Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐zh_TW
dc.contributor.advisorMario Hofmannen
dc.contributor.author桀 亞zh_TW
dc.contributor.authorJeyavelan Muthuen
dc.date.accessioned2024-02-20T16:10:51Z-
dc.date.available2024-02-21-
dc.date.copyright2024-02-20-
dc.date.issued2023-
dc.date.submitted2024-01-23-
dc.identifier.citation1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
2. Rui, K., et al., Direct hybridization of noble metal nanostructures on 2D metal–organic framework nanosheets to catalyze hydrogen evolution. Nano Letters, 2019. 19(12): p. 8447-8453.
3. Geim, A.K., Graphene: status and prospects. science, 2009. 324(5934): p. 1530-1534.
4. Zhang, X. and Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chemical Society Reviews, 2013. 42(21): p. 8187-8199.
5. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
6. Zhang, J., et al., Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 2020. 40: p. 132-139.
7. Zhang, Y., et al., Nanostructured metal chalcogenides for energy storage and electrocatalysis. Advanced Functional Materials, 2017. 27(35): p. 1702317.
8. Suen, N.-T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
9. Chen, J., et al., Low‐coordinate iridium oxide confined on graphitic carbon nitride for highly efficient oxygen evolution. Angewandte Chemie International Edition, 2019. 58(36): p. 12540-12544.
10. Chung, D.Y., et al., Electrokinetic analysis of poorly conductive electrocatalytic materials. ACS Catalysis, 2020. 10(9): p. 4990-4996.
11. Zhang, H., Ultrathin two-dimensional nanomaterials. ACS nano, 2015. 9(10): p. 9451-9469.
12. Brownson, D.A. and C.E. Banks, The electrochemistry of CVD graphene: progress and prospects. Physical Chemistry Chemical Physics, 2012. 14(23): p. 8264-8281.
13. Tan, C., Z. Lai, and H. Zhang, Ultrathin two‐dimensional multinary layered metal chalcogenide nanomaterials. Advanced Materials, 2017. 29(37): p. 1701392.
14. Zheng, Y., et al., Hydrogen evolution by a metal-free electrocatalyst. Nature communications, 2014. 5(1): p. 3783.
15. Li, H., et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature materials, 2016. 15(1): p. 48-53.
16. Jin, H., et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chemical reviews, 2018. 118(13): p. 6337-6408.
17. Tang, K., et al., High Edge Selectivity of In Situ Electrochemical Pt Deposition on Edge‐Rich Layered WS2 Nanosheets. Advanced Materials, 2018. 30(7): p. 1704779.
18. Ghuman, K.K., S. Yadav, and C.V. Singh, Adsorption and dissociation of H2O on monolayered MoS2 edges: Energetics and mechanism from ab initio simulations. The Journal of Physical Chemistry C, 2015. 119(12): p. 6518-6529.
19. Tsai, C., et al., Active edge sites in MoSe 2 and WSe 2 catalysts for the hydrogen evolution reaction: a density functional study. Physical Chemistry Chemical Physics, 2014. 16(26): p. 13156-13164.
20. Xue, N. and P. Diao, Molybdenum diselenide nanolayers prepared on carbon black as an efficient and stable electrocatalyst for hydrogen evolution reaction. The Journal of Physical Chemistry C, 2017. 121(48): p. 26686-26697.
21. Kim, S.Y., et al., Recent developments in controlled vapor‐phase growth of 2D group 6 transition metal dichalcogenides. Advanced Materials, 2019. 31(20): p. 1804939.
22. Yu, P., et al., Earth abundant materials beyond transition metal dichalcogenides: a focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019. 58: p. 244-276.
23. Li, S., et al., Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Advanced Materials, 2021. 33(6): p. 2000086.
24. Hou, W. and S.B. Cronin, A review of surface plasmon resonance‐enhanced photocatalysis. Advanced Functional Materials, 2013. 23(13): p. 1612-1619.
25. Liu, Z., et al., Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano letters, 2011. 11(3): p. 1111-1116.
26. Mondal, A. and A. Vomiero, 2D Transition Metal Dichalcogenides‐Based Electrocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2022. 32(52): p. 2208994.
27. Jaramillo, T.F., et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science, 2007. 317(5834): p. 100-102.
28. Qu, L., et al., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS nano, 2010. 4(3): p. 1321-1326.
29. Liang, Q., et al., Defect engineering of two-dimensional transition-metal dichalcogenides: applications, challenges, and opportunities. ACS nano, 2021. 15(2): p. 2165-2181.
30. Chen, Y., et al., Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS nano, 2018. 12(3): p. 2569-2579.
31. Jin, H., et al., Heteroatom-doped transition metal electrocatalysts for hydrogen evolution reaction. ACS Energy Letters, 2019. 4(4): p. 805-810.
32. Li, Y., et al., Spin gapless semiconductor− metal− half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS nano, 2009. 3(7): p. 1952-1958.
33. Xu, Q., et al., Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting. Energy & Environmental Science, 2021. 14(10): p. 5228-5259.
34. Gong, M., et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature communications, 2014. 5(1): p. 4695.
35. Friedman, A.L., et al., Evidence for chemical vapor induced 2H to 1T phase transition in MoX2 (X= Se, S) transition metal dichalcogenide films. Scientific reports, 2017. 7(1): p. 3836.
36. Geng, X., et al., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nature communications, 2016. 7(1): p. 10672.
37. Jia, C., et al., Interface‐engineered plasmonics in metal/semiconductor Heterostructures. Advanced Energy Materials, 2016. 6(17): p. 1600431.
38. Ozbay, E., Plasmonics: merging photonics and electronics at nanoscale dimensions. science, 2006. 311(5758): p. 189-193.
39. Tao, L., et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chemical communications, 2016. 52(13): p. 2764-2767.
40. Isaacoff, B.P. and K.A. Brown, Progress in top-down control of bottom-up assembly. 2017, ACS Publications. p. 6508-6510.
41. Ertl, G., H. Knözinger, and J. Weitkamp, Handbook of heterogeneous catalysis. Vol. 2. 1997: VCH Weinheim.
42. Chen, H.M., et al., Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews, 2012. 41(17): p. 5654-5671.
43. Walter, M.G., et al., Solar water splitting cells. Chemical reviews, 2010. 110(11): p. 6446-6473.
44. Nørskov, J.K., et al., Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society, 2005. 152(3): p. J23.
45. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
46. Bard, A.J., L.R. Faulkner, and H.S. White, Electrochemical methods: fundamentals and applications. 2022: John Wiley & Sons.
47. Christopher, P., et al., Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature materials, 2012. 11(12): p. 1044-1050.
48. Zhou, L., et al., Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science, 2018. 362(6410): p. 69-72.
49. Aslam, U., S. Chavez, and S. Linic, Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nature nanotechnology, 2017. 12(10): p. 1000-1005.
50. Olsen, T., J. Gavnholt, and J. Schiøtz, Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Physical Review B, 2009. 79(3): p. 035403.
51. Amendola, V., et al., Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter, 2017. 29(20): p. 203002.
52. Brongersma, M.L., N.J. Halas, and P. Nordlander, Plasmon-induced hot carrier science and technology. Nature nanotechnology, 2015. 10(1): p. 25-34.
53. Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 2014. 8(2): p. 95-103.
54. Mukherjee, S., et al., Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano letters, 2013. 13(1): p. 240-247.
55. Wang, C., et al., Progress in electrocatalytic hydrogen evolution based on monolayer molybdenum disulfide. Frontiers in Chemistry, 2019. 7: p. 131.
56. Di, J., et al., Ultrathin two-dimensional materials for photo-and electrocatalytic hydrogen evolution. Materials Today, 2018. 21(7): p. 749-770.
57. Peng, K., et al., Emerging one-/two-dimensional heteronanostructure integrating SiC nanowires with MoS2 nanosheets for efficient electrocatalytic hydrogen evolution. ACS applied materials & interfaces, 2020. 12(17): p. 19519-19529.
58. Schaibley, J.R., et al., Valleytronics in 2D materials. Nature Reviews Materials, 2016. 1(11): p. 1-15.
59. Deng, D., et al., Catalysis with two-dimensional materials and their heterostructures. Nature nanotechnology, 2016. 11(3): p. 218-230.
60. Yuan, S., S.-Y. Pang, and J. Hao, 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Applied Physics Reviews, 2020. 7(2).
