請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91682完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李峻霣 | zh_TW |
| dc.contributor.advisor | Jiun-Yun Li | en |
| dc.contributor.author | 廖宸嶢 | zh_TW |
| dc.contributor.author | Chen-Yao Liao | en |
| dc.date.accessioned | 2024-02-22T16:12:52Z | - |
| dc.date.available | 2024-02-23 | - |
| dc.date.copyright | 2024-02-22 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-02-02 | - |
| dc.identifier.citation | P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1484–1509, Oct. 1997, doi: https://doi.org/10.1137/s0097539795293172.
“IBM Quantum Computing Blog | The hardware and software for the era of quantum utility is here,” www.ibm.com. https://www.ibm.com/quantum/blog/quantum-roadmap-2033. E. Martín-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien, “Experimental realization of Shor’s quantum factoring algorithm using qubit recycling,” Nature Photonics, vol. 6, no. 11, pp. 773–776, Oct. 2012, doi: https://doi.org/10.1038/nphoton.2012.259. D. Harris, “What Is Quantum Computing?,” NVIDIA Blog, Apr. 12, 2021. https://blogs.nvidia.com/blog/what-is-quantum-computing/. 維基媒體專案貢獻者, “量子閘,” Wikipedia.org, Dec. 08, 2009. https://zh.wikipedia.org/zh-tw/%E9%87%8F%E5%AD%90%E9%96%98. J. M. Gambetta, J. M. Chow, and M. Steffen, “Building logical qubits in a superconducting quantum computing system,” npj Quantum Information, vol. 3, no. 1, Jan. 2017, doi: https://doi.org/10.1038/s41534-016-0004-0. H. Bombin and M. A. Martin-Delgado, “Optimal resources for topological two-dimensional stabilizer codes: Comparative study,” Physical Review A, vol. 76, no. 1, Jul. 2007, doi: https://doi.org/10.1103/physreva.76.012305. V. Negîrneac, H. Ali, N. Muthusubramanain, F. Battistel, R. Sagastizabal, M. S. Moreira, J. F. Marques, W. Vlothuizen, M. Beekman, C. Zachariadis, N. Haider, A. Bruno, and L. DiCarlo, “High-Fidelity Controlled- Z Gate with Maximal Intermediate Leakage Operating at the Speed Limit in a Superconducting Quantum Processor,” Physical Review Letters, vol. 126, no. 22, Jun. 2021, doi: https://doi.org/10.1103/physrevlett.126.220502. Y. Wang, M. Um, J. Zhang, S. An, M. Lyu, J.-N. Zhang, L- M. Duan, D. Yum, and K. Kim, “Single-qubit quantum memory exceeding ten-minute coherence time,” Nature Photonics, vol. 11, no. 10, pp. 646–650, Sep. 2017, doi: https://doi.org/10.1038/s41566-017-0007-1. C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, “High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits,” Physical Review Letters, vol. 117, no. 6, Aug. 2016, doi: https://doi.org/10.1103/physrevlett.117.060504. Z. Ying, C. Feng, Z. Zhao, S. Dhar, H. Dalir, J. Gu, Y. Cheng, R. Soref, D. Z. Pan, and R. T. Chen, “Electronic-photonic arithmetic logic unit for high-speed computing,” Nature Communications, vol. 11, no. 1, May 2020, doi: https://doi.org/10.1038/s41467-020-16057-3. A. Noiri., L. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha, “Fast universal quantum gate above the fault-tolerance threshold in silicon,” Nature, vol. 601, no. 7893, pp. 338–342, Jan. 2022, doi: https://doi.org/10.1038/s41586-021-04182-y. J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, and S. Taurcha, “A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%,” Nature Nanotechnology, vol. 13, no. 2, pp. 102–106, Dec. 2017, doi: https://doi.org/10.1038/s41565-017-0014-x. C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. C. Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, M. Pioro-Ladriére, A. Laucht, and A. S. Dzurak, “Operation of a silicon quantum processor unit cell above one kelvin,” Nature, vol. 580, no. 7803, pp. 350–354, Apr. 2020, doi: https://doi.org/10.1038/s41586-020-2171-6. Ross, C. H. Yang, C. Hwang, J. C. Lemyre, T. Tanttu, W. Huang, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, M. Pioro- Ladriére, A. Saraiva, A. S. Dzurak, “Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot,” Nature Communications, vol. 11, no. 1, Feb. 2020, doi: https://doi.org/10.1038/s41467-019-14053-w. T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, “A programmable two-qubit quantum processor in silicon,” Nature, vol. 555, no. 7698, pp. 633–637, Feb. 2018, doi: https://doi.org/10.1038/nature25766. W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. J. Hensen, Leon, M. A. Fogarty, C. Hwang, F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, A. S. Dzurak, “Fidelity benchmarks for two-qubit gates in silicon,” Nature, vol. 569, no. 7757, pp. 532–536, May 2019, doi: https://doi.org/10.1038/s41586-019-1197-0. X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, and L. M. K. Vandersypen, “Quantum logic with spin qubits crossing the surface code threshold,” Nature, vol. 601, no. 7893, pp. 343–347, Jan. 2022, doi: https://doi.org/10.1038/s41586-021-04273-w. S. G. J. Philips, M. T. Madzik, S. V. Amitonov, S. L. de Snoo, M. Russ, N. Kalhor, C. Volk, W. I. L. Lawrie, D. Brousse, L. Tryputen, B. P. Wuetz, A. Sammak, M. Veldhorst, G. Scappucci, L. M. K. Vandersypen, “Universal control of a six-qubit quantum processor in silicon,” Nature, vol. 609, no. 7929, pp. 919–924, Sep. 2022, doi: https://doi.org/10.1038/s41586-022-05117-x. N. W. Hendrickx, W. I. L. Lawrie, M. Russ, F. van Riggelen, S. L. de Snoo, R. N. Schouten, A. Sammak, G. Scappucci, M. Veldhorst, “A four-qubit germanium quantum processor,” Nature, vol. 591, no. 7851, pp. 580–585, Mar. 2021, doi: https://doi.org/10.1038/s41586-021-03332-6. A. G. Fowler, A. M. Stephens, and P. Groszkowski, “High-threshold universal quantum computation on the surface code,” Physical Review A, vol. 80, no. 5, Nov. 2009, doi: https://doi.org/10.1103/physreva.80.052312. L. C. Camenzind, S. Geyer, A. Fuhrer, R. J. Warburton, D. M. Zumbühl, and A. V. Kuhlmann, “A hole spin qubit in a fin field-effect transistor above 4 kelvin,” Nature Electronics, vol. 5, no. 3, pp. 178–183, Mar. 2022, doi: https://doi.org/10.1038/s41928-022-00722-0. Li, Zuo., M. K. Husain, F. Liu, S. P. Giblin, J. D. Fletcher, M. Kataoka, A. Andreev, K. Ibukuro, J. W. Hillier, H. N. Rutt, Y. Tsuchiya, S. Saito, I. Tomita, "Fabrication of Gate-Defined Si Dot Device and Gate-Controlled Transport Operation." A. M. J. Zwerver, T. Krähenmann, T. F. Watson, L. Lampert, H. C. George, R. Pillarisetty, S. A. Bojarski, P. Amin, S. V. Amitonov, J. M. Boter, R. Caudillo, D. Correas-Serrano, J. P. Dephollian, G. Droulers, E. M. Henry, R. Kotlyar, M. Lodari, F. Lüthi, D. J. Michalak, B. K. Mueller, S. Neyens, J. Roberts, N. Samkhazarde, G. Zheng, O. K. Zietz, G. Scappucci, M. Veldhorst, L. M. K. Vandersypen, and J. S. Clarke, “Qubits made by advanced semiconductor manufacturing,” Nature Electronics, vol. 5, no. 3, pp. 184–190, Mar. 2022, doi: https://doi.org/10.1038/s41928-022-00727-9. K. v. Klitzing, G. Dorda, and M. Pepper, “New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,” Physical Review Letters, vol. 45, no. 6, pp. 494–497, Aug. 1980, doi: https://doi.org/10.1103/physrevlett.45.494. “Solutions to the Schrödinger equation for a charged particle in a magnetic field,” lampx.tugraz.at. http://lampx.tugraz.at/~hadley/ss2/IQHE/landau.php. “David Tong: The Quantum Hall Effect,” www.damtp.cam.ac.uk. https://www.damtp.cam.ac.uk/user/tong/qhe.html. “Advanced Quantum Mechanics II PHYS 40202,” oer.physics.manchester.ac.uk. https://oer.physics.manchester.ac.uk/AQM2/Notes/Notes-4.4.html. D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the Extreme Quantum Limit,” Physical Review Letters, vol. 48, no. 22, pp. 1559–1562, May 1982, doi: https://doi.org/10.1103/physrevlett.48.1559. R. B. Laughlin, “Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations,” Physical Review Letters, vol. 50, no. 18, pp. 1395–1398, May 1983, doi: https://doi.org/10.1103/physrevlett.50.1395. M. Haldane, “Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States,” Physical Review Letters, vol. 51, no. 7, pp. 605–608, Aug. 1983, doi: https://doi.org/10.1103/physrevlett.51.605. A. H. MacDonald, G. C. Aers, and M. W. C. Dharma‐wardana, “Hierarchy of plasmas for fractional quantum Hall states,” Physical review, vol. 31, no. 8, pp. 5529–5532, Apr. 1985, doi: https://doi.org/10.1103/physrevb.31.5529. G. W. Moore and N. W. Read, “Nonabelions in the fractional quantum hall effect,” vol. 360, no. 2–3, pp. 362–396, Aug. 1991, doi: https://doi.org/10.1016/0550-3213(91)90407-o. J. K. Jain, “Composite-fermion approach for the fractional quantum Hall effect,” Physical Review Letters, vol. 63, no. 2, pp. 199–202, Jul. 1989, doi: https://doi.org/10.1103/physrevlett.63.199.199. Y. Aharonov and D. Bohm, “Significance of Electromagnetic Potentials in the Quantum Theory,” Physical Review, vol. 115, no. 3, pp. 485–491, Aug. 1959, doi: https://doi.org/10.1103/physrev.115.485. D. Caughey and R. C. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proceedings of the IEEE, vol. 55, no. 12, pp. 2192–2193, Dec. 1967, doi: https://doi.org/10.1109/proc.1967.6123. W. I. L. Lawrie, H. G. J. Eenink, N. W. Hendrickx, J. M. Boter, L. Petit, S. V. Amitonov, M. Lodari, B. P. Wuetz, C. Volk, S. G. J. Philips, G. Droulers, N. Kalhor, F. van Riggelen, D. Brousse, A. Sammak, L. M. K. Vandersypen, G. Scappucci, and M. Veldhorst, “Quantum dot arrays in silicon and germanium,” Applied Physics Letters, vol. 116, no. 8, p. 080501, Feb. 2020, doi: https://doi.org/10.1063/5.0002013. R. L. Maddox, “p-MOSFET parameters at cryogenic temperatures,” IEEE Transactions on Electron Devices, vol. 23, no. 1, pp. 16–21, Jan. 1976, doi: https://doi.org/10.1109/t-ed.1976.18340. J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Åberg, G. Xia, T. S. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “Strained silicon MOSFET technology,” Jun. 2003, doi: https://doi.org/10.1109/iedm.2002.1175770. M. Yu. Mel’nikov, A. A. Shashkin, V. T. Dolgopolov, S.-H. Huang, Liu C, and S. V. Kravchenko, “Ultra-high mobility two-dimensional electron gas in a SiGe/Si/SiGe quantum well,” Applied Physics Letters, vol. 106, no. 9, Mar. 2015, doi: https://doi.org/10.1063/1.4914007. L. Esaki, “Semiconductor Superlattices and Quantum Wells,” Springer eBooks, pp. 473–483, Jan. 1985, doi: https://doi.org/10.1007/978-1-4615-7682-2_105. L. Esaki and R. Tsu, “Superlattice and Negative Differential Conductivity in Semiconductors,” IBM Journal of Research and Development, vol. 14, no. 1, pp. 61–65, Jan. 1970, doi: https://doi.org/10.1147/rd.141.0061. R. Dingle, A. C. Gossard, and W. Wiegmann, “Direct Observation of Superlattice Formation in a Semiconductor Heterostructure,” Physical Review Letters, vol. 34, no. 21, pp. 1327–1330, May 1975, doi: https://doi.org/10.1103/physrevlett.34.1327. R. Dingle, H. Störmer, A. C. Gossard, and W. Wiegmann, “Electron mobilities in modulation‐doped semiconductor heterojunction superlattices,” Applied Physics Letters, vol. 33, no. 7, pp. 665–667, Oct. 1978, doi: https://doi.org/10.1063/1.90457. V. Umansky, Moty Heiblum, Y. Levinson, J. H. Smet, Johannes Nübler, and M. Dolev, “MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106cm2/Vs,” Journal of Crystal Growth, vol. 311, no. 7, pp. 1658–1661, Mar. 2009, doi: https://doi.org/10.1016/j.jcrysgro.2008.09.151. Z. Kong, Z. Li, G. Cao, J. Su, Y. Zhang, J. Liu, J. Liu, Y. Ren, H. Li, L. Wei, G.-P. Guo, Y. Wu, H. H. Radamson, J. Li, Z. Wu, H.-O. Li, J. Yang, C. Zhao, T. Ye, and G. Wang, “Undoped Strained Ge Quantum Well with Ultrahigh Mobility of Two Million,” ACS Applied Materials & Interfaces, vol. 15, no. 23, pp. 28799–28805, May 2023, doi: https://doi.org/10.1021/acsami.3c03294. Y. Huang, C.-H. Huang, F. J. Lu, C.-M. Lin, H.-Y. Ye, I.-H. Wong, S.-R. Jan, H.-S. Lan, C. W. Liu, Y.-C. Huang, H. Chung, C.-P. Chang, S. S. Chu, and S. Kuppurao, “Record high mobility (428cm2/V-s) of CVD-grown Ge/strained Ge0.91Sn0.09/Ge quantum well p-MOSFETs,” Dec. 2016, doi: https://doi.org/10.1109/iedm.2016.7838531. Y.-H. Su, K.-Y. Chou, Y. Chuang, T.-M. Lu, and J.-Y. Li, “Electron mobility enhancement in an undoped Si/SiGe heterostructure by remote carrier screening,” Journal of Applied Physics, vol. 125, no. 23, p. 235705, Jun. 2019, doi: https://doi.org/10.1063/1.5094848. T.-M. Lu, W. Pan, D. C. Tsui, C.-H. Lee, and Liu C, “Fractional quantum Hall effect of two-dimensional electrons in high-mobility Si/SiGe field-effect transistors,” Physical Review B, vol. 85, no. 12, Mar. 2012, doi: https://doi.org/10.1103/physrevb.85.121307. B. I. Halperin, P. A. Lee, and N. W. Read, “Theory of the half-filled Landau level,” Physical review, vol. 47, no. 12, pp. 7312–7343, Mar. 1993, doi: https://doi.org/10.1103/physrevb.47.7312 D. J. Paul, “Si/SiGe heterostructures: from material and physics to devices and circuits,” Semiconductor Science and Technology, vol. 19, no. 10, pp. R75–R108, Sep. 2004, doi: https://doi.org/10.1088/0268-1242/19/10/r02. K.-Y. Chou, N.-W. Hsu, Y.-H. Su, C.-T. Chou, P.-Y. Chiu, Y. Chuang, and J.-Y. Li, “Temperature dependence of DC transport characteristics for a two-dimensional electron gas in an undoped Si/SiGe heterostructure,” Applied Physics Letters, vol. 112, no. 8, p. 083502, Feb. 2018, doi: https://doi.org/10.1063/1.5018636. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, “Spins in few-electron quantum dots,” Reviews of Modern Physics, vol. 79, no. 4, pp. 1217–1265, Oct. 2007, doi: https://doi.org/10.1103/revmodphys.79.1217. D. M. Zajac, T. Hazard, X. Mi, K. Wang, and J. R. Petta, “A reconfigurable gate architecture for Si/SiGe quantum dots,” Applied Physics Letters, vol. 106, no. 22, Jun. 2015, doi: https://doi.org/10.1063/1.4922249. C. W. J. Beenakker, “Theory of Coulomb-blockade oscillations in the conductance of a quantum dot,” Physical Review B, vol. 44, no. 4, pp. 1646–1656, Jul. 1991, doi: https://doi.org/10.1103/physrevb.44.1646. N. S. Lai, “Silicon-based microdosimeters & double quantum dots,” unsworks.unsw.edu.au, 2011. https://unsworks.unsw.edu.au/entities/publication/f85a61e4-fe12-4d8b-a4de-05b7cf105692. H.-O. Li, G. Cao, M. Xiao, J. You, D. Wei, T. Tu, G.-C. Guo, H.-W. Jiang, G.-P. Guo, “Fabrication and characterization of an undoped GaAs/AlGaAs quantum dot device,” Journal of Applied Physics, vol. 116, no. 17, p. 174504, Nov. 2014, doi: https://doi.org/10.1063/1.4900915. D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta, “Resonantly driven CNOT gate for electron spins,” Science, vol. 359, no. 6374, pp. 439–442, Dec. 2017, doi: https://doi.org/10.1126/science.aao5965. M. Lodari, A. Tosato, D. Sabbagh, M. A. Schubert, G. Capellini, A. Sammak, M. Veldhorst, and G. Scappucci, “Light effective hole mass in undoped Ge/SiGe quantum wells,” Physical Review B, vol. 100, no. 4, Jul. 2019, doi: https://doi.org/10.1103/physrevb.100.041304. W. Hardy, C. T. Harris, Y.-C. Su, Y. Chuang, J. E. Moussa, L. Maurer, J.-Y. Li, T.-M. Lu, and D. Luhman, “Single and double hole quantum dots in strained Ge/SiGe quantum wells,” Nanotechnology, vol. 30, no. 21, pp. 215202–215202, Mar. 2019, doi: https://doi.org/10.1088/1361-6528/ab061e. C-Y. Chiang, “矽基量子點元件製作與特性分析,” 臺灣大學電子工程學研究所學位論文, vol. 2021, pp. 1–96, Jan. 2021, doi: https://doi.org/10.6342/NTU202103548. S. J. Pearton, “Ion implantation for isolation of III-V semiconductors,” Materials Science Reports, vol. 4, no. 6, pp. 313–363, Jan. 1990, doi: https://doi.org/10.1016/s0920-2307(05)80001-5. J. C. Dyment, L. A. D’Asaro, J. C. North, B. I. Miller, and J. E. Ripper, “Proton-bombardment formation of stripe-geometry heterostructure lasers for 300 K CW operation,” Proceedings of the IEEE, vol. 60, no. 6, pp. 726–728, 1972, doi: https://doi.org/10.1109/proc.1972.8734. H. M. Stoll, Amnon Yariv, R. G. Hunsperger, and G. L. Tangonan, “Proton-implanted optical waveguide detectors in GaAs,” Applied Physics Letters, vol. 23, no. 12, pp. 664–665, Dec. 1973, doi: https://doi.org/10.1063/1.1654783. D. C. D’Avanzo, “Proton isolation for GaAs integrated circuits,” IEEE Transactions on Electron Devices, vol. 29, no. 7, pp. 1051–1059, Jul. 1982, doi: https://doi.org/10.1109/t-ed.1982.20833. D. A. Nelson, Y. D. Shen, and B. M. Welch, “The Effects of Proton Implant on GaAs Isolation Properties,” Journal of The Electrochemical Society, vol. 134, no. 10, pp. 2549–2552, Oct. 1987, doi: https://doi.org/10.1149/1.2100241. H. Lin, S. K. Kim, D. Chang, Y. Xuan, S. Mohammadi, P. D. Ye, G. Lü, A. Facchetti, and T. J. Marks “Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics,” Applied Physics Letters, vol. 91, no. 9, Aug. 2007, doi: https://doi.org/10.1063/1.2776013. T. Itoh and H. Yanai, “Stability of performance and interfacial problems in GaAs MESFET’s,” Jun. 1980, doi: https://doi.org/10.1109/t-ed.1980.19984. M. Tanimoto, K. Suzuki, T. Itoh, H. Yanai, L. M. F. Kaufmann, W. Nievendick, and K. Heime, “Anomalous phenomena of current-voltage characteristics observed in Gunn-effect digital devices under DC bias conditions,” Electronics and Communications in Japan, vol. 60, pp. 102–110, Nov. 1977. J. C. Dyment, “HERMITE-GAUSSIAN MODE PATTERNS IN GaAs JUNCTION LASERS,” Applied Physics Letters, vol. 10, no. 3, pp. 84–86, Feb. 1967, doi: https://doi.org/10.1063/1.1754862. J. Yasaitis, “Ion implantation of neon in silicon for planar amorphous isolation,” Electronics Letters, vol. 14, no. 15, pp. 460–460, Jan. 1978, doi: https://doi.org/10.1049/el:19780310. C.-T. Huang, J.-Y. Li, and J. C. Sturm, “Implant Isolation of Silicon Two-Dimensional Electron Gases at 4.2 K,” IEEE Electron Device Letters, vol. 34, no. 1, pp. 21–23, Jan. 2013, doi: https://doi.org/10.1109/led.2012.2228160. D.-H. Lung, “離子佈植技術於量子穿隧元件的應用,” 臺灣大學電子工程學研究所學位論文, vol. 2015, pp. 1–52, Jan. 2015, doi: https://doi.org/10.6342/NTU.2015.02468. D. Neamen, Semiconductor Physics And Devices. McGraw-Hill Science/Engineering/Math, 2003. Proceedings of the Symposium on Low Temperature Electronics and High Temperature Superconductors. Electrochemical Society, 1988. Available: https://books.google.com.tw/books?hl=zh-TW&lr=&id=JxW2AAAAIAAJ&oi=fnd&pg=PA177&dq=%5B75%5D%09Narita Kolkovsky, Vladimir, Arnd Hürrich, and Lutz Ende, “MOSFET Threshold Voltage Shift Induced By Ion Implantation Performed in Different Implanters,” 2018 22nd International Conference on Ion Implantation Technology (IIT). IEEE. F. Ana, “Suppression of Gate Induced Drain Leakage Current (GIDL) by Gate Workfunction Engineering: Analysis and Model,” Jan. 2012. J. Mitard, B. D. Jaeger, F. Leys, G. Hellings, K. Martens, G. Eneman, D. P. Brunco, R. Loo, J. Lin, D. Shamiryan, T. Vandeweyer, G. Windrickx, E. Vrancken, C. H. Yu, K. D. Meyer, M. Caymax, L. Pantisano, M. Meuris, and M, Heyns, “Record ION/IOFF performance for 65nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability,” Dec. 2008, doi: https://doi.org/10.1109/iedm.2008.4796837. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91682 | - |
| dc.description.abstract | 由於較長的相干時間與VLSI相容性,量子點是一個可依靠作為量子運算的平台。本論文中,分別於非摻雜式矽/矽鍺與鍺/鍺矽,實現量子霍爾效應與庫倫阻斷等量子傳輸現象。另外,由於量子點製程複雜,為減少閘極層數,離子佈植隔離技術被提出,並以金氧半場效電晶體作為測試平台。
非摻雜式矽/矽鍺的傳輸現象以電子密度與遷移率為表徵討論,且觀察到整數與分數量子霍爾效應。對於非摻雜式鍺/鍺矽而言,以一手指式量子點量測傳輸現象與庫倫阻斷。庫倫阻斷的巔峰之間距離較理論值大二個數量級,其中原因可能為較小的等效量子點面積。 透過離子佈植,量子點的閘極數得以減少。離子佈植定義電晶體以離子佈植而非閘極定義通道區域。對於矽金氧半場效電晶體而言,4 K量測結果顯示離子佈植區域絕緣。低溫下,即使離子佈植區域上方有閘極,仍未有載子被引誘出。這些結果顯示金氧半場效電晶體的通道區域可以被離子佈植定義,也因此,離子佈植未來有被應用於減低量子點複雜度的潛力。 | zh_TW |
| dc.description.abstract | Semiconductor quantum dots (QDs) are a promising platform for quantum computing due to the long coherence time and VLSI compatibility. In this thesis, quantum transport properties, such as quantum Hall effect and Coulomb blockade, in undoped Si/SiGe and Ge/GeSi heterostructures are investigated. In addition, since the device fabrication of QDs requires complicated processing steps, to reduce the number of gate layers, ion implant isolation is proposed and characterized using MOSFETs as a test platform.
The transport properties of undoped Si/SiGe are characterized by the electron density and mobility. Both integer and fractional quantum Hall effect are observed. For the undoped Ge/GeSi heterostructure, a finger-like quantum dot is characterized by both gate control test and Coulomb blockade measurement. The distance between Coulomb peaks is two orders larger than the theoretical one, which might be attributed to smaller effective quantum dot size. The number of the gates used for QDs can be reduced by using an implant step to create amorphous layers for electrical isolation. Implant-isolated MOSFETs are investigated by using the implant step to define the channel areas rather than the top gate. For Si MOSFETs, measurement results at 4 K show that the implanted regions are electrically insulating. Even there exist gates on top of the implanted region, there is no carrier induced at cryogenic temperatures. These results suggest that the channel area of MOSFETs can be defined by ion implantation, and this ion-implant isolation technique has great potential for reducing the complexity of QD fabrication in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-22T16:12:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-02-22T16:12:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii Abstract iii 目次 iv 圖次 vi 表次 xii 第 1 章 引言 1 1.1 量子電腦 1 1.1.1 引言 1 1.1.2 量子邏輯閘與讀出 2 1.1.3 量子電腦結構 2 1.1.4 量子位元平台 4 1.2 半導體量子位元 4 1.2.1 以量子點實現量子位元 4 1.2.2 量子點最新研究成果回顧 8 1.3 多重閘極製程 10 1.4 論文架構 12 第 2 章 矽/矽鍺異質結構霍爾棒元件 13 2.1 霍爾效應 13 2.1.1 整數量子霍爾效應 14 2.1.2 分數量子霍爾效應 15 2.2 矽/矽鍺異質結構 17 2.3 矽/矽鍺異質結構霍爾棒元件製作 20 2.4 矽/矽鍺異質結構之電子磁阻特性 23 2.4.1 低磁場(<0.5 T)實驗結果 23 2.4.2 高磁場(最高至8 T)實驗結果 25 2.5 結論 27 第 3 章 量子點元件 28 3.1 量子點介紹與結構 28 3.2 量子點基本物理與傳輸特性 30 3.2.1 單量子點基本物理與傳輸特性 30 3.2.2 雙量子點基本物理與傳輸特性 33 3.2.3 電荷偵測器 35 3.3 矽量子點製作與特性分析 37 3.4 鍺/鍺矽量子點製作與特性分析 42 3.5 結論 48 第 4 章 離子佈植隔離技術 50 4.1 離子佈植隔離應用 50 4.2 利用離子佈植隔離製作之矽金氧半電晶體 53 4.2.1 元件製程 53 4.2.2 離子佈植隔離區域電性測試 55 4.2.3 離子佈植定義電晶體 60 4.3 離子佈植隔離於非摻雜式矽/矽鍺材料電性實驗 71 4.3.1 元件製程 71 4.3.2 離子佈植隔離區域電性測試 74 4.3.3 離子佈植定義電晶體 74 4.4 結論 78 第 5 章 結論與未來工作 80 5.1 結論 80 5.2 未來工作 80 參考文獻 81 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 量子霍爾效應 | zh_TW |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 低溫 | zh_TW |
| dc.subject | 離子佈植隔離 | zh_TW |
| dc.subject | 庫倫阻斷 | zh_TW |
| dc.subject | Coulomb Blockade | en |
| dc.subject | Ion-Implant Isolation | en |
| dc.subject | Cryogenic | en |
| dc.subject | Quantum Hall Effect | en |
| dc.subject | Quantum Dot | en |
| dc.title | 離子佈植隔離技術應用於低溫金氧半與量子元件 | zh_TW |
| dc.title | Ion Implant Isolation for Cryo-CMOS and Quantum Devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李敏鴻;卓大鈞 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Hung Lee;Ta-Chun Cho | en |
| dc.subject.keyword | 量子點,量子霍爾效應,庫倫阻斷,離子佈植隔離,低溫, | zh_TW |
| dc.subject.keyword | Quantum Dot,Quantum Hall Effect,Coulomb Blockade,Ion-Implant Isolation,Cryogenic, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202400357 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-02-05 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-1.pdf | 4.99 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
