortion through a local effect on flowers. Frontiers in Plant Science, 13. Xu, J., Wolters-Arts, M., Mariani, C., Huber, H., & Rieu, I. (2017b). Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum). Euphytica, 213, 1-12. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91715 | - |
dc.description.abstract | 高溫是影響番茄生產的主要逆境因子,尤其在台灣的夏季造成嚴重的產量損失。隨著全球平均氣溫的逐漸升高,對於番茄耐熱性的育種研究也愈發重要。番茄的花與果實容易受到高溫的影響,造成花朵數、果實數、結果率等產量相關性狀的下降,最終導致產量的損失。為了探討長期和緩高溫影響產量相關性狀背後的遺傳高溫與常溫試驗、調查外表型變異、並進行數量性狀基因座定位。外表型調查的結果顯示長期和緩高溫無論在田間或溫室都造成花序上果實數量與結果率的下降。在高溫下,結果率與果實數的相關性比常溫時更加緊密,且花朵數與果實數的相關性降低。數量性狀基因座分析的結果顯示在 1 號染色體 51.6 cM 至 69 cM 處存在一個在所有環境下皆與花朵數相關的基因座,並在2、3、4、5、6、7 與 12 號染色體上也定位到各種產量相關性狀的基因座。本研究的結果展示了番茄重組自交族群CLN4220產量相關性狀在不同栽培設施下對高溫的反應,並發現許多與這些性狀相關的遺傳因子,這些都是後續進行番茄耐熱育種研究時重要的參考資料。 | zh_TW |
dc.description.abstract | High temperature poses a significant challenge to tomato production, particularly during the summer months in Taiwan. Research on heat tolerance in tomatoes has become increasingly important as global temperatures rise. Under high-temperature conditions, tomato flowers and fruits are particularly vulnerable, leading to reduced yield-related traits such as flower number, fruit number, and fruit set, ultimately resulting in yield loss. To investigate the genetic composition underlying the effects of long-term mild heat on yield-related traits, a recombinant inbred population, CLN4220, was used to study phenotypic variation and map quantitative trait locus in both field and greenhouse settings under high and ambient temperatures. The phenotypic results showed that long-term mild heat caused a decrease in the fruit number and the fruit set on the inflorescence in both field and greenhouse conditions. The correlation between fruit set and fruit number was stronger at higher temperatures than ambient temperatures, while the correlation between flower number and fruit number was reduced. Eventually, the quantitative trait locus analysis identified a locus associated with flower number in all environments at 51.6cM to 69cM of chromosome 1. Additionally, loci for various yield-related traits were found on chromosomes 2, 3, 4, 5, 6, 7, and 12. These findings provide insights into the response of tomato yield-related traits to high temperatures in different cultivation facilities and reveal the genetic factors controlling these traits. This information will be valuable for future research on heat tolerance breeding in tomatoes. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:22:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-22T16:22:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 ... I
摘要 ... II Abstract ... III 目次 ... IV 圖次 ... V 表次 ... VI 外表型性狀縮寫表...VII 第一章 前言 ... 1 第二章 材料與方法 ... 4 第一節 植物材料 ... 4 第二節 試驗設計 ... 5 第三節 栽培管理 ... 7 第四節 外表型調查方法 ... 9 第五節 外表型資料分析方法 ... 13 第六節 基因型分型與連鎖圖譜構建... 15 第七節 數量性狀基因座定位與分析... 16 第三章 結果 ... 17 第一節 田間與溫室溫濕度觀測結果 ... 17 第二節 全季度七個重點性狀外表型資料分析... 23 第三節 各季度性狀外表型資料分析 ... 36 第四節 連鎖圖譜與數量基因座定位 ... 50 第四章 討論 ... 60 第五章 結論 ... 67 參考文獻 ... 68 附錄 ... 74 | - |
dc.language.iso | zh_TW | - |
dc.title | 番茄重組自交族群 CLN4220 果實產量相關性狀變異的遺傳組成分析 | zh_TW |
dc.title | Analysis of the Genetic Composition for Phenotypic Variation of Fruit Yield-related Traits in the Tomato Recombinant Inbred Population CLN4220 | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡育彰;楊雯如 | zh_TW |
dc.contributor.oralexamcommittee | Yu-Chang Tsai;Wen-Ju Yang | en |
dc.subject.keyword | 番茄,熱逆境,花朵,果實,產量相關性狀,數量性狀基因座, | zh_TW |
dc.subject.keyword | Tomato,Heat stress,Flower,Fruit,Yield-related traits,Quantitative trait loci, | en |
dc.relation.page | 82 | - |
dc.identifier.doi | 10.6342/NTU202400382 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-02-06 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 農藝學系 | - |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 3.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。