Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91598
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃良得zh_TW
dc.contributor.advisorLean-Teik Ngen
dc.contributor.author何宗彥zh_TW
dc.contributor.authorTsung-Yen Hoen
dc.date.accessioned2024-02-01T16:17:03Z-
dc.date.available2024-02-02-
dc.date.copyright2024-02-01-
dc.date.issued2024-
dc.date.submitted2024-01-25-
dc.identifier.citationAkiyama, K., Tanigawa, F., Kashihara, T., & Hayashi, H. 2010. Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry, 71(16), 1865-1871.
Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., & Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science, 301(5638), 1377-1380.
Bandyopadhyay, A. K., Jain, V., & Nainawatee, H. S. 1996. Nitrate alters the flavonoid profile and nodulation in pea (Pisum sativum L.). Biology and Fertility of Soils, 21, 189-192.
Barnum, D. W. 1977. Spectrophotometric determination of catechol, epinephrine, dopa, dopamine and other aromatic vic-diols. Analytica Chimica Acta, 89(1), 157-166.
Becana, M., Gogorcena, Y., Aparicio-Tejo, P., & Sánchez-Díaz, M. 1986. Nitrogen fixation and leghemoglobin content during vegetative growth of alfalfa. Journal of Plant Physiology, 123(2), 117-125.
Beckman, C. H. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological and Molecular Plant Pathology, 57(3), 101-110.
Beijerinck, M. 1888. Cultur des Bacillus radicicola aus den Knöllchen. Botanische Zeitung, 46, 740-750.
Bergersen, F. J. 1980. Methods for evaluating biological nitrogen fixation. In. pp. 315-335. John Wiley & Sons, Inc., Chichester, U.K.
Bhandirge, S. K., Patel, V., Patidar, A., Pasi, A., & Sharma, V. 2016. An overview on phytochemical and pharmacological profile of Cassia tora Linn. International Journal of Herbal Medicine, 4(6), 50-55.
Bhattacharya, A., & Saha, P. 1997. Germination behaviour of two morphologically different types of seed of Cassia tora at different temperatures. Weed Research, 37(2), 87-92.
Bijlsma, J., de Bruijn, W. J., Velikov, K. P., & Vincken, J. P. 2022. Unravelling discolouration caused by iron-flavonoid interactions: complexation, oxidation, and formation of networks. Food chemistry, 370, 131292.
Blicharski, T., & Oniszczuk, A. 2017. Extraction methods for the isolation of isoflavonoids from plant material. Open Chemistry, 15(1), 34-45.
Blount, J. W., Dixon, R. A., & Paiva, N. L. 1992. Stress responses in alfalfa (Medicago sativa L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. Physiological and Molecular Plant Pathology, 41(5), 333-349.
Bolaños-Vásquez, M. C., & Werner, D. 1997. Effects of Rhizobium tropici, R. etli, and R. leguminosarum bv. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris. Molecular Plant-Microbe Interactions, 10(3), 339-346.
Borda, V., Reinhart, K. O., Ortega, M. G., Burni, M., & Urcelay, C. 2022. Roots of invasive woody plants produce more diverse flavonoids than non-invasive taxa, a global analysis. Biological Invasions, 24(9), 2757-2768.
Bouhaouel, I., Richard, G., Fauconnier, M. L., Ongena, M., Franzil, L., Gfeller, A., Slim Amara, H., & du Jardin, P. 2019. Identification of barley (Hordeum vulgare L. subsp. vulgare) root exudates allelochemicals, their autoallelopathic activity and against Bromus diandrus Roth. Germination. Agronomy, 9(7), 345.
Brechenmacher, L., Lei, Z., Libault, M., Findley, S., Sugawara, M., Sadowsky, M. J., Sumner, L. W., & Stacey, G. 2010. Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiology, 153(4), 1808-1822.
Broughton, W. J., & Dilworth, M. 1971. Control of leghaemoglobin synthesis in snake beans. Biochemical Journal, 125(4), 1075-1080.
Carlsen, S. C., Pedersen, H. A., Spliid, N. H., & Fomsgaard, I. S. 2012. Fate in soil of flavonoids released from white clover (Trifolium repens L.). Applied and Environmental Soil Science, 2012, 1-10.
Chialva, M., Lanfranco, L., & Bonfante, P. 2022. The plant microbiota: composition, functions, and engineering. Current Opinion in Biotechnology, 73, 135-142.
Chin, S., Behm, C. A., & Mathesius, U. 2018. Functions of flavonoids in plant–nematode interactions. Plants, 7(4), 85.
Chirug, L., Nagar, E. E., Okun, Z., & Shpigelman, A. 2021. Effect of flavonoid structure and pH on iron-mediated pectin interaction. Food Hydrocolloids, 116, 106654.
Chouhan, S., Sharma, K., Zha, J., Guleria, S., & Koffas, M. A. 2017. Recent advances in the recombinant biosynthesis of polyphenols. Frontiers in Microbiology, 8, 2259.
Christ, B., & Müller, K. 1960. Zur serienmäßigen bestimmung des gehaltes an flavonol-derivaten in drogen. Archiv der Pharmazie, 293(12), 1033-1042.
Dai, G., Nicole, M., Andary, C., Martinez, C., Bresson, E., Boher, B., Daniel, J. F., & Geiger, J. P. 1996. Flavonoids accumulate in cell walls, middle lamellae and callose-rich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiological and Molecular Plant Pathology, 49(5), 285-306.
Dakora, F. D., Joseph, C. M., & Phillips, D. A. 1993. Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiology, 101(3), 819-824.
Del Valle, I., Webster, T. M., Cheng, H. Y., Thies, J. E., Kessler, A., Miller, M. K., Ball, Z. T., MacKenzie, K. R., Masiello, C. A., & Silberg, J. J. 2020. Soil organic matter attenuates the efficacy of flavonoid-based plant-microbe communication. Science Advances, 6(5), eaax8254.
Delamuta, J. R. M., Ribeiro, R. A., Ormeno-Orrillo, E., Melo, I. S., Martínez-Romero, E., & Hungria, M. 2013. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. International Journal of Systematic and Evolutionary Microbiology, 63, 3342-3351.
Dong, W., & Song, Y. 2020. The significance of flavonoids in the process of biological nitrogen fixation. International Journal of Molecular Sciences, 21(16), 5926.
Everette, J. D., Bryant, Q. M., Green, A. M., Abbey, Y. A., Wangila, G. W., & Walker, R. B. 2010. Thorough study of reactivity of various compound classes toward the Folin-Ciocalteu reagent. Journal of Agricultural and Food Chemistry, 58(14), 8139-8144.
Faizi, S., Fayyaz, S., Bano, S., Yawar Iqbal, E., Siddiqi, H., & Naz, A. 2011. Isolation of nematicidal compounds from Tagetes patula L. yellow flowers: structure–activity relationship studies against cyst nematode Heterodera zeae infective stage larvae. Journal of Agricultural and Food Chemistry, 59(17), 9080-9093.
Farooq, N., Abbas, T., Tanveer, A., & Jabran, K. 2020. Allelopathy for weed management. In: J. M. Mérillon & K. G. Ramawat (eds.), Co-evolution of secondary metabolites. pp. 505-519. Springer International Publishing, Cham, Switzerland.
Feng, L., Yin, J., Nie, S., Wan, Y., & Xie, M. 2018. Structure and conformation characterization of galactomannan from seeds of Cassia obtusifolia. Food Hydrocolloids, 76, 67-77.
Ferguson, B. J., Indrasumunar, A., Hayashi, S., Lin, M. H., Lin, Y. H., Reid, D. E., & Gresshoff, P. M. 2010. Molecular analysis of legume nodule development and autoregulation. Journal of Integrative Plant Biology, 52(1), 61-76.
Frank, B. 1889. Über die pilzsymbiose der leguminosen. Berichte der Deutschen Botanischen Gesellschaft, 7, 332-346.
Gniazdowska, A., & Bogatek, R. 2005. Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum, 27, 395-407.
González-Pasayo, R., & Martínez-Romero, E. 2000. Multiresistance genes of Rhizobium etli CFN42. Molecular Plant-Microbe Interactions, 13(5), 572-577.
Grundler, F., Betka, M., & Wyss, U. 1991. Influence of changes in the nurse cell system (syncytium) on sex determination and development of the cyst nematode Heterodera schachtii: total amounts of proteins and amino acids. Phytopathology, 81(1), 70-74.
Guchu, S. M., Yenesew, A., Tsanuo, M. K., Gikonyo, N. K., Pickett, J. A., Hooper, A. M., & Hassanali, A. 2007. C-methylated and C-prenylated isoflavonoids from root extract of Desmodium uncinatum. Phytochemistry, 68(5), 646-651.
Han, F., He, X., Chen, W., Gai, H., Bai, X., He, Y., Takeshima, K., Ohwada, T., Wei, M., & Xie, F. 2020. Involvement of a novel TetR-like regulator (BdtR) of Bradyrhizobium diazoefficiens in the efflux of isoflavonoid genistein. Molecular Plant-Microbe Interactions, 33(12), 1411-1423.
Haraguchi, H., Tanimoto, K., Tamura, Y., Mizutani, K., & Kinoshita, T. 1998. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry, 48(1), 125-129.
Hayashi, M., Tansengco, M. L., Suganuma, N., Szczyglowski, K., Krusell, L., Ott, T., & Udvardi, M. 2005. Methods for studying nodule development and function. In: A. J. Márquez (ed), Lotus japonicus Handbook. pp. 53-82. Springer, Dordrecht, Netherlands.
Hooper, A. M., Tsanuo, M. K., Chamberlain, K., Tittcomb, K., Scholes, J., Hassanali, A., Khan, Z. R., & Pickett, J. A. 2010. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry, 71(8-9), 904-908.
Hou, D., Yousaf, L., Xue, Y., Hu, J., Wu, J., Hu, X., Feng, N., & Shen, Q. 2019. Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 11(6), 1238.
Huang, Y. L., Chow, C. J., & Tsai, Y. H. 2012. Composition, characteristics, and in-vitro physiological effects of the water-soluble polysaccharides from Cassia seed. Food Chemistry, 134(4), 1967-1972.
Jain, S., & Patil, U. 2010. Phytochemical and pharmacological profile of Cassia tora Linn. — An Overview. Indian Journal of Natural Products and Resources, 1(4), 430-437.
Ji, Z. J., Yan, H., Cui, Q. G., Wang, E. T., Chen, W. F., & Chen, W. X. 2017. Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Systematic and Applied Microbiology, 40(2), 114-119.
Jordan, D. 1982. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic and Evolutionary Microbiology, 32(1), 136-139.
Jurinjak Tušek, A., Šamec, D., & Šalić, A. 2022. Modern techniques for flavonoid extraction — to optimize or not to optimize? Applied Sciences, 12(22), 11865.
Kape, R., Parniske, M., Brandt, S., & Werner, D. 1992. Isoliquiritigenin, a strong nod gene-and glyceollin resistance-inducing flavonoid from soybean root exudate. Applied and Environmental Microbiology, 58(5), 1705-1710.
Kato-Noguchi, H. 2022. Allelopathy and allelochemicals of Imperata cylindrica as an invasive plant species. Plants, 11(19), 2551.
Kazlauskaite, J. A., Ivanauskas, L., & Bernatoniene, J. 2021. Novel extraction method using excipients to enhance yield of genistein and daidzein in Trifolium pratensis L. Pharmaceutics, 13(6), 777.
Khan, Z., Midega, C. A., Hooper, A., & Pickett, J. 2016. Push-pull: chemical ecology-based integrated pest management technology. Journal of Chemical Ecology, 42, 689-697.
Khurm, M., Wang, X., Zhang, H., Hussain, S. N., Qaisar, M. N., Hayat, K., Saqib, F., Zhang, X., Zhan, G., & Guo, Z. 2021. The genus Cassia L.: ethnopharmacological and phytochemical overview. Phytotherapy Research, 35(5), 2336-2385.
Kong, C., Zhao, H., Xu, X., Wang, P., & Gu, Y. 2007. Activity and allelopathy of soil of flavone O-glycosides from rice. Journal of Agricultural and Food Chemistry, 55(15), 6007-6012.
Kytidou, K., Artola, M., Overkleeft, H. S., & Aerts, J. M. 2020. Plant glycosides and glycosidases: a treasure-trove for therapeutics. Frontiers in Plant Science, 11, 357.
Lambrides, C. J., & Godwin, I. D. 2007. Mungbean. In: C. Kole (ed), Pulses, sugar and tuber crops. pp. 69-90. Springer Berlin, Heidelberg, Germany.
Larose, G., Chênevert, R., Moutoglis, P., Gagné, S., Piché, Y., & Vierheilig, H. 2002. Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. Journal of Plant Physiology, 159(12), 1329-1339.
Lawson, C., Rolfe, B., & Djordjevic, M. 1996. Rhizobium inoculation induces condition-dependent changes in the flavonoid composition of root exudates from Trifolium subterraneum. Functional Plant Biology, 23(1), 93-101.
Lee, H. I., Lee, J. H., Park, K. H., Sangurdekar, D., & Chang, W. S. 2012. Effect of soybean coumestrol on Bradyrhizobium japonicum nodulation ability, biofilm formation, and transcriptional profile. Applied and Environmental Microbiology, 78(8), 2896-2903.
Lindemann, A., Koch, M., Pessi, G., Müller, A. J., Balsiger, S., Hennecke, H., & Fischer, H. M. 2010. Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum. FEMS Microbiology Letters, 312(2), 184-191.
Liu, C. W., & Murray, J. D. 2016. The role of flavonoids in nodulation host-range specificity: an update. Plants, 5(3), 33.
Liu, Y., Yin, X., Xiao, J., Tang, L., & Zheng, Y. 2019. Interactive influences of intercropping by nitrogen on flavonoid exudation and nodulation in faba bean. Scientific Reports, 9(1), 4818.
Lupini, A., Araniti, F., Sunseri, F., & Abenavoli, M. R. 2014. Coumarin interacts with auxin polar transport to modify root system architecture in Arabidopsis thaliana. Plant Growth Regulation, 74, 23-31.
Mackey, A. P., Miller, E. N., & Palmer, W. A. 1997. Sicklepod (Senna obtusifolia) in Queensland. In: Pest status review series-land protection. pp. 1-36. Department of Natural Resources and Mines, Queensland, Australia.
Maj, D., Wielbo, J., Marek-Kozaczuk, M., & Skorupska, A. 2010. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiological Research, 165(1), 50-60.
Marazzi, B., Endress, P. K., De Queiroz, L. P., & Conti, E. 2006. Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: patterns in the evolution of floral symmetry and extrafloral nectaries. American Journal of Botany, 93(2), 288-303.
Mehal, K. K., Kaur, A., Singh, H. P., & Batish, D. R. 2023. Investigating the phytotoxic potential of Verbesina encelioides: effect on growth and performance of co-occurring weed species. Protoplasma, 260(1), 77-87.
Mekonnen, A., & Desta, W. 2021. Comparative study of the antioxidant and antibacterial activities of Rumex abyssinicus with commercially available Zingiber officinale and Curcuma longa in Bahir Dar city, Ethiopia. Chemical and Biological Technologies in Agriculture, 8(1), 1-11.
Mendoza-Suárez, M., Andersen, S. U., Poole, P. S., & Sánchez-Cañizares, C. 2021. Competition, nodule occupancy, and persistence of inoculant strains: key factors in the rhizobium-legume symbioses. Frontiers in Plant Science, 12, 690567.
Mierziak, J., Kostyn, K., & Kulma, A. 2014. Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240-16265.
Mishra, A. K., Mishra, A., Kehri, H., Sharma, B., & Pandey, A. K. 2009. Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds. Annals of Clinical Microbiology and Antimicrobials, 8(1), 1-7.
Morandi, D., Le Signor, C., Gianinazzi-Pearson, V., & Duc, G. 2009. A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Mycorrhiza, 19, 435-441.
Mun, B. G., Kim, H. H., Yuk, H. J., Hussain, A., Loake, G. J., & Yun, B. W. 2021. A potential role of coumestrol in soybean leaf senescence and its interaction with phytohormones. Frontiers in Plant Science, 12, 756308.
Nakabayashi, K., Walker, M., Irwin, D., Cohn, J., Guida-English, S. M., Garcia, L., Pavlović, I., Novák, O., Tarkowská, D., & Strnad, M. 2022. The phytotoxin myrigalone A triggers a phased detoxification programme and inhibits Lepidium sativum seed germination via multiple mechanisms including interference with auxin homeostasis. International Journal of Molecular Sciences, 23(9), 4618.
Naoumkina, M. A., Zhao, Q., Gallego‐Giraldo, L., Dai, X., Zhao, P. X., & Dixon, R. A. 2010. Genome‐wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology, 11(6), 829-846.
Novak, K., Kropáčová, M., Havliček, V., & Škrdleta, V. 1995. Isoflavonoid phytoalexin pisatin is not recognized by the flavonoid receptor NodD of Rhizobium leguminosarum bv. viciœ. Folia Microbiologica, 40, 535-540.
Novák, K., Lisá, L., & Škrdleta, V. 2004. Rhizobial nod gene‐inducing activity in pea nodulation mutants: dissociation of nodulation and flavonoid response. Physiologia Plantarum, 120(4), 546-555.
Okutani, F., Hamamoto, S., Aoki, Y., Nakayasu, M., Nihei, N., Nishimura, T., Yazaki, K., & Sugiyama, A. 2020. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant, Cell & Environment, 43(4), 1036-1046.
Ouedraogo, M., Hema, A., Bazié, B. S. R., Zida, S. W., Batieno, B. J. T., Kabré, E., Palé, E., & Nacro, M. 2021. Identification of major flavonoids using HPLC-MS/MS and determination of antioxidant potential of Vigna radiata seed extracts. Journal de la Société Ouest-Africaine de Chimie, 50, 57-67.
Pei, Y., Siemann, E., Tian, B., & Ding, J. 2020. Root flavonoids are related to enhanced AMF colonization of an invasive tree. AoB Plants, 12(1), plaa002.
Pérez-Ramírez, N. O., Rogel, M. A., Wang, E., Castellanos, J. Z., & Martínez-Romero, E. 1998. Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiology Ecology, 26(4), 289-296.
Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., & Jerala, R. 2003. Characterization of quercetin binding site on DNA gyrase. Biochemical and Biophysical Research Communications, 306(2), 530-536.
Porter, J. R. 1983. Variation in the relationship between nitrogen fixation, leghemoglobin, nodule numbers and plant biomass in alfalfa (Medicago sativa) caused by treatment with arsenate, heavy metals and fluoride. Physiologia Plantarum, 57(4), 579-583.
Procházková, D., Boušová, I., & Wilhelmová, N. 2011. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523.
Rajewski, A. (2018). Plant tissue fixation.
Retrieved from "https://dx.doi.org/10.17504/protocols.io.rw8d7hw"
Rambhau, S. S., & Ashok, P. S. 2020. Comparative pharmacognostic study of Senna tora Linn. and Senna obtusifolia Linn. Journal of Research in Indian Medicine, 16(1), 2.
Ramongolalaina, C., Teraishi, M., & Okumoto, Y. 2018. QTLs underlying the genetic interrelationship between efficient compatibility of Bradyrhizobium strains with soybean and genistein secretion by soybean roots. PLoS One, 13(4), e0194671.
Rauter, A. P., Ennis, M., Hellwich, K. H., Herold, B. J., Horton, D., Moss, G. P., & Schomburg, I. 2018. Nomenclature of flavonoids (IUPAC Recommendations 2017). Pure and Applied Chemistry, 90(9), 1429-1486.
Recourt, K., Schripsema, J., Kijne, J. W., van Brussel, A. A., & Lugtenberg, B. J. 1991. Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Molecular Biology, 16, 841-852.
Rostagno, M. A., Palma, M., & Barroso, C. G. 2004. Pressurized liquid extraction of isoflavones from soybeans. Analytica Chimica Acta, 522(2), 169-177.
Sachs, J., Ehinger, M., & Simms, E. 2010. Origins of cheating and loss of symbiosis in wild Bradyrhizobium. Journal of Evolutionary Biology, 23(5), 1075-1089.
Salloum, M. S., Menduni, M. F., Benavides, M. P., Larrauri, M., Luna, C. M., & Silvente, S. 2018. Polyamines and flavonoids: key compounds in mycorrhizal colonization of improved and unimproved soybean genotypes. Symbiosis, 76, 265-275.
Scavo, A., Abbate, C., & Mauromicale, G. 2019. Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant and Soil, 442, 23-48.
Schmidt, P. E., Broughton, W. J., & Werner, D. 1994. Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Molecular Plant-Microbe Interactions, 7(3), 384-390.
Senthilkumar, M., Amaresan, N., & Sankaranarayanan, A. 2021. Quantitative estimation of leghemoglobin content in legume root nodules. In: Plant-Microbe Interactions. pp. 33-35. Springer Protocols Handbooks, Humana, New York, NY.
Shomali, A., Das, S., Arif, N., Sarraf, M., Zahra, N., Yadav, V., Aliniaeifard, S., Chauhan, D. K., & Hasanuzzaman, M. 2022. Diverse physiological roles of flavonoids in plant environmental stress responses and tolerance. Plants, 11(22), 3158.
Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. 2021. Determination of total flavonoid content by aluminum chloride assay: a critical evaluation. LWT - Food Science and Technology, 150, 111932.
Singla, P., & Garg, N. 2017. Plant flavonoids: key players in signaling, establishment, and regulation of rhizobial and mycorrhizal endosymbioses. In: A. Varma, R. Prasad, & N. Tuteja (eds.), Mycorrhiza-Function, Diversity, State of the Art. pp. 133-176. Springer, Cham, Switzerland.
Šoln, K., & Dolenc Koce, J. 2021. Allelopathic root inhibition and its mechanisms. Allelopathy Journal, 52, 181-198.
Sugiyama, A., & Yazaki, K. 2014. Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication. Plant Biotechnology, 31(5), 431-443.
Takeshima, K., Hidaka, T., Wei, M., Yokoyama, T., Minamisawa, K., Mitsui, H., Itakura, M., Kaneko, T., Tabata, S., & Saeki, K. 2013. Involvement of a novel genistein-inducible multidrug efflux pump of Bradyrhizobium japonicum early in the interaction with Glycine max (L.) Merr. Microbes and Environments, 28(4), 414-421.
Tang, D., Dong, Y., Ren, H., Li, L., & He, C. 2014. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal, 8(1), 1-9.
Taniguchi, M., LaRocca, C. A., Bernat, J. D., & Lindsey, J. S. 2023. Digital database of absorption spectra of diverse flavonoids enables structural comparisons and quantitative evaluations. Journal of Natural Products, 86(4), 1087-1119.
Telrandhe, U. B., & Gunde, M. C. 2022. Phytochemistry, pharmacology and multifarious activity of Cassia tora L.: a comprehensive review. Annals of Phytomedicine, 11(2), 231-239.
Treutter, D. 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7(6), 581-591.
van Dooren, I., Foubert, K., Bijttebier, S., Breynaert, A., Theunis, M., Exarchou, V., Claeys, M., Hermans, N., Apers, S., & Pieters, L. 2018. In vitro gastrointestinal biotransformation and characterization of a Desmodium adscendens decoction: the first step in unravelling its behaviour in the human body. Journal of Pharmacy and Pharmacology, 70(10), 1414-1422.
van Velzen, R., Doyle, J. J., & Geurts, R. 2019. A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation. Trends in Plant Science, 24(1), 49-57.
Velázquez, E., García-Fraile, P., Ramírez-Bahena, M. H., Rivas, R., & Martínez-Molina, E. 2017. Current status of the taxonomy of bacteria able to establish nitrogen-fixing legume symbiosis. In: Microbes for legume improvement. pp. 1-43. Springer, Cham, Switzerland.
Wang, R., Chang, Y. L., Zheng, W. T., Zhang, D., Zhang, X. X., Sui, X. H., Wang, E. T., Hu, J. Q., Zhang, L. Y., & Chen, W. X. 2013. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Systematic and Applied Microbiology, 36(2), 101-105.
Wen, L., Jiang, Y., Yang, J., Zhao, Y., Tian, M., & Yang, B. 2017. Structure, bioactivity, and synthesis of methylated flavonoids. Annals of the New York Academy of Sciences, 1398(1), 120-129.
Wu, T., Zang, X., He, M., Pan, S., & Xu, X. 2013. Structure–activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. Journal of Agricultural and Food Chemistry, 61(34), 8185-8190.
Wuyts, N., Swennen, R., & De Waele, D. 2006. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology, 8(1), 89-101.
Yokoyama, T. 2008. Flavonoid-responsive nodY-lacZ expression in three phylogenetically different Bradyrhizobium groups. Canadian Journal of Microbiology, 54(5), 401-410.
Yuk, H. J., Lee, J. H., Curtis-Long, M. J., Lee, J. W., Kim, Y. S., Ryu, H. W., Park, C. G., Jeong, T. S., & Park, K. H. 2011. The most abundant polyphenol of soy leaves, coumestrol, displays potent α-glucosidase inhibitory activity. Food Chemistry, 126(3), 1057-1063.
Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. 2017. Flavonoids: promising natural compounds against viral infections. Archives of Virology, 162, 2539-2551.
Zhang, W., Sun, K., Shi, R. H., Yuan, J., Wang, X. J., & Dai, C. C. 2018. Auxin signalling of Arachis hypogaea activated by colonization of mutualistic fungus Phomopsis liquidambari enhances nodulation and N2‐fixation. Plant, Cell & Environment, 41(9), 2093-2108.
Zhao, J. 2015. Flavonoid transport mechanisms: how to go, and with whom. Trends in Plant Science, 20(9), 576-585.
Zhao, Y., Zhang, R., Jiang, K. W., Qi, J., Hu, Y., Guo, J., Zhu, R., Zhang, T., Egan, A. N., Yi, T. S., Huang, C. H., & Ma, H. 2021. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Molecular Plant, 14(5), 748-773.
行政院衛生福利部臺灣中藥典第四版編修委員。2021。決明子。載於臺灣中藥典。(第四版,頁147)。臺北市,中華民國:衛生福利部。
翁廷賜、賴森雄。1992。粉綠綠豆新品種台南五號之育成。臺南區農業改良場研究彙報,28,1-12。
陳任芳。2009。根瘤線蟲之防治管理對策。花蓮區農業專訊(68),14-16。
程須珍、王素華。1993。綠豆間種栽培技術。作物雜誌,9(1),26-27。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91598-
dc.description.abstract  固氮作用是豆科植物的主要特徵之一,然而經歷演化後,現今地球上並存不能固氮及能與根瘤菌共生固氮的豆科植物。當前已知豆科植物以黃酮類化合物作為吸引相容根瘤菌的共生信號分子,可藉由觀察特定黃酮類化合物的分泌,以瞭解豆科植物與根瘤菌及環境互動情形。因此,本研究目的有二,首先為改善根際黃酮類化合物萃取及分析方法,二為藉由種植能固氮與不能固氮的豆科植物,並為其接種不同根瘤菌,以探討豆科植物根際黃酮類化合物分泌與根瘤菌的關聯性。
  本研究使用70%甲醇和超音波輔助對盆栽介質進行萃取,並在有無鹼水解的條件下,探討此方法對介質中黃酮類化合物及其糖苷的萃取成果。研究結果顯示,鹼水解有助於提高綠豆介質中vitexin和isovitexin相關化合物的萃取效果,但對daidzein、genistein和coumestrol等其他根際黃酮類化合物的影響不顯著。除此之外,本研究亦對總類黃酮測定普遍採用的氯化鋁比色法進行探討,過往研究中當量標準品多採用rutin、quercetin和catechin,但豆科植物根際分泌物含有其它與根瘤密切相關黃酮類化合物,故本研究增加coumestrol、genistein、naringenin和daidzein作為分析參考標準品,以分析不同黃酮類化合物在氯化鋁比色法中的差異。結果顯示,不同黃酮類化合物與氯化鋁反應後形成的複合物具有顯著不同的吸光波長和吸收強度,且發現daidzein不與鋁螯合呈色,此說明必須選擇樣品中所含的主要黃酮類化合物作為標準參考物質,才能使氯化鋁比色法定量樣品中總類黃酮含量具有意義。
  在豆科植物根際黃酮類化合物的研究中,選用決明 (Senna tora) 與綠豆 (Vigna radiata) 為植物材料,兩者分別屬於無法固氮及能夠固氮的豆科植物,其根際分泌物分析結果顯示,綠豆能分泌genistein、coumestrol、isoliquiritigenin、naringenin以及daidzein等根瘤相關黃酮類化合物;然而,決明僅分泌少量與根瘤相關的黃酮類化合物apigenin。LC-MS/MS定性分析結果亦檢測到綠豆根際分泌物中含有genistein、daidzein和coumestrol的苷元及糖苷,且發現biochanin A或calycosin的苷元和糖苷以及luteolin或kaempferol的糖苷。將綠豆與決明間種後發現,高氮環境下綠豆會妨礙決明生長,低氮環境下綠豆的固氮作用並未促進決明生長。綠豆與決明間種相較於兩株綠豆比鄰種植時,根瘤數目更多。為了驗證不同根瘤菌與豆科植物的互動關係是否相同,試驗進一步以Ensifer fredii USDA 205、Bradyrhizobium diazoefficiens USDA 110、Bradyrhizobium arachidis CCBAU 051107、Bradyrhizobium elkanii USDA 76和Bradyrhizobium japonicum USDA 6五種根瘤菌接種綠豆,觀察根瘤及黃酮類化合物分泌差異。結果顯示,綠豆的根瘤型態有大而少、小而多兩種型態。B. arachidis和 B. japonicum形成的是小而多的根瘤,而B. diazoefficiens和B. elkanii 形成的則是大而少的根瘤。從栽培介質萃取之根際分泌物的分析結果顯示,根瘤小而多組別的genistein分泌量多於根瘤大而少組別,這可能是不同根瘤菌根瘤型態的關鍵。在高氮組中,用福林酚試劑測量的根際分泌物總還原能力明顯高於低氮組,相較之下,naringenin濃度卻隨氮濃度的增加而減少,這表明naringenin可能是綠豆調控不同氮營養條件下根瘤形成的決定因素。根瘤誘導因子isoliquiritigenin的量少且在各接種組間沒有顯著差異,可能與綠豆根瘤形成的關係較小。
  綜上所述,本研究證實不形成根瘤的決明與會形成根瘤的綠豆,其根際分泌黃酮類化合物的差異,及間種下對彼此生長的影響,並觀察到綠豆與不同根瘤菌形成不同型態的根瘤,而根瘤菌的根瘤型態以及不同氮條件下的根瘤數目,分別與特定黃酮類化合物相關。
關鍵字: 綠豆 (Vigna radiata)、決明 (Senna tora)、根瘤、根際分泌物、黃酮類化合物、氯化鋁比色法
zh_TW
dc.description.abstractNitrogen fixation is a fundamental trait of legumes. However, through evolutionary processes, some legumes can engage in nitrogen fixation via rhizobia symbiosis, while others cannot. Legumes employ flavonoids as signaling molecules to attract compatible rhizobia. Observing the secretion of specific flavonoid compounds enables a better understanding of interactions among legumes, rhizobia, and the environment. Therefore, this study has two main objectives: firstly, to improve the extraction and analysis of root-secreted flavonoid compounds; and secondly, to investigate the correlation between the secretion of flavonoids by leguminous plants and their interaction with rhizobia. This was achieved by planting both nitrogen-fixing and non-nitrogen-fixing leguminous plants and inoculating them with various rhizobia strains.
In this study, 70% methanol with ultrasonic assistance was employed for the extraction of compounds from the potting medium. The investigation focused on the effects of alkaline hydrolysis on the extraction of flavonoids and their glycosides within the medium. The findings indicated that alkaline hydrolysis extraction enhanced the yield of specific compounds, particularly those associated with vitexin and isovitexin. However, this method showed no significant impact on flavonoids such as daidzein, genistein, and coumestrol. In addition, we explored the widely-used aluminum chloride colorimetric method for determining the total flavonoid content. Traditionally, compounds like rutin, quercetin, and catechin have been commonly used as equivalent standards for quantification of total flavonoid content. However, our investigation revealed that leguminous plant root exudates contain additional flavonoids closely associated with rhizobia. Consequently, we introduced coumestrol, genistein, naringenin, and daidzein as reference standards for the quantification analysis. The results demonstrated that different flavonoid standards formed distinct complexes with aluminum, significantly influencing the absorption wavelength and peak intensity of the analysis; furthermore, it was noted that daidzein failed to form a complex with aluminum. This observation highlights the critical importance of selecting appropriate primary flavonoids in the sample as equivalent standards to ensure the meaningful application of the aluminum chloride colorimetric method.
For the study of legume root-exuded flavonoids, Senna tora and Vigna radiata (mung bean) were selected as plant materials. These two plants belong to the categories of non-nitrogen-fixing and nitrogen-fixing legumes, respectively. The results showed that V. radiata can secrete nodule-related flavonoids such as genistein, coumestrol, isoliquiritigenin, naringenin, and daidzein. However, S. tora secreted only small amounts of apigenin, a flavonoid compound related to root nodules. LC-MS/MS qualitative analysis further identified aglycone and glycoside forms of genistein, daidzein, and coumestrol in the root exudate of V. radiata, along with the presence of biochanin A or calycosin aglycone and glycosides, and luteolin or kaempferol glycosides. Intercropping V. radiata and S. tora revealed that V. radiata hindered the growth of S. tora under high nitrogen conditions, and the nitrogen-fixing ability of V. radiata did not promote the growth of S. tora under low nitrogen conditions. Additionally, compared to planting each species separately, more nodules were observed when V. radiata and S. tora were interplanted.
To verify whether the interaction between different rhizobia and leguminous plants was similar, experiments were conducted with five rhizobia strains (Ensifer fredii USDA 205, Bradyrhizobium diazoefficiens USDA 110, Bradyrhizobium arachidis CCBAU 051107, Bradyrhizobium elkanii USDA 76, and Bradyrhizobium japonicum USDA 6) inoculated into V. radiata. Differences in nodule formation and flavonoids secretion were observed. The findings indicated that V. radiata exhibited two distinct nodule patterns. Specifically, inoculation with B. arachidis and B. japonicum led to the formation of numerous small nodules, while inoculation with B. diazoefficiens and B. elkanii resulted in larger and fewer nodules. Analysis of root exudates indicated that the group with small and numerous nodules secreted a significantly higher amount of genistein than the group with large and few nodules, suggesting that genistein might play a key role in the formation of distinct nodule patterns induced by different rhizobia. Additionally, the antioxidant capacity of root exudates, measured using the Folin-Ciocalteu reagent, was significantly higher in the high nitrogen group than in the low nitrogen group. While flavonoid compounds exhibited antioxidant capabilities, the concentration of naringenin decreased with increasing nitrogen levels. This implied that naringenin may be a determining factor in regulating nodule formation in V. radiata under varying nitrogen conditions. In contrast, a low concentration of the nodule-inducing factor isoliquiritigenin was observed, with no significant difference among the inoculation groups, indicating that it had a limited association with V. radiata root nodule formation.
In summary, this study demonstrated the differences in the secretion of flavonoid compounds by S. tora, which does not form nodules, and V. radiata, which does form nodules, and the effects of intercropping on their respective growth. It was also observed that V. radiata formed different nodule patterns with different rhizobia strains, and these nodule patterns and numbers under different nitrogen conditions were associated with specific flavonoid compounds.
Key words: mung bean (Vigna radiata), cassia seed (Senna tora), nodulation, flavonoids, root exudate, aluminum chloride assay
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-01T16:17:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-02-01T16:17:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝誌 i
摘要 iii
Abstract v
目次 viii
表次 x
圖次 xi
1 前言 1
2 前人研究 3
2.1 豆科植物與固氮功能的演化 3
2.2 決明與綠豆簡介 5
2.3 根瘤菌種類 7
2.4 根瘤形成的步驟 7
2.5 黃酮類化合物 (類黃酮) 分類 8
2.6 黃酮類化合物的生合成及運輸 8
2.7 黃酮類化合物在非生物逆境下的作用 12
2.8 黃酮類化合物對根圈通訊的影響 12
2.9 與根瘤形成相關的黃酮類化合物 15
2.10 總類黃酮含量的測定方法 21
2.11 黃酮類化合物的萃取與糖苷的去除 24
3 材料與方法 25
3.1 試驗作物 25
3.2 種植方法 25
3.3 根瘤菌菌株 30
3.4 根瘤菌的培養 30
3.5 豆血紅素含量測定 31
3.6 根瘤切片觀察 32
3.7 根際分泌物蒐集與鑑定 33
4 結果與討論 37
4.1 不同標準品的氯化鋁比色法比較 37
4.2 鹼水解對萃取物黃酮類化合物濃度的影響 48
4.3 綠豆接種不同根瘤菌效果──小型pillow system預試驗 50
4.4 決明與綠豆之相互作用及其根際黃酮類化合物分析──綠豆與決明之pillow system試驗 55
4.5 綠豆根瘤與根際黃酮類化合物的分泌──綠豆接種不同根瘤菌之三吋盆試驗 59
4.6 根瘤菌種類、根瘤型態與根際分泌之黃酮類化合物的關係探討 61
4.7 LC-MS/MS 分析結果 74
5 結論 77
參考文獻 79
附錄 94
-
dc.language.isozh_TW-
dc.title豆科植物綠豆、決明根際黃酮類化合物分泌及其與根瘤菌的關聯性zh_TW
dc.titleRoot exudate flavonoid compounds of leguminous plants Vigna radiata and Senna tora, and their association with rhizobiaen
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉啟德;王尚禮;鍾仁賜zh_TW
dc.contributor.oralexamcommitteeChi-Te Liu;Shan-Li Wang;Ren-Shih Chungen
dc.subject.keyword綠豆,決明,根瘤,根際分泌物,黃酮類化合物,氯化鋁比色法,zh_TW
dc.subject.keywordmung bean,Vigna radiata,cassia seed,Senna tora,nodulation,root exudate,flavonoids,aluminum chloride assay,en
dc.relation.page134-
dc.identifier.doi10.6342/NTU202400120-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-01-26-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf13.27 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved