Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91693
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光zh_TW
dc.contributor.advisorChi-Kuang Sunen
dc.contributor.author楊子賢zh_TW
dc.contributor.authorZih-Sian Yangen
dc.date.accessioned2024-02-22T16:16:05Z-
dc.date.available2024-02-23-
dc.date.copyright2024-02-22-
dc.date.issued2024-
dc.date.submitted2024-02-03-
dc.identifier.citation[1] J. Kim et al., "Tracking reaction dynamics in solution by pump-probe X-ray absorption spectroscopy and X-ray liquidography (solution scattering)," Chem Commun (Camb), vol. 52, no. 19, pp. 3734-49, Mar 7 2016, doi: 10.1039/c5cc08949b.
[2] M. Fickert, M. Assebban, J. Canet-Ferrer, and G. Abellán, "Phonon properties and photo-thermal oxidation of micromechanically exfoliated antimonene nanosheets," 2D Materials, vol. 8, no. 1, 2020, doi: 10.1088/2053-1583/abb877.
[3] R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, "Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy," Reviews of Modern Physics, vol. 83, no. 2, pp. 543-586, 2011, doi: 10.1103/RevModPhys.83.543.
[4] P. J. Wang, C. J. Chang, S. Y. Lin, J. K. Sheu, and C. K. Sun, "Temporally probing the thermal phonon and charge transfer induced out-of-plane acoustical displacement of monolayer and bi-layer MoS(2)/GaN heterojunction," Photoacoustics, vol. 30, p. 100477, Apr 2023, doi: 10.1016/j.pacs.2023.100477.
[5] P. J. Wang, P. C. Tsai, Z. S. Yang, S. Y. Lin, and C. K. Sun, "Revealing the interlayer van der Waals coupling of bi-layer and tri-layer MoS(2) using terahertz coherent phonon spectroscopy," Photoacoustics, vol. 28, p. 100412, Dec 2022, doi: 10.1016/j.pacs.2022.100412.
[6] C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc, and J. J. Hauser, "Coherent Phonon Generation and Detection by Picosecond Light Pulses," Physical Review Letters, vol. 53, no. 10, pp. 989-992, 1984, doi: 10.1103/PhysRevLett.53.989.
[7] R. C. Ng et al., "Excitation and detection of acoustic phonons in nanoscale systems," Nanoscale, vol. 14, no. 37, pp. 13428-13451, Sep 29 2022, doi: 10.1039/d2nr04100f.
[8] J. Abraham et al., "Tunable sieving of ions using graphene oxide membranes," Nat Nanotechnol, vol. 12, no. 6, pp. 546-550, Jul 2017, doi: 10.1038/nnano.2017.21.
[9] X. Li and L. Zhi, "Graphene hybridization for energy storage applications," Chem Soc Rev, vol. 47, no. 9, pp. 3189-3216, May 8 2018, doi: 10.1039/c7cs00871f.
[10] I. H. Lee, D. Yoo, P. Avouris, T. Low, and S. H. Oh, "Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy," Nat Nanotechnol, vol. 14, no. 4, pp. 313-319, Apr 2019, doi: 10.1038/s41565-019-0363-8.
[11] H. A. Chen et al., "Single-Crystal Antimonene Films Prepared by Molecular Beam Epitaxy: Selective Growth and Contact Resistance Reduction of the 2D Material Heterostructure," ACS Appl Mater Interfaces, vol. 10, no. 17, pp. 15058-15064, May 2 2018, doi: 10.1021/acsami.8b02394.
[12] W. Wu et al., "High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains," Applied Physics Letters, vol. 102, no. 14, 2013, doi: 10.1063/1.4801861.
[13] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat Nanotechnol, vol. 6, no. 3, pp. 147-50, Mar 2011, doi: 10.1038/nnano.2010.279.
[14] Y. P. Venkata Subbaiah, K. J. Saji, and A. Tiwari, "Atomically Thin MoS2: A Versatile Nongraphene 2D Material," Advanced Functional Materials, vol. 26, no. 13, pp. 2046-2069, 2016, doi: 10.1002/adfm.201504202.
[15] J. K. Ellis, M. J. Lucero, and G. E. Scuseria, "The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory," Applied Physics Letters, vol. 99, no. 26, 2011, doi: 10.1063/1.3672219.
[16] H. Oughaddou et al., "Silicene, a promising new 2D material," Progress in Surface Science, vol. 90, no. 1, pp. 46-83, 2015, doi: 10.1016/j.progsurf.2014.12.003.
[17] M. E. Davila and G. Le Lay, "Few layer epitaxial germanene: a novel two-dimensional Dirac material," Sci Rep, vol. 6, p. 20714, Feb 10 2016, doi: 10.1038/srep20714.
[18] Z. Ling, P. Li, S. Y. Zhang, N. Arif, and Y. J. Zeng, "Stability and passivation of 2D group VA elemental materials: black phosphorus and beyond," J Phys Condens Matter, vol. 34, no. 22, Mar 30 2022, doi: 10.1088/1361-648X/ac5bce.
[19] J. Ji et al., "Two-dimensional antimonene single crystals grown by van der Waals epitaxy," Nat Commun, vol. 7, p. 13352, Nov 15 2016, doi: 10.1038/ncomms13352.
[20] C. Gibaja et al., "Few-Layer Antimonene by Liquid-Phase Exfoliation," Angew Chem Int Ed Engl, vol. 55, no. 46, pp. 14345-14349, Nov 7 2016, doi: 10.1002/anie.201605298.
[21] Y. Liu, T. Wang, J. Robertson, J. Luo, Y. Guo, and D. Liu, "Band Structure, Band Offsets, and Intrinsic Defect Properties of Few-Layer Arsenic and Antimony," The Journal of Physical Chemistry C, vol. 124, no. 13, pp. 7441-7448, 2020, doi: 10.1021/acs.jpcc.9b11364.
[22] J. Chen, Z. Yang, W. Zhou, H. Zou, M. Li, and F. Ouyang, "Monolayer-Trilayer Lateral Heterostructure Based Antimonene Field Effect Transistor: Better Contact and High On/Off Ratios," physica status solidi (RRL) - Rapid Research Letters, vol. 12, no. 5, 2018, doi: 10.1002/pssr.201800038.
[23] T. Xue et al., "Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor," Nat Commun, vol. 10, no. 1, p. 28, Jan 3 2019, doi: 10.1038/s41467-018-07947-8.
[24] C. Zhang, Y. Li, P. Zhang, M. Qiu, X. Jiang, and H. Zhang, "Antimonene quantum dot-based solid-state solar cells with enhanced performance and high stability," Solar Energy Materials and Solar Cells, vol. 189, pp. 11-20, 2019, doi: 10.1016/j.solmat.2018.09.007.
[25] D. J. Gardiner, P. R. Graves, and H. J. Bowley, Practical Raman spectroscopy. Berlin: Springer-Verlag Berlin (in eng), 1989.
[26] M. Kuball, "Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control," Surface and Interface Analysis, vol. 31, no. 10, pp. 987-999, 2001, doi: 10.1002/sia.1134.
[27] M. F. Whitaker and D. J. Dunstan, "Raman spectroscopy of GaAs and InGaAs under pressure," Journal of Physics: Condensed Matter, vol. 11, no. 13, p. 2861, 1999/04/05 1999, doi: 10.1088/0953-8984/11/13/020.
[28] R. Merlin, A. Pinczuk, and W. H. Weber, "Overview of Phonon Raman Scattering in Solids," in Raman Scattering in Materials Science, W. H. Weber and R. Merlin Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 1-29.
[29] X. Chen et al., "Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2," Photonics Research, vol. 7, no. 12, 2019, doi: 10.1364/prj.7.001416.
[30] X. Miao, G. Zhang, F. Wang, H. Yan, and M. Ji, "Layer-Dependent Ultrafast Carrier and Coherent Phonon Dynamics in Black Phosphorus," Nano Lett, vol. 18, no. 5, pp. 3053-3059, May 9 2018, doi: 10.1021/acs.nanolett.8b00551.
[31] W. Li et al., "Approaching the quantum limit in two-dimensional semiconductor contacts," Nature, vol. 613, no. 7943, pp. 274-279, Jan 2023, doi: 10.1038/s41586-022-05431-4.
[32] P. C. Shen et al., "Ultralow contact resistance between semimetal and monolayer semiconductors," Nature, vol. 593, no. 7858, pp. 211-217, May 2021, doi: 10.1038/s41586-021-03472-9.
[33] G. Kwon et al., "Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors," Nature Electronics, vol. 5, no. 4, pp. 241-247, 2022, doi: 10.1038/s41928-022-00746-6.
[34] A. Allain, J. Kang, K. Banerjee, and A. Kis, "Electrical contacts to two-dimensional semiconductors," Nat Mater, vol. 14, no. 12, pp. 1195-205, Dec 2015, doi: 10.1038/nmat4452.
[35] J. Kang, D. Sarkar, W. Liu, D. Jena, and K. Banerjee, "A computational study of metal-contacts to beyond-graphene 2D semiconductor materials," in 2012 International Electron Devices Meeting, 10-13 Dec. 2012 2012, pp. 17.4.1-17.4.4, doi: 10.1109/IEDM.2012.6479060.
[36] A.-S. Chou et al., "Antimony Semimetal Contact with Enhanced Thermal Stability for High Performance 2D Electronics," presented at the 2021 IEEE International Electron Devices Meeting (IEDM), 2021.
[37] A. J. H. Jones et al., "Visualizing band structure hybridization and superlattice effects in twisted MoS2/WS2 heterobilayers," 2D Materials, vol. 9, no. 1, 2021, doi: 10.1088/2053-1583/ac3feb.
[38] J. K. Chen, D. Y. Tzou, and J. E. Beraun, "A semiclassical two-temperature model for ultrafast laser heating," International Journal of Heat and Mass Transfer, vol. 49, no. 1-2, pp. 307-316, 2006, doi: 10.1016/j.ijheatmasstransfer.2005.06.022.
[39] G. Pizzi, S. Milana, A. C. Ferrari, N. Marzari, and M. Gibertini, "Shear and Breathing Modes of Layered Materials," ACS Nano, vol. 15, no. 8, pp. 12509-12534, Aug 24 2021, doi: 10.1021/acsnano.0c10672.
[40] F. Vialla and N. Del Fatti, "Time-Domain Investigations of Coherent Phonons in van der Waals Thin Films," Nanomaterials (Basel), vol. 10, no. 12, Dec 17 2020, doi: 10.3390/nano10122543.
[41] B. A. Auld, Acoustic fields and waves in solids. Wiley, 1973.
[42] J. D. G. Greener et al., "Coherent acoustic phonons in van der Waals nanolayers and heterostructures," Physical Review B, vol. 98, no. 7, 2018, doi: 10.1103/PhysRevB.98.075408.
[43] P. C. Tsai, C. R. Yan, S. J. Chang, and S. Y. Lin, "The influence of contact metals on epitaxially grown molybdenum disulfide for electrical and optical device applications," Nanotechnology, vol. 33, no. 50, Oct 4 2022, doi: 10.1088/1361-6528/ac91d6.
[44] S. S. Chee et al., "Lowering the Schottky Barrier Height by Graphene/Ag Electrodes for High-Mobility MoS(2) Field-Effect Transistors," Adv Mater, vol. 31, no. 2, p. e1804422, Jan 2019, doi: 10.1002/adma.201804422.
[45] W. Liu et al., "High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance," in 2013 IEEE International Electron Devices Meeting, 9-11 Dec. 2013 2013, pp. 19.4.1-19.4.4, doi: 10.1109/IEDM.2013.6724660.
[46] C. R. Wu, X. R. Chang, C. H. Wu, and S. Y. Lin, "The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment," Sci Rep, vol. 7, p. 42146, Feb 8 2017, doi: 10.1038/srep42146.
[47] H. Li et al., "From Bulk to Monolayer MoS2: Evolution of Raman Scattering," Advanced Functional Materials, vol. 22, no. 7, pp. 1385-1390, 2012, doi: 10.1002/adfm.201102111.
[48] S. Najmaei, Z. Liu, P. M. Ajayan, and J. Lou, "Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses," Applied Physics Letters, vol. 100, no. 1, 2012, doi: 10.1063/1.3673907.
[49] M. Gu et al., "Direct Growth of Antimonene on C-Plane Sapphire by Molecular Beam Epitaxy," Applied Sciences, vol. 10, no. 2, 2020, doi: 10.3390/app10020639.
[50] L. Zhang et al., "Tunable nonlinear optical responses and carrier dynamics of two-dimensional antimonene nanosheets," Nanoscale Horiz, vol. 5, no. 10, pp. 1420-1429, Oct 1 2020, doi: 10.1039/d0nh00262c.
[51] M. Bat-Erdene et al., "Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions," Journal of Materials Chemistry A, vol. 8, no. 9, pp. 4735-4739, 2020, doi: 10.1039/c9ta13485a.
[52] S. Xu, J. Yang, H. Jiang, F. Su, and Z. Zeng, "Transient photoconductivity and free carrier dynamics in a monolayer WS(2) probed by time resolved Terahertz spectroscopy," Nanotechnology, vol. 30, no. 26, p. 265706, Jun 28 2019, doi: 10.1088/1361-6528/ab0f02.
[53] Z. Nie et al., "Ultrafast Carrier Thermalization and Cooling Dynamics in Few-Layer MoS2," ACS Nano, vol. 8, no. 10, pp. 10931-10940, 2014/10/28 2014, doi: 10.1021/nn504760x.
[54] F. Zhang, X. Jiang, Z. He, W. Liang, S. Xu, and H. Zhang, "Third-order nonlinear optical responses and carrier dynamics in antimonene," Optical Materials, vol. 95, 2019, doi: 10.1016/j.optmat.2019.109209.
[55] H. Wang, Y. Mao, C. Chen, X. Chen, and J. Wang, "Nonlinear Optical Response and Ultrafast Carrier Dynamics in Single-Crystalline Sb Nanosheets with van der Waals Epitaxy," The Journal of Physical Chemistry C, vol. 125, no. 36, pp. 19866-19873, 2021, doi: 10.1021/acs.jpcc.1c05271.
[56] E. Wiberg, N. Wiberg, and A. F. Holleman, Inorganic chemistry, 1st English ed. San Diego, Berlin: Academic Press ; De Gruyter San Diego, Berlin (in eng), 2001.
[57] A. de Bretteville, E. R. Cohen, A. D. Ballato, I. N. Greenberg, and S. Epstein, "Least-Squares Determination of the Elastic Constants of Antimony and Bismuth," Physical Review, vol. 148, no. 2, pp. 575-579, 1966, doi: 10.1103/PhysRev.148.575.
[58] S. Bertolazzi, J. Brivio, and A. Kis, "Stretching and Breaking of Ultrathin MoS2," ACS Nano, vol. 5, no. 12, pp. 9703-9709, 2011/12/27 2011, doi: 10.1021/nn203879f.
[59] L. © SHINKOSHA CO. "Acoustic Properties of Sapphire." Crystal for a bright future SHINKOSHA. https://www.shinkosha.com/english/techinfo/feature/en-acoustic-of-sapphire/ (accessed 2023/8/1.
[60] A. K. R. Roshan L. Aggarwal, Physical Properties of Diamond and Sapphire. CRC Press, 2019.
[61] Y. Zhao et al., "Interlayer vibrational modes in few-quintuple-layerBi2Te3andBi2Se3two-dimensional crystals: Raman spectroscopy and first-principles studies," Physical Review B, vol. 90, no. 24, 2014, doi: 10.1103/PhysRevB.90.245428.
[62] I. J. Chen et al., "Graphene-to-substrate energy transfer through out-of-plane longitudinal acoustic phonons," Nano Lett, vol. 14, no. 3, pp. 1317-23, Mar 12 2014, doi: 10.1021/nl404297r.
[63] X. Zhang et al., "Raman spectroscopy of shear and layer breathing modes in multilayer MoS2," Physical Review B, vol. 87, no. 11, 2013, doi: 10.1103/PhysRevB.87.115413.
[64] M. O''Brien, N. Scheuschner, J. Maultzsch, G. S. Duesberg, and N. McEvoy, "Raman Spectroscopy of Suspended MoS2," physica status solidi (b), vol. 254, no. 11, 2017, doi: 10.1002/pssb.201700218.
[65] M. Li, P. Zhang, and J. Leng, "Improving autocorrelation regression for the Hurst parameter estimation of long-range dependent time series based on golden section search," Physica A: Statistical Mechanics and its Applications, vol. 445, pp. 189-199, 2016, doi: 10.1016/j.physa.2015.10.071.
[66] K. Tang, W. Qi, Y. Wei, G. Ru, and W. Liu, "High-Throughput Calculation of Interlayer van der Waals Forces Validated with Experimental Measurements," Research (Wash D C), vol. 2022, p. 9765121, 2022, doi: 10.34133/2022/9765121.
[67] H. Rokni and W. Lu, "Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air," Nat Commun, vol. 11, no. 1, p. 5607, Nov 5 2020, doi: 10.1038/s41467-020-19411-7.
[68] Y. W. Zhang et al., "Tungsten Diselenide Top-gate Transistors with Multilayer Antimonene Electrodes: Gate Stacks and Epitaxially Grown 2D Material Heterostructures," Sci Rep, vol. 10, no. 1, p. 5967, Apr 6 2020, doi: 10.1038/s41598-020-63098-1.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91693-
dc.description.abstract由於接觸電阻直接影響金屬與半導體之間的載子傳播,因此現代半導體技術中這是一個極其重要的物理參數。然而在傳統金屬與二維材料的異質介面中,二維材料作為下一世代取代矽的強力候選人,卻有著極大的接觸電阻,這是由於金屬誘導的能隙Metal-Induced Gap States ,MIGS)和凡得瓦作用(van der Waals interaction)的隧道障壁(tunneling barrier)所導致。半金屬以其獨特的費米能階(Fermi level)的特性應對MIGS的問題。然而,半金屬與2D材料的接觸電阻仍然很高。為了解決這個問題,部分文獻探討了藉由提高接觸金屬與二維材料之間的混成(hybridization)可以有效地降低接觸電阻。而藉由通凡得瓦作用來調變混成大小則為其中一個解決方案。因此若有一個技術可以估計凡得瓦作用的大小將會對這領域的研究帶來很大的影響。
本文,我們報導了一種估算凡得瓦作用的技術。這種技術使用銻烯作為聲學轉換器(acoustic transducer)產生聲學聲子。藉由聲子我們可以測量銻烯與MoS2之間不同厚度的聲學響應。此外,這種技術對振動器的厚度非常敏感。也就是說,通過改變銻烯的厚度,我們可以獲得厚度依賴的聲學響應。最後,經過數值分析,我們得出銻烯與MoS2之間的凡得瓦位勢(van der Waals potential)約為1.5±1.08(eV/nm^2)。使用這種技術,我們可以輕鬆地估算出2D異質結構中存在多大的凡得瓦作用。我們相信這是研究如何在下一代半導體技術中降低接觸電阻的重要印信息。
zh_TW
dc.description.abstractFor the next-generation semiconductor technology, two-dimensional material (2DM) are the most potential ingredients of semiconductor devices. Contact resistance is a critical factor in modern semiconductor technology as it directly impacts carrier injection from metal to semiconductor. While contact resistance between metals and 2D materials is high due to Metal-Induced Gap States (MIGS) and van der Waals tunneling barriers. To deal with MIGS, semimetals meet this issue with their Fermi level characteristics. However, semimetal-2D material contact resistance remains high. To address this, enhancing semimetal-2D material hybridization, potentially through van der Waals interactions, is explored. Utilizing 2D materials as contact metal is a promising approach due to van der Waals bonding. Thus, finding a method to quantify van der Waals interaction between vdW heterostructures like antimonene/MoS2 heterostructures is essential for next-generation semiconductor technology.
Here, we reported a method to estimate the vdW interaction between antimonene (2D form of Sb) and MoS2. This technique uses antimonene as an energy transducer to absorb the energy from femtosecond near-UV pulse so that we could initiate the impulsive acoustic vibrations of the vdW heterostructure of antimonene/MoS2. Through varying the thickness of antimonene and by measureing the thickness dependent coherent vibration frequencies, the van der Waals potentials between antimonene and MoS2 can be quantified as around 1.5±1.08 (eV/nm^2) by using parabolic approximation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:16:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-22T16:16:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 ......................................................................................................... i
致謝 .................................................................................................................................... ii
中文摘要 ........................................................................................................................... iii
Abstract ............................................................................................................................ iv
List of Contents ................................................................................................................. v
Figure of Contents .......................................................................................................... vii
Table of Contents ............................................................................................................. xi
Chapter 1 Introduction .................................................................................................... 1
1.1 Pump-Probe Techniques ............................................................................................. 1
1.2 Transition Metal Dichalcogenides (TMDs) ............................................................... 2
1.3 Antimonene .................................................................................................................. 5
1.4 Vibrational Mode of Van der Waals Coupling ......................................................... 7
1.5 Contact resistance of 2D materials ............................................................................ 8
1.6 Motivation .................................................................................................................... 9
1.7 Thesis Structure ......................................................................................................... 10
2.1 Generation of Coherent Phonon .............................................................................. 11
2.2 One Dimensional Chain Model ................................................................................ 11
2.3 Acoustic Mismatch Model (AMM) .......................................................................... 13
2.4 How to reduce contact resistance of 2D materials? ................................................ 15
Chapter 3 Experimental setup....................................................................................... 17
3.1 Sample Preparation ................................................................................................... 17
3.2 Time-Resolved Pump-Probe system setup signal measurement method ............. 20
Chapter 4 Results and Discussion ................................................................................. 22
4.1 Time-resolved Pump-Probe Signal .......................................................................... 22
4.2 Numerical Simulation by Acoustic Mismatch Model ............................................. 26
4.3 Numerical Simulation by Revised Acoustic Mismatch Model .............................. 32
4.4 Numerical Simulation by 1D Chain Model ............................................................. 35
4.5 Estimation of van der Waals potential .................................................................... 40
Chapter 5 Discussion ...................................................................................................... 42
5.1 MoS2 Bonding in van der Waals Hetrostructure .................................................... 42
5.2 Oxidation of Antimonene .......................................................................................... 44
Chapter 6 Conclusion ..................................................................................................... 47
Chapter 7 Future work .................................................................................................. 48
References ........................................................................................................................ 49
APENDIX ........................................................................................................................ 53
Copyright and Permission ...................................................................................................... 53
-
dc.language.isoen-
dc.subject泵浦探測技術zh_TW
dc.subject凡得瓦異質介面zh_TW
dc.subject銻烯zh_TW
dc.subject二硫化鉬zh_TW
dc.subject過度金屬二硫化物zh_TW
dc.subjectvan der Waals heterostructureen
dc.subjectPump-Probe Techniquesen
dc.subjectTransition Metal Dichalcogenidesen
dc.subjectMoS2en
dc.subjectantimoneneen
dc.title利用同調聲學聲子研究銻烯與雙層二硫化鉬之間的凡得瓦耦合zh_TW
dc.titleInvestigation of Van der Waals Coupling in Antimonene and Bi-Layer MoS2 using Coherent Acoustic Phonon Techniquesen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張玉明;林時彥;林宮玄zh_TW
dc.contributor.oralexamcommitteeYu-Ming Chang;Shih-Yen Lin;Kung-Hsuan Linen
dc.subject.keyword泵浦探測技術,凡得瓦異質介面,銻烯,二硫化鉬,過度金屬二硫化物,zh_TW
dc.subject.keywordPump-Probe Techniques,van der Waals heterostructure,antimonene,MoS2,Transition Metal Dichalcogenides,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202400429-
dc.rights.note未授權-
dc.date.accepted2024-02-05-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
2.64 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved