請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91684完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳玉華 | zh_TW |
| dc.contributor.advisor | Yu-Hua Chen | en |
| dc.contributor.author | 林韋廷 | zh_TW |
| dc.contributor.author | Wei-Ting Lin | en |
| dc.date.accessioned | 2024-02-22T16:13:29Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-02 | - |
| dc.identifier.citation | 1. 吳齊殷(2022)。臺灣農村社會文化調查計畫分項一:人口、社會與經濟調查計畫第一期第一次調查計畫(D00222)【原始數據】取自中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://doi.org/10.6141/TW-SRDA-D00222-1
2. 邵恪玄、陳玉華(2023)。遷移類型、就業狀況與鄉村居民主觀幸福感之關聯。臺灣鄉村研究。 3. Bürkner, P. C., & Charpentier, E. (2020). Modelling monotonic effects of ordinal predictors in Bayesian regression models. The British journal of mathematical and statistical psychology, 73(3), 420–451. https://doi.org/10.1111/bmsp.12195 4. Bürkner, P.-C. (2021). Bayesian Item Response Modeling in R with brms and Stan. Journal of Statistical Software, 100(5), 1–54. https://doi.org/10.18637/jss.v100.i05 5. Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A Probabilistic Programming Language. Journal of Statistical Software, 76(1), 1–32. https://doi.org/10.18637/jss.v076.i01 6. Fullerton, A.S., & Xu, J. (2016). Ordered Regression Models: Parallel, Partial, and Non-Parallel Alternatives (1st ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b20060 7. Gelman, A. (2021, October 7). When to use ordered categorical regression. Statistical Modeling, Causal Inference, and Social Science. https://solomonkurz.netlify.app/blog/2021-12-29-notes-on-the-bayesian-cumulative-probit/ 8. Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., & Rubin, D.B. (2013). Bayesian Data Analysis (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b16018 9. Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories. Cambridge: Cambridge University Press. 10. Kurz, A. S. (2021, December 29). Notes on the Bayesian cumulative probit. https://solomonkurz.netlify.app/blog/2021-12-29-notes-on-the-bayesian-cumulative-probit/ 11. Kurz, A. S. (2023). Statistical rethinking with brms, ggplot2, and the tidyverse: Second edition (Version 0.4.0). https://doi.org/10.5281/zenodo.7125723 12. Liddell, Torrin and Kruschke, John, Analyzing Ordinal Data with Metric Models: What Could Possibly Go Wrong? (November 6, 2017). http://dx.doi.org/10.2139/ssrn.2692323 13. Linzer, D. A., & Lewis, J. B. (2011). poLCA: An R Package for Polytomous Variable Latent Class Analysis. Journal of Statistical Software, 42(10), 1–29. https://doi.org/10.18637/jss.v042.i10 14. Long, J. S. (1997). Regression models for categorical and limited dependent variables. Sage Publications, Inc. 15. Martyn plummer, M. (2008). Penalized Loss Functions for Bayesian Model Comparison. Biostatistics, 9(3), 523–539. https://doi.org/10.1093/biostatistics/kxm049 16. McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC Press. https://doi.org/10.1201/9781315372495 17. McKelvey, R.D., & Zavoina, W.J. (1975). A statistical model for the analysis of ordinal level dependent variables. Journal of Mathematical Sociology, 4, 103-120. https://doi.org/10.1080/0022250X.1975.9989847 18. Mood, C. (2010). Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do About It. European Sociological Review, 26(1), 67–82. https://doi.org/10.1093/esr/jcp006 19. Sivula, T., Magnusson, M., Matamoros, A.A., Finland, A.V., & Sweden, U. (2020). Uncertainty in Bayesian Leave-One-Out Cross-Validation Based Model Comparison. arXiv: Methodology. 20. van der Linde, A. (2005), DIC in variable selection. Statistica Neerlandica, 59, 45-56. https://doi.org/10.1111/j.1467-9574.2005.00278.x 21. Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 1413–1432. https://doi.org/10.1007/s11222-016-9696-4 22. Wickham et al., (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686 23. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis (2nd ed.). New York, NY: Springer. 24. Wickham, H. . (2007). Reshaping Data with the reshape Package. Journal of Statistical Software, 21(12), 1–20. https://doi.org/10.18637/jss.v021.i12 25. Winship, C., & Mare, R.D. (1984). REGRESSION MODELS WITH ORDINAL VARIABLES. American Sociological Review, 49, 512. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91684 | - |
| dc.description.abstract | 實證研究者通常將順序尺度的依變數和自變數視為數值資料或名目尺度資料進行分析,然而這些處理方式分別高估和低估了資料所包含的資訊,因此在理論和實務上都存在一些缺陷。本研究探討順序尺度資料的分析方法,並嘗試在貝氏統計方法框架下探索更適合處理順序尺度資料的統計方法,包括累積probit模型和順序尺度自變數的單調性處理,以確保模型反映出依變數與自變數的順序尺度特性。
本研究使用「臺灣農村社會文化調查計畫分項一:人口、社會與經濟調查計畫」於2019年收集之調查資料,該調查共完成3,321份農村居民問卷調查。以順序尺度的「生活滿意程度」作為依變數,示範統計建模中切點、係數等參數的先驗分配設定,將順序尺度的自變數「家庭經濟狀況」作單調性處理,並透過模型的配適結果探討自變數對於生活滿意程度的影響。本研究透過套件brms計算不同順序尺度自變數資料處理方法下累積probit模型的配適結果,並以捨一交叉確認法比較了不同模型的適合度。 本文最後提供順序尺度依變數與順序尺度自變數在統計建模與資料處理上的建議,以及實際應用上模型比較的判斷依據。本研究還提供了使用R語言進行分析的程式碼,以便其他研究者能夠重現本文的結果,或在根據需求調整後應用於相關研究。 | zh_TW |
| dc.description.abstract | Researchers in empirical studies often interpret ordinal dependent and independent variables as either metric or nominal data. However, these methods are susceptible to both overestimating and underestimating the information inherent in the data, resulting in certain theoretical and practical constraints. The current study examined methods appropriate for the analysis of ordinal data and attempts to search statistical models better suited for handling ordinal data within a Bayesian framework. In line with this, I employed cumulative probit models and incorporated monotonic effects for ordinal independent variables to precisely capture the ordinal characteristics of both dependent and independent variables.
This study utilized data from “A Social and Cultural Survey of Rural Taiwan: Sub-project ‘Population, Society and Economy Survey’ (2019)”, consisting of 3,321 rural residents. The dependent variables, life satisfaction, was measured on an ordinal scale to demonstrate the setting of prior distributions for cutpoints, coefficients, and other parameters in statistical modeling. The ordinal independent variable, family economic status, undergoes monotonicity treatment, and the fitted results of the model are used to explore the impact of independent variables on life satisfaction. The brms package in R is employed to compute the fitted results of the cumulative probit model under different data processing methods for ordinal independent variables, and model comparison is conducted using leave-one-out cross-validation. In the conclusion section, this study proposes recommendations for the statistical modeling and data processing of ordinal dependent and independent variables. It also establishes criteria for model comparison in practical applications. Furthermore, the study includes R code for analysis, allowing fellow researchers to replicate the results or modify them for similar studies according to their specific requirements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:13:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:13:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 本文架構 3 第二章 文獻回顧 4 第一節 累積probit模型 4 第二節 順序尺度自變數之單調性處理 6 第三節 模型比較 7 第三章 研究方法 9 第一節 資料來源 9 第二節 變數測量 9 第三節 統計方法 17 第四章 實證結果 21 第一節 參數估計結果 21 第二節 模型比較 26 第五章 結論與建議 29 參考文獻 31 附錄 33 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 貝氏統計 | zh_TW |
| dc.subject | 順序尺度 | zh_TW |
| dc.subject | 順序尺度自變數單調性處理 | zh_TW |
| dc.subject | 累積 probit 模型 | zh_TW |
| dc.subject | cumulative probit model | en |
| dc.subject | Bayesian Statistics | en |
| dc.subject | ordinal scale | en |
| dc.subject | monotonic effects for ordinal independent variables | en |
| dc.title | 順序尺度依變數與自變數估計方法的再檢視 | zh_TW |
| dc.title | Reexamination of Estimation Methods for Ordinal Dependent and Independent Variables | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 于若蓉;郭蕙如 | zh_TW |
| dc.contributor.oralexamcommittee | Ruoh-rong Yu;Hui-Ju Kuo | en |
| dc.subject.keyword | 順序尺度,貝氏統計,累積 probit 模型,順序尺度自變數單調性處理, | zh_TW |
| dc.subject.keyword | ordinal scale,Bayesian Statistics,cumulative probit model,monotonic effects for ordinal independent variables, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202400383 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-02-05 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 統計碩士學位學程 | - |
| 顯示於系所單位: | 統計碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf 未授權公開取用 | 2.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