61. Tang, Y., et al., Discerning the mechanism of expedited interfacial electron transformation boosting photocatalytic hydrogen evolution by metallic 1T-WS2-induced photothermal effect. Applied Catalysis B: Environmental, 2022. 310: p. 121295.
62. Jeong, S., et al., Atomic interactions of two-dimensional PtS2 quantum dots/TiC heterostructures for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2021. 293: p. 120227.
63. Wei, S., et al., Dual-phase MoS2/MXene/CNT ternary nanohybrids for efficient electrocatalytic hydrogen evolution. npj 2D Materials and Applications, 2022. 6(1): p. 25.
64. Shan, A., et al., Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy, 2022. 94: p. 106913.
65. Kim, H.K., et al., A crucial role of enhanced Volmer-Tafel mechanism in improving the electrocatalytic activity via synergetic optimization of host, interlayer, and surface features of 2D nanosheets. Applied Catalysis B: Environmental, 2022. 312: p. 121391.
66. Xu, X., et al., Strain engineering of two-dimensional materials for advanced electrocatalysts. Materials Today Nano, 2021. 14: p. 100111.
67. Wang, H., et al., Electronic modulation of non‐van der Waals 2D electrocatalysts for efficient energy conversion. Advanced Materials, 2021. 33(26): p. 2008422.
68. Yang, J., et al., Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nature materials, 2019. 18(12): p. 1309-1314.
69. Xie, Z., et al., MoS2 nanosheet integrated electrodes with engineered 1T-2H phases and defects for efficient hydrogen production in practical PEM electrolysis. Applied Catalysis B: Environmental, 2022. 313: p. 121458.
70. Fei, H., et al., Sulfur vacancy engineering of MoS2 via phosphorus incorporation for improved electrocatalytic N2 reduction to NH3. Applied Catalysis B: Environmental, 2022. 300: p. 120733.
71. Ghosh, R., et al., Enhancing the photoelectrochemical hydrogen evolution reaction through nanoscrolling of two-dimensional material heterojunctions. ACS nano, 2022. 16(4): p. 5743-5751.
72. Chen, Q., et al., Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu-In-Zn-S QDs/MoS2 photocatalysts. Applied Catalysis B: Environmental, 2022. 301: p. 120755.
73. Xiao, W., et al., Heterostructured MoSe2/oxygen-terminated Ti3C2 MXene architectures for efficient electrocatalytic hydrogen evolution. Energy & Fuels, 2021. 35(5): p. 4609-4615.
74. Wang, Z., et al., Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy, 2018. 49: p. 634-643.
75. Wang, J., et al., Single atom Ru doping 2H-MoS2 as highly efficient hydrogen evolution reaction electrocatalyst in a wide pH range. Applied Catalysis B: Environmental, 2021. 298: p. 120490.
76. Liu, D., et al., Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021. 297: p. 120389.
77. Ambrosi, A., Z. Sofer, and M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of MoS 2, MoSe 2, WS 2 and WSe 2 strongly depends on the MX 2 composition. Chemical Communications, 2015. 51(40): p. 8450-8453.
78. Liu, Z., et al., Activation engineering on metallic 1T-MoS2 by constructing In-plane heterostructure for efficient hydrogen generation. Applied Catalysis B: Environmental, 2022. 300: p. 120696.
79. Peng, Y., et al., Vacancy-induced 2H@ 1T MoS2 phase-incorporation on ZnIn2S4 for boosting photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021. 298: p. 120570.
80. Xu, Y., et al., Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: From mechanism to manipulation. Journal of Energy Chemistry, 2022. 74: p. 45-71.
81. Liu, Z., et al., A review of heteroatomic doped two-dimensional materials as electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022. 47(69): p. 29698-29729.
82. Chen, L. and H. Zhu, Molybdenum Sulfide Nanosheet‐Based Hollow Porous Flat Boxes and Nanotubes for Efficient Electrochemical Hydrogen Evolution. ChemCatChem, 2018. 10(2): p. 459-464.
83. Murthy, A.P., et al., Highly active MoS 2/carbon electrocatalysts for the hydrogen evolution reaction–insight into the effect of the internal resistance and roughness factor on the Tafel slope. Physical Chemistry Chemical Physics, 2017. 19(3): p. 1988-1998.
84. Chin, H.-T., et al., Ferroelectric 2D ice under graphene confinement. Nature communications, 2021. 12(1): p. 6291.
85. Bentley, C.L., et al., Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS 2): basal vs. edge plane activity. Chemical science, 2017. 8(9): p. 6583-6593.
86. Han, L., et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. Acs Catalysis, 2019. 9(2): p. 1283-1288.
87. Chang, K.-W., et al., Electrostatic control over the electrochemical reactivity of graphene. Chemistry of Materials, 2018. 30(20): p. 7178-7182.
88. Cui, H., et al., A study on hydrogen storage performance of Ti decorated vacancies graphene structure on the first principle. RSC advances, 2021. 11(23): p. 13912-13918.
89. Mazánek, V., et al., Ultrapure graphene is a poor electrocatalyst: definitive proof of the key role of metallic impurities in graphene-based electrocatalysis. ACS nano, 2019. 13(2): p. 1574-1582.
90. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015. 44(15): p. 5148-5180.
91. Li, X., et al., Increasing the heteroatoms doping percentages of graphene by porous engineering for enhanced electrocatalytic activities. Journal of Colloid and Interface Science, 2020. 577: p. 101-108.
92. Nemiwal, M., T.C. Zhang, and D. Kumar, Graphene-based electrocatalysts: Hydrogen evolution reactions and overall water splitting. International Journal of Hydrogen Energy, 2021. 46(41): p. 21401-21418.
93. Tian, Y., et al., Enhanced electrocatalytic hydrogen evolution in graphene via defect engineering and heteroatoms co-doping. Electrochimica Acta, 2016. 219: p. 781-789.
94. Nguyen, Y., et al., Characterizing carrier transport in nanostructured materials by force-resolved microprobing. Scientific Reports, 2020. 10(1): p. 14177.
95. Chang, H.-P., et al., Correlation of grain orientations and the thickness of gradient MoS 2 films. RSC advances, 2021. 11(54): p. 34269-34274.
96. Ye, G., et al., Defects engineered monolayer MoS2 for improved hydrogen evolution reaction. Nano letters, 2016. 16(2): p. 1097-1103.
97. Li, S., et al., Edge-enriched 2D MoS2 thin films grown by chemical vapor deposition for enhanced catalytic performance. ACS Catalysis, 2017. 7(1): p. 877-886.
98. Tom, G. and A.T. Hubbard, Thin-layer electrochemistry. Minimization of uncompensated resistance. Analytical Chemistry, 1971. 43(6): p. 671-674.
99. Oldham, K.B. and N.P. Stevens, Uncompensated resistance. 2. The effect of reference electrode nonideality. Analytical Chemistry, 2000. 72(17): p. 3981-3988.
100. Madjarov, J., et al., Revisiting methods to characterize bioelectrochemical systems: the influence of uncompensated resistance (iRu-drop), double layer capacitance, and junction potential. Journal of power sources, 2017. 356: p. 408-418.
101. Myland, J.C. and K.B. Oldham, Uncompensated resistance. 1. The effect of cell geometry. Analytical chemistry, 2000. 72(17): p. 3972-3980.
102. Kapałka, A., G. Fóti, and C. Comninellis, Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochemistry Communications, 2008. 10(4): p. 607-610.
103. He, M., et al., Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS 2 nanosheets. RSC advances, 2018. 8(26): p. 14369-14376.
104. Yang, L., et al., Two-dimensional material molybdenum disulfides as electrocatalysts for hydrogen evolution. Catalysts, 2017. 7(10): p. 285.
105. Shi, J., et al., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS nano, 2014. 8(10): p. 10196-10204.
106. Zhu, J., et al., Boundary activated hydrogen evolution reaction on monolayer MoS2. Nature communications, 2019. 10(1): p. 1348.
107. Li, G., et al., Engineering substrate interaction to improve hydrogen evolution catalysis of monolayer MoS2 films beyond Pt. ACS nano, 2020. 14(2): p. 1707-1714.
108. Conway, B., E. Gileadi, and H. Oswin, The theory of current distribution and potential profile at an electrode of significant ohmic resistance. Canadian Journal of Chemistry, 1963. 41(10): p. 2447-2454.
109. Ghanim, A.H., et al., Low-loading of Pt nanoparticles on 3D carbon foam support for highly active and stable hydrogen production. Frontiers in chemistry, 2018. 6: p. 523.
110. Sun, Y. and Z. Tang, Photocatalytic hot-carrier chemistry. MRS Bulletin, 2020. 45(1): p. 20-25.
111. Freund, H.J., et al., CO oxidation as a prototypical reaction for heterogeneous processes. Angewandte Chemie International Edition, 2011. 50(43): p. 10064-10094.
112. Wei, Q., S. Wu, and Y. Sun, Quantum‐Sized Metal Catalysts for Hot‐Electron‐Driven Chemical Transformation. Advanced Materials, 2018. 30(48): p. 1802082.
113. Lee, S.W., Hot electron-driven chemical reactions: A review. Applied Surface Science Advances, 2023. 16: p. 100428.
114. Austin, R., et al., Hot carrier extraction from 2D semiconductor photoelectrodes. Proceedings of the National Academy of Sciences, 2023. 120(15): p. e2220333120.
115. Cui, L., et al., Electrically driven hot-carrier generation and above-threshold light emission in plasmonic tunnel junctions. Nano Letters, 2020. 20(8): p. 6067-6075.
116. Schirato, A., et al., Ultrafast hot electron dynamics in plasmonic nanostructures: experiments, modelling, design. Nanophotonics, 2023. 12(1): p. 1-28.
117. Petek, H., et al., Plasmonic decay into hot electrons in silver. Progress in Surface Science, 2023: p. 100707.
118. Chang, L., et al., Electronic structure of the plasmons in metal nanocrystals: fundamental limitations for the energy efficiency of hot electron generation. ACS Energy Letters, 2019. 4(10): p. 2552-2568.
119. Akbari-Moghanjoughi, M., Photo-plasmonic effect as the hot electron generation mechanism. Scientific Reports, 2023. 13(1): p. 589.
120. An, K., J. Hu, and J. Wang, Schottky-barrier-free plasmonic photocatalysts. Physical Chemistry Chemical Physics, 2023. 25(29): p. 19358-19370.
121. Lee, H., et al., Surface plasmon-induced hot carriers: generation, detection, and applications. Accounts of Chemical Research, 2022. 55(24): p. 3727-3737.
122. Zhang, Y., et al., Surface-plasmon-driven hot electron photochemistry. Chemical reviews, 2017. 118(6): p. 2927-2954.
123. Doiron, B., et al., Optimizing Hot Electron Harvesting at Planar Metal–Semiconductor Interfaces with Titanium Oxynitride Thin Films. ACS Applied Materials & Interfaces, 2023. 15(25): p. 30417-30426.
124. Liu, B., et al., Schottky Junction Made from a Nanoporous Au and TiO2 Film for Plasmonic Photodetectors. ACS Applied Nano Materials, 2023. 6(6): p. 4619-4625.
125. Zhang, H., M. Ijaz, and R.J. Blaikie, Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures. Frontiers of Physics, 2023. 18(6): p. 63602.
126. Song, Z., et al., Controlling Hot Charge Carrier Transfer in Monolithic Al Si Al Heterostructures for Plasmonic On‐Chip Energy Harvesting. Small, 2023: p. 2301055.
127. Linic, S., P. Christopher, and D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature materials, 2011. 10(12): p. 911-921.
128. Mubeen, S., et al., An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nature nanotechnology, 2013. 8(4): p. 247-251.
129. Tagliabue, G., et al., Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nature Materials, 2020. 19(12): p. 1312-1318.
130. Román Castellanos, L., O. Hess, and J. Lischner, Dielectric engineering of hot-carrier generation by quantized plasmons in embedded silver nanoparticles. The Journal of Physical Chemistry C, 2021. 125(5): p. 3081-3087.
131. Liu, Y., et al., Phase-enabled metal-organic framework homojunction for highly selective CO2 photoreduction. Nature Communications, 2021. 12(1): p. 1231.
132. Xu, H., et al., Spatially bandgap-graded MoS 2 (1− x) Se 2 x homojunctions for self-powered visible–near-infrared phototransistors. Nano-Micro Letters, 2020. 12: p. 1-14.
133. Ye, B., et al., Fabrication of metal-free two dimensional/two dimensional homojunction photocatalyst using various carbon nitride nanosheets as building blocks. Journal of colloid and interface science, 2017. 507: p. 209-216.
134. Yang, F., et al., Laser‐Scanning‐Guided Assembly of Quasi‐3D Patterned Arrays of Plasmonic Dimers for Information Encryption. Advanced Materials, 2021. 33(24): p. 2100325.
135. Khadem, H. and S. Tavassoli, The effect of size-asymmetry of plasmonic heterodimers in surface-enhanced Raman scattering. Applied Physics Letters, 2019. 114(25).
136. Jeong, H.-H., et al., Arrays of plasmonic nanoparticle dimers with defined nanogap spacers. ACS nano, 2019. 13(10): p. 11453-11459.
137. Alhummiany, H., et al., Dewetting of Au nanoparticle assemblies. Journal of Materials Chemistry, 2011. 21(42): p. 16983-16989.
138. Ghanem, K., et al., Recent progress of gold nanostructures and their applications. Physical Chemistry Chemical Physics, 2023.
139. Jia, H., et al., Metallic plasmonic nanostructure arrays for enhanced solar photocatalysis. Laser & Photonics Reviews, 2023: p. 2200700.
140. Muller, M.B., et al., Plasmonic library based on substrate-supported gradiential plasmonic arrays. ACS nano, 2014. 8(9): p. 9410-9421.
141. Priya, S. and V.R. Dantham, Effect of size-dependent damping on plasmon-hybridized modes of asymmetric nanosphere dimers: The role of nanogap, size ratio, surrounding medium, and substrate. Plasmonics, 2020. 15(6): p. 2033-2042.
142. Downing, C.A. and G. Weick, Plasmonic modes in cylindrical nanoparticles and dimers. Proceedings of the Royal Society A, 2020. 476(2244): p. 20200530.
143. Zohar, N., L. Chuntonov, and G. Haran, The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014. 21: p. 26-39.
144. Maniyara, R.A., et al., Tunable plasmons in ultrathin metal films. Nature Photonics, 2019. 13(5): p. 328-333.
145. Chen, T., et al., Surface Plasmon Resonance (SPR) Combined Technology: A Powerful Tool for Investigating Interface Phenomena. Advanced Materials Interfaces, 2023. 10(8): p. 2202202.
146. Li, J., et al., Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts. Applied Catalysis B: Environmental, 2018. 226: p. 269-277.
147. Chen, X., et al., Efficient photocatalytic overall water splitting induced by the giant internal electric field of ag‐C3N4/rGO/PDIP Z‐scheme heterojunction. Advanced Materials, 2021. 33(7): p. 2007479.
148. Manjavacas, A., et al., Plasmon-induced hot carriers in metallic nanoparticles. ACS nano, 2014. 8(8): p. 7630-7638.
149. Wang, Y., et al., In situ investigation of ultrafast dynamics of hot electron-driven photocatalysis in plasmon-resonant grating structures. Journal of the American Chemical Society, 2022. 144(8): p. 3517-3526.
150. Berera, R., R. van Grondelle, and J.T. Kennis, Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynthesis research, 2009. 101: p. 105-118.
151. Wu, K., et al., Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science, 2015. 349(6248): p. 632-635.
152. Almohammed, S., et al., Enhanced photocatalysis and biomolecular sensing with field-activated nanotube-nanoparticle templates. Nature Communications, 2019. 10(1): p. 2496.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91609-
dc.description.abstract在全球暖化和急需解決環境永續性問題的背景下,可穩續生產化學製品顯得尤為緊迫。傳統的製造過程往往仰賴高耗能的方法並伴隨大量的溫室氣體排放,造成顯著的氣候變化。因此,找到創新和穩定的製造過程的需求變得十分迫切。奈米技術已經在催化劑的改進以及新現象上有顯現出巨大的潛力。
然而,複雜的奈米結構限制了開發的量能。本論文探討了由上而下結構調控的超薄催化劑,重點聚焦在不同奈米尺度約束下的催化性能。
首先,實現了隨空間變化形態的二維過度金屬二硫化物(2D-TMDs),並對不同型態之電催化性能進行了研究。研究顯示,在2D-TMDs的內部均質電荷傳遞受到了限制,這在產氫反應(HER)中有著顯著的變化。對圍觀梯度的MoS2和WS2器件的電化學特性的統計研究指出了未補償電阻對於過電位和Tafel斜率的主導效應。本研究引入了HER極化校正方法發現了先前作業上對HER機制的潛在錯誤,並強調了在不同形態下載體傳輸對2D-TMDs電化學性質的影響。
其次,我們實現了空間上大小分布公分尺度的等離子過度金屬(PTM)奈米結構。透過採用超薄金(Au)梯度奈米結構,混合交互作用達到性能的提升。研究顯示出內部形成了一個強健的電場,該電場有效的與等離子的自由度耦合,產生縱向的等離子高峰。這種創新的方式促使光能高效解離,通过光催化轉化得到了卓越的CO產物選擇性,展示了梯度等離子體结夠在推動綠色能源轉換和儲存方面實際應用的潜力。
對結構調控、電荷傳遞動力學和等離子交互作用的全面探索為先進材料的發展開闢了道路,對永續能源技術具有重要的影響。
zh_TW
dc.description.abstractIn light of global warming and the imperative need to address environmental sustainability, the sustainable production of chemicals is of utmost urgency. Traditional chemical manufacturing processes often rely on energy-intensive methods and generate substantial greenhouse gas emissions, contributing significantly to climate change. Consequently, there is a critical demand for innovative and sustainable approaches to chemical production Nanotechnology has shown great promise to achieve this goal in the form of improved catalysis and novel phenomena.
However, the complex formation of nanostructures has limited the throughput of discovery. This thesis explores top-down structural manipulation of ultrathin catalysts, focusing on their catalytic performance under varying nanoscopic confinement.
First, 2D transition metal dichalcogenides (2D-TMDs) with a spatially varying morphologies were achieved and their morphological impact on the electrocatalytic performance was investigated. The study demonstrated that limitations in homogeneous charge transfer within 2D-TMDs significantly contribute to variations in hydrogen evolution reactions (HER). Statistical electrochemical characterization of microscopic gradient MoS2 and WS2 devices reveals the dominating effect of uncompensated resistance on overpotential and Tafel slope. The study introduces a HER polarization correction approach, uncovering potential errors in previous assignments of the HER mechanism and emphasizing the impact of morphology-dependent carrier transport on the electrochemical properties of 2D-TMDs.
Second, we achieved a centimeter scale plasmonic transition metal (PTM) nanostructures with spatially varying size distribution. Through the implementation of an ultrathin gold (Au) gradient nanostructure, hybrid interactions achieve enhanced performance. The study revealed the formation of a robust internal electric field that efficiently couples with the plasmonic degree of freedom, yielding longitudinal plasmonic peaks. This innovative approach facilitates efficient dissociation of hot carriers, demonstrated through photocatalytic conversion. Hot-electron-assisted CO2 reduction achieves a remarkable CO product with high selectivity, showcasing the potential of gradient plasmonic structures for advancing practical applications in green energy conversion and storage.
The comprehensive exploration of structural manipulation, charge transfer kinetics, and plasmonic interactions opens avenues for the development of advanced nanomaterials with significant implications for sustainable energy technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-20T16:10:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-20T16:10:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsCERTIFICATE OF DISSERTATION APPROVAL FROM THE ORAL DEFENSE COMMITTEE i
ACKNOWLEDGMENT ii
ABSTRACT (ENGLISH VERSION) iii
ABSTRACT (CHINESE VERSION) v
LIST OF CONTENTS vi
LIST OF FIGURES ix
CHAPTER 1. Introduction 1
1.1 Research Background 1
1.2 Objectives of the Research 2
1.3 Thesis Structure 3
CHAPTER 2. Literature Context 5
2.1 Ultrathin 2D Catalysts 5
2.2 Ultrathin 2D Transition Metal Dichalcogenides (2D-TMDs) for HER 6
2.3 Ultrathin 2D Plasmonic Transition Metals for Photocatalytic Reduction Reaction 8
2.4 Engineering Strategies of Ultrathin 2D Catalysts Design 9
2.4.1 Defects 10
2.4.2 Heteroatom Doping 10
2.4.3 Heterointerfaces 11
2.4.4 Phase 12
2.4.5 Junctions 13
2.4.6 Perspectives of Ultrathin 2D Catalyst Design 14
2.5 Theory of Heterogeneous Catalysis 14
2.5.1 Electrocatalytic Hydrogen Evolution Reaction (HER) 15
2.5.1.1 Mechanism of HER 16
2.5.1.2 Electroanalytics of HER 18
2.5.2 Plasmonic Photocatalysis 19
2.5.2.1 Localized Surface Plasmon Resonance (LSPR) 20
2.5.2.2 Plasmon Decay 21
2.5.2.3 Hot Electron Mediated Photocatalysis 22
CHAPTER 3. Experimental Methods and Material Preparation 24
3.1 Electron Beam Physical Vapor Deposition (EPCVD) 24
3.2 Rotating Shadow Mask (RSM) Approach for Gradient TMDs and TMs Preparation 25
3.3 Angle-Dependent Thickness Calculation 27
3.4 Local Electrochemical Carrier Transport Measurement Setup 29
3.5 Local Spectro-Electrochemical Carrier Transport Measurement Setup 30
3.6 Local Kelvin Probe and Surface Photovoltage Spectroscopy Setup 32
CHAPTER 4. Morphological Impact on HER Performance of 2D TMDs 34
4.1. Introduction 34
4.2. Experimental Section 35
4.2.1 Materials Growth and Characterization 35
4.2.2 Local Electrochemical Measurements 36
4.2.3 Ohmic Drop (jRu) Correction to the HER Polarization Curves 38
4.2.4 Finite Element Simulation 38
4.3. Result and Discussions 39
4.3.1 Electrocatalytic Performance of Graphene and 2D MoS2 39
4.3.2 Structural Properties of TMDs with Spatially Varying Morphologies 41
4.3.3 TMD’s Morphology Impact on the Electrocatalytic Performance 43
4.3.4 Investigation of the True Origin of Ru 48
4.4 Conclusion 50
CHAPTER 5. Plasmonic Homo Junctions for Hot-Electron Driven Photocatalysis 52
5.1 Introduction 52
5.2. Experimental Section 54
5.2.1 Preparation of Au Gradient Nanostructure 54
5.2.2 Physical Characterizations 54
5.2.3 Finite Difference Time Domain (FDTD) Simulations 55
5.2.4 Photoelectrochemical and Photocatalytic Measurements 56
5.2.5 Kelvin Probe and Surface Photovoltage Spectroscopic Measurements 57
5.2.6 Internal Electric Field Calculation 57
5.3. Result and Discussion 58
5.3.1 Gradient Fabrication and Surface plasmon Resonance Characteristics 58
5.3.2 Evaluations of Hybrid Plasmonic Resonance in Gradient Au Assembly 61
5.3.3 Interfacial Hot Electron Transfer in Gradient Au Assembly 63
5.3.4 Hot Electron Driven Photocatalytic CO2 Reduction Reaction 66
5.4 Conclusion 68
CHAPTER 6. Conclusion and Outlook 69
6.1 General Conclusion 69
6.2 Outlook 70
Appendix A: List of Publications 71
Appendix B: International and National Conferences 72
Appendix C: Awards and Scholarships 73
References 74
-
dc.language.isoen-
dc.subject2D-TMDszh_TW
dc.subject梯度zh_TW
dc.subjectHERzh_TW
dc.subject熱電子zh_TW
dc.subjectCO2RRzh_TW
dc.subjectHERen
dc.subject2D-TMDsen
dc.subjectGradienten
dc.subjectHot electronen
dc.subjectCO2RRen
dc.title由大至小調整超薄奈米催化劑尺寸訂製載子傳輸zh_TW
dc.titleTailoring Carrier Transport Through Top-Down Structural Manipulation of Ultrathin Nanocatalystsen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee白奇峰 ;謝雅萍 ;Martin Kalbac ;Jana Kalbacova Vejpravovazh_TW
dc.contributor.oralexamcommitteeChi-Feng Pai;Ya-Ping Hsieh;Martin Kalbac ;Jana Kalbacova Vejpravovaen
dc.subject.keyword2D-TMDs,梯度,HER,熱電子,CO2RR,zh_TW
dc.subject.keyword2D-TMDs,Gradient,HER,Hot electron,CO2RR,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202400100-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-01-25-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2029-01-18-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf
  未授權公開取用
4.28 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved