Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91644
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益zh_TW
dc.contributor.advisorRay-I Changen
dc.contributor.author李嘉誠zh_TW
dc.contributor.authorJia-Cheng Lien
dc.date.accessioned2024-02-20T16:21:28Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2024-
dc.date.submitted2024-01-28-
dc.identifier.citationD. Bawden and L. Robinson, "Information overload: An overview," 2020.
F. Ricci, L. Rokach, and B. Shapira, "Recommender systems: introduction and challenges," Recommender systems handbook, pp. 1-34, 2015.
Z. Lin, L. Feng, R. Yin, C. Xu, and C. K. Kwoh, "GLIMG: Global and local item graphs for top-N recommender systems," Information Sciences, vol. 580, pp. 1-14, 2021.
"MovieLens 1M 資料集."https://grouplens.org/datasets/movielens/1m/ (accessed.
"Yelp 2018 Challenge資料集."https://www.yelp.com/dataset_challenge (accessed.
J. Karlgren, "An algebra for recommendations: Using reader data as a basis for measuring document proximity," ed: Department of Computer and Systems Sciences, Stockholm University, 1990.
B. Smith and G. Linden, "Two decades of recommender systems at Amazon. com," Ieee internet computing, vol. 21, no. 3, pp. 12-18, 2017.
C. A. Gomez-Uribe and N. Hunt, "The netflix recommender system: Algorithms, business value, and innovation," ACM Transactions on Management Information Systems (TMIS), vol. 6, no. 4, pp. 1-19, 2015.
K. Jacobson, V. Murali, E. Newett, B. Whitman, and R. Yon, "Music personalization at Spotify," in Proceedings of the 10th ACM Conference on Recommender Systems, 2016, pp. 373-373.
J. Liu, P. Dolan, and E. R. Pedersen, "Personalized news recommendation based on click behavior," in Proceedings of the 15th international conference on Intelligent user interfaces, 2010, pp. 31-40.
"Amazon商品購買頁."https://www.amazon.com/-/zh/dp/B094Q89NKH/ref=sr_1_1?qid=1704054703&s=computers-intl-ship&sr=1-1&th=1 (accessed.
王国霞 and 刘贺平, "个性化推荐系统综述," 计算机工程与应用, vol. 7, 2012.
Y. Bai, S. Jia, S. Wang, and B. Tan, "Customer loyalty improves the effectiveness of recommender systems based on complex network," Information, vol. 11, no. 3, p. 171, 2020.
B. Perozzi, R. Al-Rfou, and S. Skiena, "Deepwalk: Online learning of social representations," in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 2014, pp. 701-710.
E. Palumbo, G. Rizzo, R. Troncy, E. Baralis, M. Osella, and E. Ferro, "Knowledge graph embeddings with node2vec for item recommendation," in The Semantic Web: ESWC 2018 Satellite Events: ESWC 2018 Satellite Events, Heraklion, Crete, Greece, June 3-7, 2018, Revised Selected Papers 15, 2018: Springer, pp. 117-120.
W. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs," Advances in neural information processing systems, vol. 30, 2017.
R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, "Graph convolutional neural networks for web-scale recommender systems," in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 974-983.
B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, "Item-based collaborative filtering recommendation algorithms," in Proceedings of the 10th international conference on World Wide Web, 2001, pp. 285-295.
P. Chanda, S. Yadav, and J. B. Pal, "Solving the Cold Start problem in Recommendation Systems-Case Study on MovieLens Dataset," 2022.
"Part2 Movielens介绍."https://blog.csdn.net/weixin_41821131/article/details/123949686 (accessed.
"Yelp Open Dataset."https://www.yelp.com/dataset (accessed.
N. Asghar, "Yelp dataset challenge: Review rating prediction," arXiv preprint arXiv:1605.05362, 2016.
"10个机器学习中常用的距离度量方法."https://zhuanlan.zhihu.com/p/581914013 (accessed.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91644-
dc.description.abstract圖推薦模型非常適用於Top-N推薦系統,因為它們能夠捕獲實體之間的潛在關係。然而,大多數現有方法僅使用一個全域的物品圖(Item Graph),被所有使用者共用,並未考慮到不同使用者之間偏好的差異。先前有研究者設計出了一種新穎的圖推薦模型,名為GLIMG(Global and Local IteM Graphs),它可以同時捕獲全域和局部使用者的品味,實現更個性化的推薦。傳統GLIMG模型使用餘弦相似度來評估物品之間的相似性,由於不同相似度計算對於圖推薦系統之有所影響,因此在本研究中,我們在GLIMG模型原有的餘弦相似度計算基礎上探索是否存在更好的相似度計算方法來提升推薦系統的性能。
為保持實驗公平性,我們同樣使用Movielens-1M和Yelp2018資料集,並替換了GLIMG模型中的餘弦相似度計算方法,引入了三種不同的相似度計算方式,在模型中進行實驗,包括:歐氏距離、曼哈頓距離和調整後的餘弦相似度(Adjusted Cosine Similarity)。通過比較使用這些方法之後的各項推薦系統評估指標數值,我們發現,加上評分偏置項之後的調整後的餘弦相似度在Top-50的推薦任務上取得了最好的推薦效果。
zh_TW
dc.description.abstractGraph-based recommendation models are highly suitable for Top-N recommendation systems as they can capture latent relationships between entities. However, most existing methods only utilize a global item graph shared by all users, neglecting differences in preferences among different users. A novel graph recommendation model named GLIMG (Global and Local IteM Graphs) has been previously designed to concurrently capture the tastes of both global and local users, achieving more personalized recommendations. The traditional GLIMG model uses cosine similarity to assess item similarity, a crucial metric for graph-based recommendation models. In this study, we explore whether there are better similarity calculation methods to enhance the performance of the recommendation system, building upon the original cosine similarity calculation in the GLIMG model.
To maintain experimental fairness, we employ the Movielens-1M and Yelp2018 datasets. We replace the cosine similarity calculation method in the GLIMG model with three different similarity calculation approaches – Euclidean distance, Manhattan distance, and adjusted cosine similarity. Through comparing various evaluation metrics of the recommendation system after incorporating these methods, we find that the adjusted cosine similarity, especially with the addition of rating bias, achieves the best recommendation performance in Top-50 recommendation tasks.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:21:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:21:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vi
表次 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 論文組織架構 2
第二章 文獻探討 3
2.1 推薦系統的介紹與應用 3
2.2 推薦系統的常用演算法和技術 5
2.3 圖推薦系統 6
2.4 推薦系統中常用的相似度計算方法 8
2.5 GLIMG模型介紹 9
第三章 研究方法 11
3.1 資料集選取及介紹 11
3.2 資料前處理 19
3.3 相似度計算方法分析 19
3.3.1 餘弦相似度 20
3.3.2 調整後的餘弦相似度 21
3.3.3 歐氏距離 22
3.3.4 曼哈頓距離 22
3.4 評估指標(Evaluation Metrics) 23
第四章 實驗結果與分析 25
4.1 實驗資料集 25
4.2 輸入和輸出 25
4.3 相減之後評分矩陣產生負值的解決方案 26
4.3.1 引入評分偏置項 28
4.3.2 引入非線性函數 30
4.4 比較不同評分偏置項對調整後的餘弦相似度產生之影響 31
4.5 不同負值消除方法對調整後的餘弦相似度產生之影響 33
4.6 比較各種相似度計算方式的推薦結果 34
4.7 比較不同資料稀疏程度對相似度計算的影響 37
4.7 對資料進行K-fold交叉驗證實驗 42
第五章 結論與展望 44
參考文獻 45
-
dc.language.isozh_TW-
dc.subject推薦系統zh_TW
dc.subjectGLIMG模型zh_TW
dc.subject相似度計算zh_TW
dc.subjectTop-N推薦zh_TW
dc.subjectGLIMG modelen
dc.subjectSimilarity calculationen
dc.subjectRecommendation systemen
dc.subjectTop-N recommendationen
dc.title不同相似度計算對於圖推薦系統之影響zh_TW
dc.titleThe Impact of Different Similarity Calculation Methods for Graph-based Recommendation Systemen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張恆華;張信宏zh_TW
dc.contributor.oralexamcommitteeHeng-Hua Chang;Shin-Hong Changen
dc.subject.keyword推薦系統,GLIMG模型,相似度計算,Top-N推薦,zh_TW
dc.subject.keywordRecommendation system,GLIMG model,Similarity calculation,Top-N recommendation,en
dc.relation.page47-
dc.identifier.doi10.6342/NTU202400309-
dc.rights.note未授權-
dc.date.accepted2024-01-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
2.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved