請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91689完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 隋中興 | zh_TW |
| dc.contributor.advisor | Chung-Hsiung Sui | en |
| dc.contributor.author | 李崇瑋 | zh_TW |
| dc.contributor.author | Chung-Wei Lee | en |
| dc.date.accessioned | 2024-02-22T16:14:57Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-01-29 | - |
| dc.identifier.citation | Alexander, M. A., D. J. Vimont, P. Chang, and J. D. Scott, 2010: The Impact of Extratropical Atmospheric Variability on ENSO: Testing the Seasonal Footprinting Mechanism Using Coupled Model Experiments. J Clim, 23, 2885–2901, https://doi.org/10.1175/2010JCLI3205.1.
An, S.-I., E. Tziperman, Y. M. Okumura, and T. Li, 2020: ENSO Irregularity and Asymmetry. In El Niño Southern Oscillation in a Changing Climate (eds M.J. McPhaden, A. Santoso and W. Cai). https://doi.org/10.1002/9781119548164.ch7 Anderson, B. T., R. C. Perez, and A. Karspeck, 2013: Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys Res Lett, 40, 1212–1216, https://doi.org/10.1002/grl.50200. Battisti, D. S., and A. C. Hirst, 1989: Interannual Variability in a Tropical Atmosphere–Ocean Model: Influence of the Basic State, Ocean Geometry and Nonlinearity. J Atmos Sci, 46, 1687–1712, https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2. Bjerknes, J., 1969: Atmospheric Teleconnections from the Equatorial Pacific. Mon Weather Rev, 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2. Boulanger, J. P., and C. Menkes, 1995: Propagation and reflection of long equatorial waves in the Pacific Ocean during the 1992–1993 El Niño. J Geophys Res Oceans, 100, 25041–25059, https://doi.org/10.1029/95JC02956. ——, S. Cravatte, and C. Menkes, 2003: Reflected and locally wind-forced interannual equatorial Kelvin waves in the western Pacific Ocean. J. Geophys. Res., 108, 3311, doi:10.1029/2002JC001760, C10. Capotondi, A., C. Deser, A. S. Phillips, Y. Okumura, and S. M. Larson, 2020: ENSO and Pacific Decadal Variability in the Community Earth System Model Version 2. J Adv Model Earth Syst, 12, https://doi.org/10.1029/2019MS002022. Chang, C.-P., Z. Wang, J. Ju, and T. Li, 2004: On the Relationship between Western Maritime Continent Monsoon Rainfall and ENSO during Northern Winter. J Clim, 17, 665–672, https://doi.org/10.1175/1520-0442(2004)017<0665:OTRBWM>2.0.CO;2. Chang, P., and S. G. Philander, 1994: A Coupled Ocean–Atmosphere Instability of Relevance to the Seasonal Cycle. J Atm Sci, 51(24), 3627-3648. https://doi.org/10.1175/1520-0469(1994)051<3627:acoior>2.0.co;2 ——, L. Zhang, R. Saravanan, D. J. Vimont, J. C. H. Chiang, L. Ji, H. Seidel, and M. K. Tippett, 2007: Pacific meridional mode and El Niño-Southern Oscillation. Geophys Res Lett, 34, https://doi.org/10.1029/2007GL030302. Chen, H.-C., and F.-F. Jin, 2020: Fundamental Behavior of ENSO Phase Locking. J Clim, 33, 1953–1968, https://doi.org/10.1175/JCLI-D-19-0264.1. ——, and ——, 2021: Simulations of ENSO Phase-Locking in CMIP5 and CMIP6. J Clim, 34, 5135–5149, https://doi.org/10.1175/JCLI-D-20-0874.1. ——, Z.-Z. Hu, B. Huang, and C.-H. Sui, 2016: The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event. J Clim, 29, 5859–5877, https://doi.org/10.1175/JCLI-D-16-0047.1. Chen, L., T. Li, B. Wang, and W. Lu, 2017: Formation Mechanism for 2015/16 Super El Niño. Sci Rep, 7, 2975. https://doi.org/10.1038/s41598-017-02926-3 Chen, M., T. Li, X. Shen, and B. Wu, 2016: Relative Roles of Dynamic and Thermodynamic Processes in Causing Evolution Asymmetry between El Niño and La Niña. J Clim, 29, 2201–2220, https://doi.org/10.1175/JCLI-D-15-0547.1. Chiang, J. C. H., and D. J. Vimont, 2004: Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability. J Clim, 17, 4143–4158, https://doi.org/10.1175/JCLI4953.1. Clarke, A. J., S. Van Gorder, and G. Colantuono, 2007: Wind Stress Curl and ENSO Discharge/Recharge in the Equatorial Pacific. J Phys Oceanogr, 37, 1077–1091, https://doi.org/10.1175/JPO3035.1. Copernicus Climate Change Service, Climate Data Store, 2021: ORAS5 global ocean reanalysis monthly data from 1958 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.67e8eeb7 (Accessed on 12-JAN-2023) Danabasoglu, G., and Coauthors, 2020: The Community Earth System Model Version 2 (CESM2). J Adv Model Earth Syst, 12, https://doi.org/10.1029/2019MS001916. Dewitte, B., and C. Perigaud, 1996: El Niño-La Niña Events Simulated with Cane and Zebiak’s Model and Observed with Satellite or In Situ Data. Part II: Model Forced with Observations. J Clim, 9, 1188–1207, https://doi.org/10.1175/1520-0442(1996)009<1188:ENLNES>2.0.CO;2. Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability. Geophys Res Lett, 42, 9440–9448, https://doi.org/10.1002/2015GL066281. Ding, R., and Coauthors, 2022: Multi-year El Niño events tied to the North Pacific Oscillation. Nat Commun, 13, 3871, https://doi.org/10.1038/s41467-022-31516-9. Dommenget, D., and Y. Yu, 2016: The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. Clim Dyn, 47, 3661–3672, https://doi.org/10.1007/s00382-016-3034-6. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937-1958, doi:10.5194/gmd-9-1937-2016. Gao, Z., Z.-Z. Hu, F. Zheng, X. Li, S. Li and B. Zhang, 2023: Single-year and double-year El Niños. Clim Dyn, 60(7–8), 2235–2243. https://doi.org/10.1007/s00382-022-06425-8. Harrison, D. E., 1987: Monthly Mean Island Surface Winds in the Central Tropical Pacific and El Niño Events. Mon Weather Rev, 115, 3133–3145, https://doi.org/10.1175/1520-0493(1987)115<3133:MMISWI>2.0.CO;2. ——, and G. A. Vecchi, 1997: Westerly wind events in the tropical pacific, 1986-95. J Clim, 10, 3131-3156. https://doi.org/10.1175/1520-0442(1997)010<3131:WWEITT>2.0.CO;2 Hersbach, H., and Coauthors, 2017: Complete ERA5 from 1940: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Data Store (CDS). DOI: 10.24381/cds.143582cf (Accessed on 24-JUL-2024) Hong, C.-C., T. Li, LinHo, and J.-S. Kug, 2008: Asymmetry of the Indian Ocean Dipole. Part I: Observational Analysis. J Clim, 21, 4834–4848, https://doi.org/10.1175/2008JCLI2222.1. Hu, S., and A. V Fedorov, 2018: Cross-equatorial winds control El Niño diversity and change. Nat Clim Chg, 8, 798-802. https://doi.org/10.1038/s41558-018-0248-0 Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J Clim, 30(20), 8179–8205. https://doi.org/10.1175/JCLI‐D‐16‐0836.1 Iwakiri, T., and M. Watanabe, 2022: Multiyear ENSO Dynamics as Revealed in Observations, Climate Model Simulations, and the Linear Recharge Oscillator. J Clim, 35, 7625–7642, https://doi.org/10.1175/JCLI-D-22-0108.1. Izumo, T., J. Vialard, H. Dayan, M. Lengaigne, and I. Suresh, 2016: A simple estimation of equatorial Pacific response from windstress to untangle Indian Ocean Dipole and Basin influences on El Niño. Clim Dyn, 46, 2247–2268, https://doi.org/10.1007/s00382-015-2700-4. ——, M. Lengaigne, J. Vialard, I. Suresh, and Y. Planton, 2019: On the physical interpretation of the lead relation between Warm Water Volume and the El Niño Southern Oscillation. Clim Dyn, 52, 2923–2942, https://doi.org/10.1007/s00382-018-4313-1. ——, and M. Colin, 2022: Improving and harmonizing El Niño recharge Indices. Geophys Res Lett, 49(23), https://doi.org/10.1029/2022GL101003 ——, ——, F.-F. Jin, and B. Pagli, 2023: The hybrid Recharge Delayed Oscillator: a more realistic El Niño conceptual model. J Clim, in revision. Jin, F.-F., 1997: An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. J Atmos Sci, 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2. ——, J. D. Neelin, and M. Ghil, 1994: El Niño on the Devil’s Staircase: Annual Subharmonic Steps to Chaos. Science, 264, 70–72, https://doi.org/10.1126/science.264.5155.70. Kessler, W. S., 2002: Is ENSO a cycle or a series of events? Geophys Res Lett, 29(23), 40-1-40-4. https://doi.org/10.1029/2002gl015924 Kim, J.-W., and J.-Y. Yu, 2020: Understanding Reintensified Multiyear El Niño Events. Geophys Res Lett, 47, https://doi.org/10.1029/2020GL087644. ——, and ——, 2021: Evolution of Subtropical Pacific‐Onset El Niño: How Its Onset Location Controls Its Decay Evolution. Geophys Res Lett, 48(5). https://doi.org/10.1029/2020GL091345 ——, and ——, 2022: Single- and multi-year ENSO events controlled by pantropical climate interactions. NPJ Clim Atmos Sci, 5, 88, https://doi.org/10.1038/s41612-022-00305-y. Kim, S.-K., and S.-I. An, 2021: Seasonal Gap Theory for ENSO Phase Locking. J Clim, 34, 5621–5634, https://doi.org/10.1175/JCLI-D-20-0495.1. Knight, J. R., C. K. Folland, and A. A. Scaife, 2006:, Climate impacts of the Atlantic Multidecadal Oscillation, Geophys Res Lett, 33, L17706, doi:10.1029/2006GL026242. Kug, J.-S., and I.-S. Kang, 2006: Interactive Feedback between ENSO and the Indian Ocean. J Clim, 19, 1784–1801, https://doi.org/10.1175/JCLI3660.1. Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Clim, 16, 1118-1140. https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2 Larson, S., and B. Kirtman, 2013: The Pacific Meridional Mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett, 40, 3189–3194, https://doi.org/10.1002/grl.50571. Levine, A. F. Z., and M. J. McPhaden, 2016: How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys Res Lett, 43, 6503–6510, https://doi.org/10.1002/2016GL069204. Li, T., 1997: Phase transition of the El Niño-Southern Oscillation: a stationary SST mode. J Atmos Sci, 54(24), 2872-2887, https://doi.org/10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2. ——, and P. Hsu, 2018: Fundamentals of Tropical Climate Dynamics. Springer, 229 pp. ——, and S. G. Philander, 1996: On the annual cycle of the eastern equatorial Pacific. J. Climate, 9, 2986–2998, doi:10.1175/1520-0442(1996)009,2986:OTACOT.2.0.CO;2. ——, P. Liu, X. Fu, B. Wang, and G. A. Meehl, 2006: Spatiotemporal Structures and Mechanisms of the Tropospheric Biennial Oscillation in the Indo-Pacific Warm Ocean Regions. J Clim, 19(13) 3070-3087. https://doi.org/10.1175/JCLI3736.1. ——, B. Wang, B. Wu, T. Zhou, C.-P. Chang, and R. Zhang, 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J Met Res, 31, 987-1006. https://doi.org/10.1007/s13351-017-7147-6 Maeda, S., Y. Urabe, K. Takemura, T. Yasuda, and Y. Tanimoto, 2016: Active Role of the ITCZ and WES Feedback in Hampering the Growth of the Expected Full-Fledged El Niño in 2014. SOLA, 12, 17–21, https://doi.org/10.2151/sola.2016-004. Mantua, N. J., and S. R Hare, 2002: The Pacific Decadal Oscillation. J Oceanogr, 58, 35–44, https://doi.org/10.1023/A:1015820616384 McCreary, J. P., 1980: Modelling wind-driven ocean circulation. JIMAR 80-0029, HIG 80-3. Univ. of Hawaii, Honolulu, 64 pp. ——, and P. Lu, 1994: Interaction between the subtropical and equatorial ocean circulations: The subtropical cell. J. Phys. Oceanogr., 24, 466–497, doi:10.1175/1520-0485(1994)024,0466:IBTSAE.2.0.CO;2 ——, W. Han, D. Shankar, and S. R. Shetye, 1996: Dynamics of the East India Coastal Current: 2. Numerical solutions. J Geophys Res Oceans, 101, 13993–14010, https://doi.org/10.1029/96JC00560. ——, T. Miyama, R. Furue, T. Jensen, H.-W. Kang, B. Bang, and T. Qu, 2007: Interactions between the Indonesian Throughflow and circulations in the Indian and Pacific Oceans. Prog Oceanogr, 75, 70–114, https://doi.org/10.1016/j.pocean.2007.05.004. McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker, and M. H. England, 2012: The Effect of the South Pacific Convergence Zone on the Termination of El Niño Events and the Meridional Asymmetry of ENSO. J Clim, 25, 5566–5586, https://doi.org/10.1175/JCLI-D-11-00332.1. ——, N. Ramesh, P. Spence, M. H. England, M. J. McPhaden, and A. Santoso, 2013: Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett, 40, 749–754, https://doi.org/10.1002/grl.50136. McPhaden, M. J., A. Santoso, and W. Cai, 2020: El Niño Southern Oscillation in a Changing Climate. American Geophysical Union, 506 pp. ——, 2015: Playing hide and seek with El Niño. Nat Clim Chang, 5, 791–795, https://doi.org/10.1038/nclimate2775. Meinen, C. S., and M. J. McPhaden, 2000: Observations of Warm Water Volume Changes in the Equatorial Pacific and Their Relationship to El Niño and La Niña. J Clim, 13, 3551–3559, https://doi.org/10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2. Menkes, C. E., M. Lengaigne, J. Vialard, M. Puy, P. Marchesiello, S. Cravatte, and G. Cambon, 2014: About the role of Westerly Wind Events in the possible development of an El Niño in 2014. Geophys Res Lett, 41, 6476–6483, https://doi.org/10.1002/2014GL061186. Min, Q., J. Su, R. Zhang, and X. Rong, 2015: What hindered the El Niño pattern in 2014? Geophys Res Lett, 42, 6762–6770, https://doi.org/10.1002/2015GL064899. Ohba, M., and H. Ueda, 2007: An Impact of SST Anomalies in the Indian Ocean in Acceleration of the El Niño to La Niña Transition. J Met Society of Japan, 85(3), 335-348. https://doi.org/10.2151/jmsj.85.335 Philander, S. G., D. Gu, D. Halpern, G. Lambert, N.-C. Lau, T. Li, and R. C. Pacanowski, 1996: Why the ITCZ is mostly north of the equator. J Clim, 9, 2958–2972, doi:10.1175/1520-0442(1996)009,2958:WTIIMN.2.0.CO;2. Picaut, J., F. Masia, and Y. du Penhoat, 1997: An Advective-Reflective Conceptual Model for the Oscillatory Nature of the ENSO. Science, 277, 663–666, https://doi.org/10.1126/science.277.5326.663. Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon Weather Rev, 110, 354–384, https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2. Ropelewski, C. F., and M. S. Halpert, 1987: Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Mon Weather Rev, 115, 1606–1626, https://doi.org/10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2. Sharmila, S., H. Hendon, O. Alves, A. Weisheimer, and M. Balmaseda, 2023: Contrasting El Niño–La Niña Predictability and Prediction Skill in 2-Year Reforecasts of the Twentieth Century. J Clim, 36, 1269–1285, https://doi.org/10.1175/JCLI-D-22-0028.1. Spall, M. A., and J. Pedlosky, 2005: Reflection and Transmission of Equatorial Rossby Waves. J Phys Oceanogr, 35, 363–373, https://doi.org/10.1175/JPO-2691.1. Stein, K., N. Schneider, A. Timmermann, and F.-F. Jin, 2010: Seasonal Synchronization of ENSO Events in a Linear Stochastic Model. J Clim, 23, 5629–5643, https://doi.org/10.1175/2010JCLI3292.1. Stuecker, M. F., A. Timmermann, F.-F. Jin, S. McGregor, and H.-L. Ren, 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat Geosci, 6(7), 540-544. ——, F.-F. Jin, A. Timmermann, and S. McGregor, 2015: Combination Mode Dynamics of the Anomalous Northwest Pacific Anticyclone. J Clim, 28(3), 1093-1111, https://doi.org/10.1175/JCLI-D-14-00225.1 Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Niño and La Niña Amplitude Asymmetry in the Equatorial Eastern Pacific. J Clim, 23, 605–617, https://doi.org/10.1175/2009JCLI2894.1. Suarez, M. J., and P. S. Schopf, 1988: A Delayed Action Oscillator for ENSO. J Atmos Sci, 45, 3283–3287, https://doi.org/10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2. Suresh, I., J. Vialard, T. Izumo, M. Lengaigne, W. Han, J. McCreary, and P. M. Muraleedharan, 2016: Dominant role of winds near Sri Lanka in driving seasonal sea level variations along the west coast of India. Geophys Res Lett, 43, 7028–7035, https://doi.org/10.1002/2016GL069976. Tang, Y., and Coauthors, 2018: Progress in ENSO prediction and predictability study. Natl Sci Rev, 5, 826–839, https://doi.org/10.1093/nsr/nwy105. Takahashi, K., A. Montecinos, K. Goubanova, and B. Dewitte, 2011: ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett, 38, 1–5, https://doi.org/10.1029/2011GL047364. Taschetto, A. S., C. C. Ummenhofer, M. F. Stuecker, D. Dommenget, K. Ashok, R. R. Rodrigues, and S.-W. Yeh, 2020: ENSO Atmospheric Teleconnections. In El Niño Southern Oscillation in a Changing Climate (eds M.J. McPhaden, A. Santoso and W. Cai). https://doi.org/10.1002/9781119548164.ch14 Timmermann, A., and Coauthors, 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535–545, https://doi.org/10.1038/s41586-018-0252-6. Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans, 103, 14291–14324, https://doi.org/10.1029/97JC01444. Tseng, Y. H., R. Ding, and X. M. Huang, 2017: The warm Blob in the northeast Pacific - The bridge leading to the 2015/16 El Niño. Env Res Lett, 12(5), 054019. https://doi.org/10.1088/1748-9326/aa67c3 Tziperman, E., L. Stone, M. A. Cane, and H. Jarosh, 1994: El Niño Chaos: Overlapping of Resonances Between the Seasonal Cycle and the Pacific Ocean-Atmosphere Oscillator. Science, 264, 72–74, https://doi.org/10.1126/science.264.5155.72. ——, S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of Seasonal – ENSO Interaction. J Atmos Sci, 54, 61–71, https://doi.org/10.1175/1520-0469(1997)054<0061:MOSEI>2.0.CO;2. Vimont, D. J., D. S. Battisti, and A. C. Hirst, 2001: Footprinting: A seasonal connection between the tropics and mid-latitudes. Geophys Res Lett, 28, 3923–3926, https://doi.org/10.1029/2001GL013435. ——, ——, and ——, 2003a: The Seasonal Footprinting Mechanism in the CSIRO General Circulation Models. J Clim, 16, 2653–2667, https://doi.org/10.1175/1520-0442(2003)016<2653:TSFMIT>2.0.CO;2. ——, J. M. Wallace, and D. S. Battisti, 2003b: The Seasonal Footprinting Mechanism in the Pacific: Implications for ENSO. J Clim, 16, 2668–2675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2. Wang, B., and Q. Zhang, 2002: Pacific-East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim, 15, 3252–3265, https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2. ——, R. Wu, and R. Lukas, 1999: Roles of the Western North Pacific Wind Variation in Thermocline Adjustment and ENSO Phase Transition. J Mete Society of Japan. Ser. II, 77, 1–16, https://doi.org/10.2151/jmsj1965.77.1_1. ——, ——, ——, and S.-I. An, 2001: A possible mechanism for ENSO turnabout. In IAP/Academia Sinica (Ed.), Dynamics of Atmospheric General Circulation and Climate (pp. 552–578). Beijing: China Meteorological Press. [Available from http://www.soest. hawaii.edu/MET/Faculty/bwang/bw/paper/wang80.pdf] ——, ——, and X. Fu, 2000: Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J Clim, 13, 1517–1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2. Weisberg, R. H., and C. Wang, 1997: A Western Pacific Oscillator Paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24, 779–782, https://doi.org/10.1029/97GL00689. Wu, B., T. Zhou, and T. Li, 2017a: Atmospheric Dynamic and Thermodynamic Processes Driving the Western North Pacific Anomalous Anticyclone during El Niño. Part II: Formation Processes. J Clim, 30, 9637–9650, https://doi.org/10.1175/JCLI-D-16-0495.1. ——, ——, and ——, 2017b: Atmospheric Dynamic and Thermodynamic Processes Driving the Western North Pacific Anomalous Anticyclone during El Niño. Part I: Maintenance Mechanisms. J Clim, 30, 9621–9635, https://doi.org/10.1175/JCLI-D-16-0489.1. Wu, E.-T., 2018: An observational study of anomalous anticyclone in western North Pacific associated with El Niño. National Taiwan University, 1–55 pp. Wu, Y. K., L. Chen, C.-C. Hong, T. Li, C.-T. Chen, and L. Wang, 2018: Role of the meridional dipole of SSTA and associated cross-equatorial flow in the tropical eastern Pacific in terminating the 2014 El Niño development. Clim Dyn, 50, 1625-1638. https://doi.org/10.1007/s00382-017-3710-1 Wu, X., Y. M. Okumura, and P. N. DiNezio, 2019: What Controls the Duration of El Niño and La Niña Events? J Clim, 32, 5941–5965, https://doi.org/10.1175/JCLI-D-18-0681.1. Wyrtki, K, 1975: El Niño—The Dynamic Response of the Equatorial Pacific Ocean to Atmospheric Forcing. J Phys Oceanogr, 5(4), 572–584. https://doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2 ——, 1985: Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 90:7129–7132. Xie, S.-P., Q. Peng, Y. Kamae, X.-T. Zheng, H. Tokinaga, and D. Wang, 2018: Eastern pacific ITCZ dipole and ENSO diversity. J Clim, 31, 4449-4462. https://doi.org/10.1175/JCLI-D-17-0905.1 ——, and S. G. Philander, 1994: A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus, 46(4), 340-350. https://doi.org/10.3402/tellusa.v46i4.15484 Yamanaka, G., T. Yasuda, Y. Fujii, and S. Matsumoto, 2009: Rapid termination of the 2006 El Nino and its relation to the Indian Ocean. Geophys Res Lett, 36(7), L07702. https://doi.org/10.1029/2009GL037298 Yu, J.-Y., H.-Y. Kao, and T. Lee, 2010: Subtropics-Related Interannual Sea Surface Temperature Variability in the Central Equatorial Pacific. J Clim, 23, 2869–2884, https://doi.org/10.1175/2010JCLI3171.1. Zhang, L., P. Chang, and L. Ji, 2009: Linking the Pacific Meridional Mode to ENSO: Coupled Model Analysis. J Clim, 22, 3488–3505, https://doi.org/10.1175/2008JCLI2473.1. Zhu, J., A. Kumar, B. Huang, M. A. Balmaseda, Z.-Z. Hu, L. Marx, and J. L. Kinter, 2016: The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci Rep, 6, 19677. https://doi.org/10.1038/srep19677 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91689 | - |
| dc.description.abstract | 本研究致力於探索控制聖嬰現象相位轉換以及衰退速率的機制,以進一步了解造成聖嬰現象持續期間長、或是短的根本原因。首先深入檢視「單年型」與「多年型」的聖嬰事件演變的完整過程,鉅細靡遺的比較兩者之間具代表性的對比特徵。分析的兩種資料為 (1)歷史觀測與 (2)大氣─海洋耦合全球環流模式的上千年模擬。從分析這些資料的特徵比較中接著歸納出可能造成聖嬰事件不同持續性的關鍵機制,並在一系列不同複雜程度的數值模式中進行實驗,加以驗證這些特徵造成氣候變異的過程之因果關係。實驗先分別只用海洋和大氣模式模擬各自的反應,拆分海洋與大氣的耦合過程以便闡明因果關聯,最後再加入完整耦合的模式實驗結果統合探討。
單年型與多年型的聖嬰現象之間明顯的差異包括:事件肇始早晚、發展中與巔峰階段的強度、巔峰階段暖海溫的東西位置分佈、以及衰退期間的海洋湧升凱爾文波。其中衰退期間的凱爾文波具有最強烈的對比,湧升的凱爾文波在單年型的聖嬰現象快速地終止事件,但是幾乎不存在於多年型事件。其所伴隨的地轉流距平,使赤道上的緯向海流距平在單年型聖嬰衰退時由往東轉往西,與氣候背景場的海溫梯度造成冷平流,主導此時海洋混合層的海溫冷卻趨勢。然而往東的海流距平在多年型聖嬰中得以持續造成暖平流,與海洋次表層熱容量共同維持多年型事件的暖相位。 聖嬰衰退期間的湧升凱爾文波的強度受聖嬰本身在發展至巔峰階段的風應力強迫影響,發展期氣旋式的風應力產生湧升羅士比波到西邊界反射回赤道上,而巔峰期西太平洋赤道上的東風應力直接驅動湧升凱爾文波。多年型聖嬰較晚發展,因而缺乏能造成湧升羅士比波的強氣旋式風應力;巔峰期的西太平洋東風距平則是被西北太平洋與印度洋的弱反應所限制,因為多年型弱而晚形成的聖嬰強迫不足以造成明顯的遙端氣候變異與回饋。 透過將海洋波動區分成風直接驅動、與邊界反射的效果,海洋模式實驗幫助澄清與量化聖嬰在不同期間的風應力強迫的作用。海洋的動力反應透過 (1)湧升凱爾文波突然阻斷正回饋作用以及 (2)反射波動造成的延滯負回饋在春季快速的翻轉單年型聖嬰現象的相位。而此二機制在多年型聖嬰皆較弱,結果顯示凱爾文波動的影響大於羅士比波,又風直接驅動的凱爾文波動比西邊界反彈的角色強烈,因此冬春二季在熱帶西太平洋的緯向風變異相當重要。 接著大氣模式釐清聖嬰現象發展時的強度與西太平洋緯向風在冬季突然反轉之間的關聯:較晚發展的聖嬰現象無法及早引起明顯的西北太平洋和印度洋的海氣通量回饋來驅動赤道西太平洋上的東風。最後完全耦合模式中的一組實驗,再次突顯西太平洋的耦合反應對聖嬰現象的回饋效果:原本由聖嬰快速衰退翻轉至反聖嬰相位的事件,在北太平洋海溫交互作用受抑制的實驗下,聖嬰衰退減慢且後續反聖嬰發展明顯消失。 | zh_TW |
| dc.description.abstract | This study delves into the mechanisms modulating the phase transition and decay paces of El Niño to advance our knowledge on the root causes determining the shorter or longer lifetime of an El Niño event. To begin with, the evolutions of “single-year” and “multi-year” El Niño events are examined in details and their contrasting features are comprehensively compared, by utilizing both observation and long-term, unforced coupled general circulation model (CGCM) simulation data. Then, the possible crucial mechanisms are deduced from these identified distinct characteristics. Finally, we validate the roles of these mechanisms in a series of numerical experiments, by separate simulations with the oceanic or atmospheric model only in order to first dissect the atmosphere-ocean coupled feedbacks, and then by a fully coupled simulation as well.
The distinct features that contrast the single-year and multi-year El Niño episodes include: onset timing, the strength during the growth-mature stage, the center of warm sea surface temperature (SST) in the mature stage [i.e., central Pacific (CP) or eastern Pacific (EP) types], and oceanic upwelling Kelvin waves during the decay stage. Among them, the most striking feature is the upwelling Kelvin waves which rapidly terminate the single-year El Niño but are almost absent in the multi-year events. The upwelling Kelvin waves reverses the equatorial zonal current anomalies from eastward to westward with its geostrophic component, and cause cold advection with the climatological zonal SST gradient, which dominates the mixed-layer temperature cooling tendency during the decay stage. Conversely, the eastward equatorial zonal current anomalies continue, and maintain the warm zonal advection in the multi-year events together with the lasting oceanic subsurface heat content. The strength of the upwelling Kelvin waves is influenced by El Niño’s winds in the previous growth and mature seasons, as the cyclonic wind stress curls during the developing stage force boundary-reflected (BR) upwelling Rossby waves (RW), and the equatorial western Pacific (WP) easterly wind stress during the mature stage forces direct wind-driven (DWD) upwelling Kelvin waves (KW). The later developing cyclonic wind stress curls drives less prominent BR upwelling waves in the multi-year El Niño, and it is also less capable to induce the remote western North Pacific (WNP) and Indian Ocean (IO) responses to drive the WP easterly in the mature winter. The oceanic model experiments identify the impacts of wind forcing from the different stages of El Niño by discerning the DWD and BR waves. The phase transition of the single-year El Niño results from the sudden shutdown of positive feedbacks due to emerging DWD upwelling KW and the maximum damping due to BR waves; both are weaker in the multiyear El Niño. In comparison of the two El Niño types, the KW dominates the zonal current reversal over the RW, and the DWD component dominates the KW over the BR component, highlighting the role of equatorial WP zonal winds. Next, the effect of later or earlier El Niño onset is examined by atmospheric GCM-slab ocean model (AGCM-SOM) experiments. The late developing El Niño is shown to barely induce the remote WNP and IO responses to drive the WP easterly winds during the mature winter compared to the early developing El Niño. Finally, the fully coupled experiments further emphasize the role of WNP feedbacks, as the tropical WP easterly winds vanish and the El Niño-to-La Niña phase transition is aborted when the air-sea interaction is artificially suppressed over the North Pacific in a case study. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:14:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:14:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝辭 ii 摘要 iii Abstract v Contents viii List of Tables x List of Figures x Supporting publications xxii Chapter 1. Introduction 1 Chapter 2. Data 7 2.1. Observation and model data 7 2.1.1. ERA5 7 2.1.2. ORAS5 7 2.1.3. ERSSTv5 8 2.1.4. CESM2 pre-industrial control run 8 2.2. Numerical models for experiments 9 2.2.1. LCSM 9 2.2.2. CAM6-SOM 10 2.2.3. CESM1.2.2 11 Chapter 3. Observation data analysis 13 3.1. Features of single-year El Niño events 14 3.2. Features of multiyear El Niño events and the comparison 17 3.3. Cross-hemispheric asymmetries during the delayed onset 20 Chapter 4. CGCM data analysis 24 4.1. El Niño evolutions in different duration types 27 4.2. Oceanic mixed-layer heat budget analysis 31 4.3. Factors controlling the strength of upwelling Kelvin waves 36 Chapter 5. Numerical experiments 40 5.1. LCSM experiments 40 5.1.1. Experiment design 40 5.1.2. Direct wind driven versus boundary reflected waves 43 5.2. AGCM-SOM experiments 48 5.2.1. Experiment design 49 5.2.2. WP zonal wind reversal and early El Niño development 50 5.3. CGCM experiments 52 5.3.1. Experiment design 52 5.3.2. WNP feedbacks hastening El Niño-to-La Niña transition 53 Chapter 6. Conclusion and discussion 56 6.1. Concluding remarks 56 6.2. Discussion 61 Reference 64 Tables 79 Figures 80 | - |
| dc.language.iso | en | - |
| dc.subject | 聖嬰現象 | zh_TW |
| dc.subject | 海氣交互作用 | zh_TW |
| dc.subject | 海洋波動 | zh_TW |
| dc.subject | 氣候動力 | zh_TW |
| dc.subject | 氣候變異 | zh_TW |
| dc.subject | Atmosphere-ocean interactions | en |
| dc.subject | El Niño | en |
| dc.subject | Climate variability | en |
| dc.subject | Climate dynamics | en |
| dc.subject | Oceanic waves | en |
| dc.subject | ENSO | en |
| dc.title | 造成聖嬰現象相位轉換多變化性的機制 | zh_TW |
| dc.title | Mechanisms Causing El Niño’s Diverse Phase Transition | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 洪志誠;黃彥婷;曾于恒;羅敏輝 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Cherng Hong;Yen-Ting Huang;Yu-Heng Tseng;Min-Hui Lo | en |
| dc.subject.keyword | 聖嬰現象,海氣交互作用,海洋波動,氣候動力,氣候變異, | zh_TW |
| dc.subject.keyword | El Niño,ENSO,Atmosphere-ocean interactions,Oceanic waves,Climate dynamics,Climate variability, | en |
| dc.relation.page | 130 | - |
| dc.identifier.doi | 10.6342/NTU202400026 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-01-31 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 大氣科學系 | - |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 19.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
