請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91592
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉德銘 | zh_TW |
dc.contributor.advisor | Der-Ming Yeh | en |
dc.contributor.author | 楊淳崴 | zh_TW |
dc.contributor.author | Chun-Wei Yang | en |
dc.date.accessioned | 2024-02-01T16:15:18Z | - |
dc.date.available | 2024-02-02 | - |
dc.date.copyright | 2024-02-01 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2024-01-15 | - |
dc.identifier.citation | 王一霖. 2011. 鳳仙花屬植物之種間雜交障礙. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
甘培玟. 2017. 岩桐屬植物花朵與葉脈顏色之遺傳. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 李文驥、高素萍、雷霆、張碩、吳佩紋、趙志惠. 2017. 藍花丹開花生物學觀測及花粉儲存研究. 植物科學學報 35:874-883. 李宜玲. 2003. 日本紫花鼠尾草花部發育、小孢子形成和花粉發育之研究. 國立臺灣大學植物學系碩士論文. 臺北 李要民、陳良碧. 1998. 不同溫濕條件下貯藏的3種禾本科植物花粉活力變化. 植物生理學通訊 34:35-37. 李紅曦、許圳塗、李金龍. 1989. 聚乙二醇對百香果花粉體外發芽之影響. 中國園藝 35:121-131. doi:10.6964/JCSHS.198906.0121 李懋學、張斅方、陳俊愉. 1983. 我國某些野生菊和栽培菊花的細胞學研究. 園藝學報 10:199-205. 艾雲苾、劉愛青、吳婷、劉燕. 2016. 芍藥台閣品種和托桂品種花芽分化過程. 東北林業大學學報 44:51-53. 艾鵬飛、羅正榮. 2004. 柿品種‘禪寺丸’花粉超低溫保存研究. 華中農業大學學報23:563-565. 呂學義、周慶原、沈榮壽. 2011. 日日春花器構造與強迫性自花授粉模式. 嘉大農林學報 8:18-33. 宋馥華. 2005. 玉蘭花開花習性與花期調節之研究. 國立臺灣大學植物學系碩士論文. 臺北. 吳宗憲. 2014. 朱蕉之開花誘導以及雜交誘變育種. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 吳宗憲、馮泓文、葉德銘. 2021. 朱蕉之花期調節、花粉發芽以及種子刻傷. 臺灣園藝 67:202-217. 吳淑均、張育森. 1996. 溫度對矮仙丹生長與開花之影響. 中國園藝 42:123-130. 林安秋. 1984. 作物之光合作用. 台灣商務印書館. 新北. 林詩庭. 2020. 溫度、礦物營養與介質體積含水量對沙漠玫瑰生長之影響. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 沈元月、郭家選、祝軍、賈克功. 溫度對早露蟠桃開花影響之研究. 萊陽農學院學報 4:265-267. 郭宏遠、宋妤. 2007. 花粉保存與利用. 植物種苗 9(3):48-58. doi:10.30077/SN.200709.0005 張丹丹、王瑩、荀志麗、李麗紅、陸海、劉頔. 2014. 單、重瓣玉簪花器官分化和花形態學比較研究. 電子顯微學報 33:271-277. 張育森、鄭正勇. 1992. 溫度和光線對百香果生長及花芽形成之影響. 中國園藝 38:30-36. 張其德, 盧從明、匡廷雲. 1992. 大氣CO2濃度升高對光合作用的影響. 植物學報 9(4):18-23. 張哲嘉、林宗賢. 1995. 桶柑葉片光合作用特徵之研究. 中國園藝 41:161-173. 張爽、潘偉. 2010. 沙漠玫瑰繁殖與盆栽栽培管理技術. 黑龍江農業科學 8:178-179. 張嘉滿、陳忠義、沈家毅、林茌沂、賴佑翔、王經文. 2021. 不同光量對文心蘭檸檬率氣體交換與葉綠素螢光之影響. 台灣生物多樣性 23:30-46. 陳錦木. 2013. 重瓣日日春之花芽形態、花形遺傳及育種. 國立臺灣大學園藝暨景觀學系博士論文. 臺北. 間藤正美、山形敦子、佐藤孝夫. 2007. 八重咲きトルコギキョウを得る表現型の組み合わせ. 東北農業研究 60:167-168. 楊浩、劉晨、王志飛、胡秀麗、王台. 2019. 作物花粉高溫應答機制研究進展. 植物學報 54:157-167. doi: 10.11983/CBB18133 趙印泉、劉青林. 2009. 重瓣花的形成機理及遺傳特性研究進展. 西北植物學報 4:832-841. 樊晚林、温振英、周雨琦、謝娟、翁青史、彭東輝. 2019. 3種野牡丹屬植物的光和特性. 森林與環境學報 39:188-193. doi:10.13324/j.cnki.jfcf.2019.02.011 劉明宗. 2016. 重瓣及香氣孤挺花品種之選育. 國立臺灣大學園藝暨景觀學系博士論文. 臺北. 劉影. 2019. 非洲芙蓉扦插繁殖與開花生理之研究. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北. 戴廷恩、林宗賢. 1996. 黑葉荔枝不同葉齡葉片形態與光合作用特性. 中國園藝 42:28-49. 魏景、彭冶、楊立梅. 2021. 單瓣與重瓣垂絲海棠花器官型態發育比較觀察. 西北植物學報 41:2072-2079. Abdelgadir, H.A., S.D. Johnson, and J. Van Staden. 2012. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphoribiaceae) S. Afr. J. Bot. 79:132-139. Abo, M.M. El-Nil., and A.C. Hildebrandt. 1973. Oringin of androgenetic callus and haploid geranium plants. Can. J. Bot. 51:2107-2109. Adhikari, K.N. and C.G. Campbell. 1998. In vitro germination and viability of buckwheat (Fagopyrum esculentum Moench) pollen. Euphytica 102:87-92. Alcaraz, M.L., M. Montserrat, and J. I. Hormaza. 2011. In vitro pollen germination in avocado (Persea Americana Mill.): Optimization of the method and effect of temperature. Scientia Hort. 130:152-156. Alexander, L.W. 2019. Optimizing pollen germination and pollen viability estimates for Hydrangea macrophylla, Dichroa febrifuga, and their hybrids. Scientia Hort. 246:244-250. Allan, P. 1963. Pollen studies in Carica papaya. II. Germination and storage of pollen. S. Afr. J. Agri. Sci. 6:613-623. Almeida, N.V., Camila, Y.N.S., and J. C. Cardoso. 2019. Characterization of cultivars and low-temperature pollen grain storage in amaryllis (Hippeastrum sp.). Rev. Ceres. Viçosa. 66: 451-459. Almouslem, A.B. and R.A.E. Tilney-Bassett. 1989. The inheritance of flower doubkness and nectary spur in Pelargonium×hortorum Bailey. Euphytica 41:23–29. https://doi.org/10.1007/BF00022407 Angenent, G.C. and L. Colombo. 1996. Molecular control of ovule development. Trends Plant Sci. 1:228-232. Argiropoulos, A. and S. Rhizopoulou. 2013. Morphological features of petals of Nerium oleander L. Plant Bio. 147:638-644. Ariana, P.T.B. 2010. Photosynthetic daily light integral, photoperiod, and temperature influence growth, development, and quality of Tecoma stans. ProQuest Dissertations & Theses A&I. ProQuest Dissertations & Theses Global. West Lafayette. Indiana. Ashoke, B. and S. Mandal. 2004. Pollination, pollen germination and stigma receptivity in Moringa oleifera Lamk. Grana 43:48-56. Ausín, I., C. Alonso-Blanco, and J.M. Martínez-Zapater. 2005. Environmental regulation of flowering. Intl. J. Dev. Biol. 49:689-705. Averill, K.M., A. Di Tommaso, T.H. Whitlow, and L.R. Milbrath. 2016. Photosynthetic performance of invasive Vincetoxicum species (Apocynaceae). Invas. Plant Sci. Mgt. 9:171-181. doi:10.1614/IPSM-D-16-00015.1 Barth, C., G.H. Krause, and K. Winter. 2001. Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant Cell Environ. 24: 163-176. Beltrán, R., A. Valls, N. Cebrián, C. Zornoza, F. G. Breijo, J. R. Armiñana, A. Garmendia, and H. Merle. 2019. Effect of temperature on pollen germination for several Rosaceae species: Influence of freezing conservation time on germination patterns. PeerJ 7:e8195. Björkman, O. 1981. Responses to different quantum flux densities, p. 57-107. In: W. Larcher (ed.). Physiological plant ecology I: Responses to the physical environment. Berlin, Heidelberg: Springer Berlin Heidelberg. Bolhar-NordenKampf, H., S. Long, N. Baker, G. Oquist, U. Schreiber, and E. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol. 3:497-514. Boardman, N.K. 1977. Comparative photosynthesis of sun and shade plants. Ann. Rev. Plant Physiol. 28:355-377. Brewbaker, J.L. and B.H. Kwack. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50:859-865. Brown, S. H. 2012. Adenium obesum – A report. Institute of Food and Agricultural Science, Lee County Extension. Cai, S., M. A. Wenbao, X. Zhou, H. Xie, W.Y. Zou, J. Liu, Q. Yang, L. Xu, and R. Li. Discovery and discussion of the formation mechanisms of wild double flowers of Rhododendron moupinense. J. Sichuan For. Sci. Tech. 43:121-126. doi: 10.12172/202105310001. Capovilla, G., M. Schmid, and D. Posé. 2015. Control of flowering by ambient temperature. J. Expt. Bot. 66:59-69. Causin, H.F., T.W. Rufty, and J.F. Reynolds. 2006. Gas exchange and carbon metabolism in two Prosopis species (Fabaceae) from semiarid habitats: Effects of elevated CO2, N supply, and N source. Amer. J. Bot. 93:716-723. Chaikiattiyos, S., C.M. Menzel, and T.S. Rasmussen. 1994. Floral induction in tropical fruit trees: Effects of temperature and water supply. J. Hort. Sci. 69:397-415. Chatterjee, R., S. Sarkar and G.M. Narasimha Rao. 2014. Improvised media for in vitro pollen germination of some species of Apocynaceae. Int. J. of Envr. 3: 2091-2854. Chen, E., C. M. Zhang, Y. Q. Su, J. Ma, Z. W. Zhang, M. Yuan, H. Y. Zhang, and S. Yuan. 2017. Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ. Exp. Bot. 135:45–55. Chen, F., W. Yuan, X.P. Shi, and Y.M. Ye. 2013. Evaluation of pollen viability, stigma receptivity and fertilization success in Lagerstroemia indica L. Afr. J. Bio. 12:6460-6467. doi:10.5897/AJB11.3594 ClarkeP. J. and P. J. Myerscough. 1991. Floral Biology and Reproductive Phenology of Avicennia marina in South-Eastern Australia. Australian J. Bot. 39:283 – 293. Cockshull, K. E. andA. P. Hughes. 1971. The effects of light intensity at different stages in flower initation and development of Chrysanthemum morifolium. Ann. Bot. 35:915-926. Coen, E.S. and E.M. Meferowitz. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature 353:31-37. Dafni, A. 1992. Pollination ecology: A practical approach. Oxford Univ. Press. New York. Dafni, A., and D. Firmage. 2000. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst. Evol. 222:113-132. De Hertogh, A.A. H.P. Rasmussen, and N. Blakely. 1971. Morphological changes and factors influencing shoot apex development of Lilium longiflorum (Thumb.) during forcing. J. Amer. Soc. Hort. Sci. 101:463-471. Dempsey, W. H. 1962. Pollen tube growth in vivo as a measure of pollen viability. Science 138:436-437. Desai, U.T., D.B. Randhawa, and K.N. Wavhal. 1986. Floral biology of J. Maharashtra. Agr. Univ. 11:76–78. Dey, K., S. Mondal, and S. Mandal. 2016. Studies on stigma receptivity of Grewia asiatica L. with reference to esterase and peroxidase activity. Int. J. Eng. Res. Sci. 2: 2395-6992. Díaz, S.L. and B.R. Garay. Simple methods for in vitro pollen germination and pollen preservation of selected species of the genus Agave. e-Gnosis 6:1-7. Dimmitt, M.G., G. Joseph, and D. Palzkill. 2009. Adenium: Sculptural elegance, floral extravagance. Scathingly Brilliant Idea. Tucson, AZ. Erwin, J. 2004. Factors affecting flowering in ornamental plants, p. 7-48. In: N.O. Anderson (ed.). Flower breeding and genetic. CABI. Wallingford. England. Eyster, W.H. and D. Burpee. 1936. Inheritance of doubleness in the flowers of the nasturtium. J. Hered. 27:51-60. Fernández-Illescas, F., J. Cabrera, F.J.J. Nieva, B. Márquez-Garcí, E. Sánchez-Gullón, A. F. Muñoz-Rodríguez, Adolfo. 2010. Production of aborted pollen in marsh species of Chenopodiaceae: Evidence of partial male sterility in Suadeaea and Salsoleae species. Plant Syst. Evol. 288:167-176. Ferrar, P. J. 1980. Environmental control of gas exchange in some savanna woody species: I. Controlled environment studies of Terminalia sericea and Grewia flavescens. Oecologia 47:204-212. Forst, H.B. 1915. The inheritance of doubleness in Matthiola and Petunia. Amer. Naturalist. 49:623-636. Francis, K.E., S.Y. Lam., B.D. Harrison, A.L. Bey, L.E. Berchowitz, and G.P. Copenhaver. 2007. Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. Proc. Natl. Acad. Sci. 104:3913–3918. Franks, P.J., I.R. Cowan, and G.D. Farquhar. 1997. The apparent feedforward response of stomata to air vapour pressure deficit: information revealed by different experimental procedures with two rainforest trees. Plant Cell Environ. 20:142– 145. Galen, C., and R.C. Plowright. 1987. Testing accuracy of using peroxidase activity to indicate stigma receptivity. Can. J. Bot. 65:107–111. Gandadikusumah, V. G., H. Wawangningrum, and S. Rahayu. 2017. Pollen viability of Aeschynanthus tricolor Hook. J. Trop. Life Sci. 7:53-60. Ganshan, S. 1986. Cryogenic preservation of papaya pollen. Scientia Hort. 28:65-70. Gill, M. 2014. Pollen storage and viability. Int. J. of Bot. and Res. 4:1-18. Givnish, T.J. 1988. Adaptation to sun and shade: a whole plant perspective. Austr. J. Plant Physiol. 15:63-92. Gollan, T., N.C. Turner, and E.D. Schulze. 1984. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content. Oecologia 63:338–342. doi:https://doi.org/10.1007/BF00390662 Goto, K., J. Kyozuka, and J.L. Bowman. 2001. Turning floral organs into leaves, leaves into floral organs. Curr. Opin. Genet. Dev. 11:449-456. Griffith, Jr., L.P. 1998. Tropical foliage plants: A grower’s guide. Ball Publishing, Batavia, IL. Ha. T. M. 2014. A review of plants’ flowering physiology: The control of floral induction by juvenility, temperature and photoperiod in annual and ornamental crops. Asian J. Agr. Food Sci. 2:186-195. Haber, W.A. 1984. Pollination by deceit in a mass-flowering tropical tree Plumeria rubra L. (Apocynaceae). Biotropica 16:269-275. Hedhly, A., J.I. Hormaza., and M. Herrero. 2005. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach. Plant Biol. 7:476–483. Herrera, J. 1991. The reproductive biology of a riparian Mediterranean shrub, Nerium oleander L. (Apocynaceae). Bot. J. Linn. Soc. 106:147-172. Heslop-Harrison, Y. and and K. R. Shivanna. 1977. The receptive surface of the angiosperm stigma. Ann. Bot. 41:1233-1258. Heslop-Harrison, J., Y. Heslop-Hanrison, and K. R. Shivanna. 1984. The evaluation of pollen quality, and a further appraisal of the fluorochromatic (FCR) test procedure. Theor. Appl. Genet. 67:367-375. Hebbar, K. B., P. Neethu, P. Abhin Sukumar, M. Sujithra, Arya Santhosh, S. V. Ramesh, V. Niral, G. S. Hareesh, Paingamadathil Ommer Nameer, and P. V. V. Prasad. 2020. Understanding physiology and impacts of high temperature stress on the progamic phase of coconut (Cocos nucifera L.). Plants 9:1651. doi:https://doi.org/10.3390/plants9121651 Henny, R. J. and J. Chen. 2013. Florida foliage house plant care: Adenium obesum. ENH1213. Gainesville: UF/IFAS. http://edis.ifas.ufl.edu/ep474 Hirsche, J., M. José, G. Fernández, E. Stabentheiner, D.K. Großkinsky, and T. Roitsch. 2017. Differential Effects of carbohydrates on Arabidopsis pollen germination. Plant Cell Physiol. 58:691-701. doi:https://doi.org/10.1093/pcp/pcx020 Honsho, C., S. Somsri, T. Tetsumura, K. Yamashita, and K.Yonemori. 2007. Effective pollination period in durian (Durio zibethinus Murr.) and the factors regulating it. Scientia Hort. 111:193-196. Horn, W. 2002. Breeding methods and breeding research, p. 47-83. In. A. Vainstein (ed.). Breeding for ornamentals: Classical and molecular approaches. Springer. Netherlands. Bohn Stafleu van Loghum, Netherlands. Huang, Z., J. Zhu, X. Mu, and J. Lin. 2004. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Ann. Bot. 93:295-301. Imani, A., Kargar, M.H., Pireivatlou, S.P., Asgari, F. and Masomi, S.H., 2011. Evaluation of germination capacity of stored pollen of almond and peach. Int. J. Nuts and Related Sci. 2(2):68-72. Inoue, N., Taira, Y., Emi, T., Yamane, Y., Kashino, Y., Koike, H., and Satoh, K. 2001. Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium. Synechocystis sp. PCC6803. Plant Cell Physiol. 42:1140-1148. Issarakraisila, M. and J.A. Considine. 1994. Effects of temperature on pollen viability in mango ‘Kensington’. Ann. Bot. 73:231-240. Jack, T. 2001. Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6:310-316. Jain, M., P.S. Chourey, K.J. Boote, and L.H. Jr Allen. 2010. Shortterm high temperature growth conditions during vegetative-to-reproductive phase transition irreversibly compromise cell wall invertase-mediated sucrose catalysis and microspore meiosis in grain sorghum (Sorghum bicolor). J. Plant Physiol. 167:578–582. Johri, B. M. and I. K. Vasil. 1961. Physiology of pollen. Bot. Rev. 27:326-368. Jung, S., K.L. Steffen, and H.J. Leeb. 1998. Comparative photoinhibition of a high and a low altitude ecotype of tomato (Lycopersicon hirsutum) to chilling stress under high and low light conditions. Plant Sci. 134:69-77. Kakani, V.G., K.R. Reddy, S. Koti, T.P. Wallace, P.V.V. Prasad, V.R. Reddy, and D. Zhao. 2005. Differences in in vitro pollen germination and pollen tube growth of cotton cultivars in response to high temperature. Ann. Bot. 96:59-67. doi:https://doi.org/10.1093/aob/mci149 Khattra, S., and C.P. Malik. 1992. In: Advances in Pollen Spore Research XIX Ed.C. P. Malik Today and Tomorrow’s Printers and Publishers, New Delhi, India. Kho, Y.O. and J. Baёr. 1968. Observing pollen tubes by means of fluorescence. Euphytica 17:298-302. Khoshoo, T.N., and N. Singh. 1963. Cytology for North-Western Indian trees. Ziziphus jujube and Z. rotundifolia. Silvae. Genet. 12:141–180. Kim, S.K., H.B. Lagerstedt, and L.S. Daley. 1985. Germination responses of filbert pollen to pH, temperature, glucose, fructose, and sucrose. HortScience 20:944-946. Kimura, P. H., G. Okamoto, and K. Hirino. 1998. The mode of pollination and stigma receptivity in Vitis coignetiae Pulliat. Amer. J. Eno. Vitic. 49:1-5. King, J.R. 1961. The freeze drying of pollen. Eco. Bot. 15:91-93. King, R.W., R. Worrall, and I.A. Dawson. 2008. Diversity in environmental controls of flowering in Australian plants. Scientia Hort. 118:161-167. Lange, O.L., R. Lösch, E.D. Schulze, and L. Kappen. 1971. Responses of stomata to changes in humidity. Planta 100:76-86. Lawson, T., Davey, S.A. Yates, U. Bechtold, M. Baeshen, N. Baeshen, M.Z. Mutwakil, J. Sabir, N.R. Baker, and P.M. Mullineaux. 2014. C3 photosynthesis in the desert plant Rhazya stricta is fully functional at high temperatures and light intensities. New Phytol. 201: 862-873. doi:https://doi.org/10.1111/nph.12559 Leymarie, J., G. Lasceve, and A. Vavasseur. 1998. Interaction of stomatal responses to ABA and CO2 in Arabidopsis thaliana. Austr. J. Plant Physiol. 25:785–791. Lösch. R. 1979. Stomatal responses to changes in air humidity. p. 189-216. In: D.N. Sen, D.D. Chawan, and R.P. Bansal. (eds.). Structure, function and ecology of stomata. Bishen Singh Mahendra Pal Singh, Dehra Dun. Li, B., H. Wang, and Y. Liu. 2009. Pollen cryopreservation of Camellia, p. 265-268. In: B. Panis, and P. Lynch (eds.). I International Symposium on Cryopreservation in Horticultural Species. Lin, S., and G. Bernardello. 1999. Flower structure and reproductive biology in Aspidosperma quebracho-blanco (Apocynaceae), a tree pollinated by deceit. Intl. J. Plant Sci. 160:869-878. Lin, Y., Y. Wang, A. Iqbal, P. Shi, J. Li, Y. Yang, and X. Lei. 2017. Optimization of culture medium and temperature for the in vitro germination of oil palm pollen. Scientia Hort. 220:134-138. doi: https://doi.org/10.1016/j.scienta.2017.03.040 Lipow, S. R. and R. Wyatt. 1998. Floral morphology and late-acting self-incompatibility in Apocynum cannabinum (Apocynaceae). Plant Syst. Evol. 219:99-109. Liu, X., B. An., N. Gu., C. Guo., X. Sun., and H. Wang. 2020. Response of leaf photosynthetic characteristics of Syringa oblata and Syringa reticulata var. mandshurica to chilling stress. J. Forest. Res. 31: 521–530. Liu, X., Y. Xiao, J. Zi, J. Yan, C. Li, C.H. Du, J.X. Wan, H.X. Wu, B. Zheng, S.B. Wang, and Q.Z. Liang. 2023. Diferential efects of low and high temperature stress on pollen germination and tube length of mango (Mangifera indica L.) genotypes. Scientia Rpt. 13:611. doi:https://doi.org/10.1038/s41598-023-27917-5 Llorens, L., J. Penuelas, and M. Estiarte. 2003. Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiol. plantarum 119:231-243. Loguercio, L.L. 2002. Pollen treatment in high osmotic potential: a simple tool for in vitro preservation and manipulation of viability in gametophytic populations. Braz. J. Plant Physiol. 14:65–70. Loo, T. L. and T.C. Hwang. 1944. Growth stimulation by manganese sulphate, indole-3-acetic acid and colchicine in pollen germination and pollen tube growth. Amer. J. Bot. 31:356-367. Macha, M. M., A.K. Chowdhury, T. Murata, and Y. Yonemoto. 2006. Effect of artificial media, temperature conditions and storage methods on in vitro germination of dragon fruit (Hylocereus undatus Britt & Rose) pollen. Jpn. J. Trop. Agr. 50:51-56. Mathur, S., Agrawal, D., and A. Jajoo. 2014. Photosynthesis: response to high temperature stress. J. Photochem. Photobiol. B: Biol. 137:116-126. Matsuda, H. and H. Higuchi. 2013. Effects of temperature and medium composition on pollen germination of ‘Bengal’ and ‘Chakrapat’ lychee (Litchi chinensis Sonn.) in vitro. Trop. Agr. Dev. 57:120-125. Matsuda, H. and H. Higuchi. 2015. Effects of temperature and humidity conditions during storage on in vitro pollen germinability of lychee (Litchi chinensis Sonn.). Res. Trop. Agr. 8:43-46. Matsuda, H., H. Higuchi, and N. Miyaji. 2021. Temperature and medium conditions for in vitro pollen germination on salak (Salacca wallichiana C. Mart.). Trop. Agr. Develp. 63:156-159. Marenco, R.A., J.F.C. Gonçalves, and G. Vieira. 2001. Photosynthesis and leaf nutrient contents in Ochroma pyramidale (Bombacaceae). Photosynthetica 39:539–543. doi:https://doi.org/10.1023/A:1015699927924 Masierowska, M., and M. Stpiczynska. 2005. Stigma receptivity in comfrey (Symphytum officinale L.) during the course of anthesis. Isr. J. Plant Sci. 53:41-46. Masum Akond, A.S.M.G. C.T. Pounders, E.K. Blythe, and X. Wang. 2012. Longevity of crapemyrtle pollen stored at different temperatures. Scientia Hort. 139:53-57. doi: https://doi.org/10.1016/j.scienta.2012.02.021 Maués, M. 2002. Reproductive phenology and pollination of the brazil nut tree (Bertholletia excelsa Humb. & Bonpl. Lecythidaceae) in Eastern Amazonia, p. 245-254. In: P. Kevan, and V.L. Imperatriz Fonseca (eds). Pollinating Bees - The Conservation Link Between Agriculture and Nature. Ministry of Environment. Brasília. McBride, K.M., R.J. Henny, J. Chen, and T.A. Mellich. 2014. Effect of light intensity and nutritionlevel on growth and flowering of Adenium obesum ‘Red’ and ‘Ice Pink’. HortScience 49:430-433. McLaughlin, J. and J. Garofalo. 2002. Desert Rose, Adenium obesum: nursery production. University of Florida Cooperative Extension Service. Miami-Dade County Ext. 66: 1-2. Meerow, A.W. 2000. Breeding amaryllis, p.174-195. In: D.J. Callaway and M.B. Callaway (eds.). Breeding ornamental plants. Timber Press, Portland, Or., U.S.A. Menzel, M.Y., K.L. Richmond, C.S. Contolini, and P. Huang. 1986. New intergenomic hybrids among diploid species of Hibiscus sect. Furcaria. Amer. J. Bot. 73:304–309. Mesnoua, M., M. Roumani, and A. Salem. 2018. The effect of pollen storage temperature on pollen viability, fruit set and fruit quality of six date palm cultivars. Scientia Hort. 236:279-283. Meyn, O. and W.A. Emboden. 1987. Parameters and consequences of introgression in Salvia apiana × S. mellifera. Syst. Bot. 12:390-399. Mohammad, R.D., S. Naghiloo, S.H. Peighambardoust, S. Panahirad, M. Aliakbari, and A. Movafeghi. 2011. Comparison of floral ontogeny in wild-type and double-flowered phenotypes of Syringa vulgaris L. (Oleaceae). Scientia Hort. 127:535-541. Moncur, M.W. 1992. Effect of low temperature on floral induction of Eucalyptus lansdowneana F. Muell. & J. Brown subsp. lansdowneana. Aust. J. Bot. 40: 157–167. Mooney, H. A., O. Björkman, and G.J. Collatz. 1978. Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata: I. Carbon dioxide exchange characteristics of intact leaves. Plant Physiol. 61:406-410. Morris, L.L. 1982. Chilling Injury of Horticultural Crops: an Overview. HortScience 17:161-162. doi: https://doi.org/10.21273/HORTSCI.17.2.161 Moura, T.N., A.C. Webber, and L.N.M. Torres. 2011. Floral biology and a pollinator eff ectiveness test of the diurnal floral visitors of Tabernaemontana undulata Vahl. (Apocynaceae) in the understory of Amazon rainforest, Brazil. Acta Botanica Brasilica 25:380-386. Nakamura, N., K. Yoshuda, and H. Suzuki. 1980. Hemicellulose of The pollen tube wall of Camellia japonica. Plant Cell Physiol. 21:1383-1390. doi: 10.1093/pcp/21.8.1383 Niu, G., D.S. Rodriguez, and T.Y. Wang. 2006. Impact of drought and temperature on growth and laf gas exchange of six bedding plant species under greenhouse conditions. HortScience 41:1408-1411. Noemi, T.Z., and B. Schneider. 2009. Floral biology of Ziziphus mauritiana (Rhamnaceae). Sex. Plant. Rpt. 22:73-85. doi: 10.1007/s00497-009-0093-4 Oddie, R.L.A. and J.A. Mccomb. 1998. Stigma receptivity in Eucalyptus camaldulensis DEHNH. Slivae Genet. 47:2-3. Ogle, K., and J.F. Reynolds. 2002. Desert dogma revisited: coupling of stomatal conductance and photosynthesis in the desert shrub, Larrea tridentata. Plant Cell Environ. 25: 909-921. doi:https://doi.org/10.1046/j.1365-3040.2002.00876.x Oren, R., J.S. Sperry, G.G. Katul, D.E. Pataki, B.E. Ewers, N. Phillips, and K.V.R. Scäfer. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22:1515–1526. Patel, R., and A.U. Mankad. 2014. In Vitro Pollen Germination - A Review. Int. J. Sci. Res. 3(5):304-307. Parashuram, M., P.P. Kumar, R. Gunnaiah, A.M. Shirol, B.P. Patil, M.J. Jhalegar, and S. Meti. 2021. Assessment of pollen viability and in vitro pollen germination in Nerium cultivars (Nerium oleander L.). Intl. J. Chem. Stud. 9:724-728. Perveen, A. and S. Ali. 2019. Germination capacity and viability of stored pollen in two ornamental species of the genus caesalpinia L.(caesalpini oideae-fabaceae) and their maintenance. Pak. J. Bot. 51:1081-1083. doi: 10.30848/PJB2019-3(21) Perez, K. and R.A. Criley. 2011. Correlative vital staining and in vitro pollen germination of plumeria, p. 511-518. In: G. Facciuto, and M.I. Sánchez (eds). VII International Symposium on New Floricultural Crops 1000. Buenos Aires, Argentina. Pham, V.T., M. Herrero, and J.I. Hormaza. 2015. Efect of temperature on pollen germination and pollen tube growth in longan (Dimocarpus longan Lour.). Scientia Hort. 197:470–475. Plaizier, A.C. 1980. A revision of Adenium Roem. & Schult. and of Diplorhynchus Welw. ex Foc. & Hiern (Apocynaceae). Mededelingen Landbouwhogeschool 80:1-40. Pinney, K. and V. S. Polito. 1990. Olive pollen storage and in vitro germination. Acta Hort. 286:207-210 Powell, G.M. 1980. Polyethylene glycol. p. 18.1-18.31. In: R.E. Davidson (ed.) Handbook of water soluble gums and resins. Mcgraw-Hill, N.Y. USA. Putievsky E., U. Ravid, N. Diwan-Rinzler, and D. Zohary. 1990. Genetic affinities and essential oil composition of S. officinalis L., S. fruticose Mill., S. tomentosa Mill. and their hybrids. Flavour Fragrance J. 5:121-123. Rajendrudu, G., J.S.R Prasad, V.S. Das Rama. 1986. C3–C4intermediate species in Alternanthera (Amaranthaceae). Leaf anatomy, CO2 compensation point, net CO2 exchange and activity of photosynthesis enzymes. Plant Physiol. 80:409–414. Reddy, K.R. and V.G. Kakani. 2007. Screening Capsicum species of diferent origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Hort. 112:130-135. Reed, S. M. 2005. Pollination biology of Hydrangea macrophylla. HortScience 40: 335-338. Reid, M.S. and R.Y. Evans. 1986. Control of cut flower opening. Acta Hort. 181:45-54. Reynolds, J. and J. Tampion. 1983. Double flowers: A scientific study. Scientific and Acadmic Editions, New York. Rodriguez-Riano, T. and A. Dafni. 2000. A new procedure to assess pollen viability. Sex. Plant Reprod. 12:241-244. Rosell, P., M, Herrero, and V. Galán Saúco. 1999. Pollen germination of cherimoya (Annona cherimola Mill.).: In vivo characterization and optimization of in vitro germination. Scientia Hort. 81:251-265. doi: https://doi.org/10.1016/S0304-4238(99)00012-6. Rousi, A. 1968. Cytoplasmic inheritance Aquailegia vulgaris. Hereditas 60:223-232. Rowley, G.D. 1980. The pollination mechanism of Adenium (Apocynaceae). 35:2-5. Ruiz-Vera, U. M., M.H. Siebers, D.W. Drag, D.R. Ort, and C.J. Bernacchi. 2015. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob. Chang. Biol. 21:4237–4249. doi: 10.1111/gcb.13013 Sakai, K. and H. Higuchi. 1980. Effects of temperature, photoperiod and time of pinching on flowering of Chinese ixora (Ixora chinensis Lam.). Res. Bul. Aichi. Agr. Res. Ctr. 12:109-113. Sampson, D.R. 1965. Breeding Phiadelphus for double flower, purple center and low stature. Euphytica 14:157-160. Santiago, J. P. and T. D. Sharkey. 2019. Pollen development at high temperature and role of carbon and nitrogen metabolites. Plant Cell Environ. 42(10):2747-2944. doi: https://doi.org/10.1111/ Scovel, G., H. Ben-Meir, M. Ovadis, H. Itzhaki, and A. Vainstien. 1998. RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor. Appl. Ganet. 96:117-122. Sheriff, D.W. 1984. Epidermal transpiration and stomatal responses to humidity: some hypotheses explored. Plant Cell Environ. 7:669–677. Shirke, P.A., and U.V. Pathre. 2004. Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J. Exp. Bot. 55:2111-2120. Shivanna, K.R. H.E. Linskens., and M. Cresti. 1991. Pollen viability and vigor. Theor. Appl. Genet. 81:38-42. Shivanna, K.R. and N. S. Rangaswamy. 1992. Pollen biology. Springer-Verlag, Germany. Sidhu, R.K. 2019. Pollen storage in vegetable crops: A review. J. Pharmacogn. Phytochem. 8:599-603. Silveira, A.M.F., and R.A. Marenco. 2023. Elevated CO2 induces down-regulation of photosynthesis and alleviates the effect of water deficit in Ceiba pentandra (Malvaceae). Revista Árvore 47:e4721. Smith, B.G. 1989. The effect of soil water and atmospheric vapour pressure deficit on stomata behaviour and photosynthesis in the oil palm. J. Expt. Bot. 40:647-651. Smith, J.L. 2000. Breeding Africa violets, p. 133-154. In: D.J. Callaway and M.B. Callaway (eds.). Breeding ornamental plants. Timber Press, Portland, Ore. Slot, M., N. Schuttenhelm, C.E. Eze, and K. Winter. 2023. Effects of rising temperature on flower production and pollen viability in a widespread tropical tree species, Muntingia calabura, p. 119-127. In: B. Raton (eds.). Ecophysiology of Tropical Plants. CRC Press, Florida. Soares, T.L., O.N. Jesus, E.H. Souza, and E.J. Oliveira. 2018. Floral development stage and its implications for the reproductive success of Passiflora L. Scientia Hort. 238:333-342. doi:https://doi.org/10.1016/j.scienta.2018.04.034. Somersalo, S. and G.H. Krause. 1989. Photoinhibition at chilling temperature. Fluorescence characteristics of unhardened and cold acclimated spinach leaves. Planta 177:409-416. Souza, E.H., S.M. Carmello-Guerreiro, F.V.D. Souza, M.L. Rossi, and A.P. Martinelli. 2016. Stigma structure and receptivity in Bromeliaceae. Scientia Hort. 203:118-125. Souza, C.G., S.M.B. Ramos, S. Nietsche, C.C.F. Possobom, E.F.A. Almeida, and M.C.T. Pereira. 2022. Viability of pollen grains and stigma receptivity in desert rose. Orna. Hort. 28:92-98. Soyza, A.G., A.C. Franco, R.A. Virginia, J.F. Reynolds, and W.G. Whitford. 1996. Effects of plant size on photosynthesis and water relations in the desert shrub Prosopis glandulosa (Fabaceae). Amer. J. Bot. 83:99-105. Stone, J.L., J.D. Thomson, and S.J. Dent-Acosta. 1995. Assessment of pollen viability in hand-pollination experiments: a review. Amer. J. Bot. 82:1186–1197. Sullivan, J.R. 1984. Pollination biology of Physalis viscosa var. cinerascens (Solanaceae). Amer. J. Bot. 71:815-820. Takuro, S., T. Takahiro, Y. Asuka, M. Takatoshi, K. Toshihiro, S. Kazunao, and N. Chisako. 2015. Inheritance of the double-flowered trait in decorative Hydrangea flowers. Hort. J. 84:253-260. Theißen, G. and H. Saedler. 2001. Floral quartets. Nature 409:469-471. Torres, A.P., and R.G. Lopez. 2011. Photoperiod and temperature influence flowering responses and morphology of Tecoma stans. HortScience 46:416-419. Turner, N. C., E.D. Schulze, and T. Gollan. 1984. The responses of stomata and leaf gas exchange to vapour pressure deficits and soil water content: I. Species comparisons at high soil water contents. Oecologia 63:338-342. Usmani, G., A.K. Mandal, P.H. Chawhaan, and Y. Mishra. 2016. Reproductive biology and breeding system in Rauvolfia serpentina (L.) Benth. ex Kurz. Indi. J. Plant Physiol. 21:31-36. Voelker, S.L., J.R. Brooks, F.C. Meinzer, R. Anderson, M.K F. Bader, G. Battipaglia, … and L. Wingate. 2016. A dynamic leaf gas‐exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob.Chang. Biol. 22:889-902. Wakisaka, I. 1963. Studies on the preservation and storage of Jananese pear and persimmon pollen. (1) The condition for the short period storage. Bull. Fac. Agr. Torrori. Univ. 16:17-25. Wang, W.B., X.F. He, X.Y. Li, and W.H. Wang. 2023. Transcriptome profiling during double-flower development provides insight into stamen petaloid in cultivated Lilium. Ornam. Plant Res. 2:10. doi: 10.48130/OPR-2022-0010. Winderlechner, M.P., H.M. Pellett, P.D. Fuhrman. 1983. In vivo pollen germination and vistak staining in delicious azaleas. HortScience 18:86-88. Woodson, R.E. 1930. Studies in the Apocynaceae. I. A critical study of the Apocynoideae (with special reference to the genus Apocynum.) Ann. Missouri Bot. Gard. 17:1-212. Wu, J.T., and T.C. Huang. 1975. Biosystematic studies of fromosan Salvia. Taiwania 20:77-98. Xu, Z., Y. Jiang, B. Jia, and G. Zhou. 2016. Elevated-CO2 response of stomata and its dependence on environmental factors. Front. Plant Sci. 7:657. doi:org/10.3389/ fpls.2016.00657 Yamori, W., K. Hikosaka, and D.A. Way. 2013. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosyn. Res. doi:10.1007/s11120-013-9874-6. Yang, Z., T.R. Sinclair, M. Zhu, C.D. Messina, M. Cooper, and G.L. Hammer. 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environ. Expt. Bot. 78:157-162. Yang, H., C. Liu, Z. Wang, X. Hu, and T. Wang. 2019. Advances in the regulatory mechanisms of pollen response to heat stress in crops. Chin. Bulletin Bot. 54: 157-167. doi:10.11983/CBB18133 Yeh, D.M. and J.G. Atherton. 1997. Mainpulation of flowering in cineraia. I. Effects of photoperiod. J. Hort. Sci. 72:43-54. Zahn, L.M., J. Leebens-Mack, C.W. DePamphilis, H. Ma, and G. Theissen. 2005. To B or Not to B a Flower: The role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. Biosystematic J. Hered. 96:225-240. Zainol, R. and D.P. Stimart. 2001. A monogenic recessive gene, fw, conditions flower doubling in Nicotiana alata. HortScience 36:128-130. Zeng-Yu, W., G. Yaxin, M. Scott, and G. Spangenberg. 2004. Viability and longevity of pollen from transgenic and non- transgenic tall fescue (Festuca arundinacea) (Poaceae) plants. Amer. J. Bot. 4:523-530. Zhang, S.Q., and W.H. Jr Outlaw. 2001. The guard cell apoplast as a site of abscisic acid accumulation in Vicia faba L. Plant Cell Environ. 24: 347–355. Zhang, Z.W., B.Y. Zhang, H.F. Tong, and L. Fang. 2010. Photosynthetic LCP and LSP of different grapevine cultivars. J. Northwest Forest. Univ. 25:24-29. Zieslin, N., and V. Gottesman. 1986. Environmental factors involved in growth, flowering and post-harvest behaviour of flowers of Leptospermum scoparium JR & FORST. Israel J. Plant Sci. 35:101-108. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91592 | - |
dc.description.abstract | 沙漠玫瑰屬(Adenium)為夾竹桃科(Apocynaceae)的多年生花卉,觀賞部位為膨大莖幹與花朵,具有不同單瓣及重瓣花型,常作為盆花或景觀作物利用。目前仍缺乏沙漠玫瑰光合作用、開花生理及花粉特性之研究,故欲探討溫度對沙漠玫瑰生長、開花及花粉萌發之影響。另探討單瓣及重瓣沙漠玫瑰其柱頭可受性及花粉萌發習性,以供育種者可加速選育重瓣花之品種。
沙漠玫瑰栽培於光度1007 µmol·m-2·s-1,平均日長11.1 h,溫度32.3℃時,淨光合作用速率隨光度增加而上升,於冬季測量得知其光飽和點約為300 μmol∙m−2∙s−1,淨光合作用速率為9.9 μmol∙m−2∙s−1,光度提升不影響蒸散作用與氣孔導度,僅細胞間隙二氧化碳濃度隨光度增加而下降。其光反應曲線顯示其光補償點為24.6 μmol∙m−2∙s−1。二氧化碳濃度自0提升至800 μL∙L-1,使淨光合作用速率隨之增加,且細胞間隙二氧化碳濃度亦提升。當VPD固定為1.2 kPa時,沙漠玫瑰光合作用適溫為22-28℃。在1.0-2.3 kPa VPD區間,沙漠玫瑰之淨光合作用速率、氣孔導度及細胞間隙二氧化碳濃度對VPD變化不敏感。 除去頂芽之沙漠玫瑰在每日平均最大光強度為1520 µmol·m-2·s-1下,以日夜溫25/20、30/25以及35/30℃處理所有植株皆開花,且花下葉片數無顯著差異,但30/25以及35/30℃處理顯著降低現蕾天數及開花天數,分別於,其中以30/25℃有最高開花率。日夜溫15/13及20/15℃則易發生寒害,以15/13℃處理顯著降低光系統Ⅱ最大光子利用效率(maximum quantum efficiency of photosystem Ⅱ photochemistry, Fv/Fm)、非光化學淬熄係數(non-photochemical quenching coefficient, qN)及SPAD-502讀值。觀察不同日夜溫處理對頂花序帶1.5 cm花苞的沙漠玫瑰之影響,結果日夜溫降低,花芽發育至到花天數及花朵壽命顯著增加。日夜溫15/13及20/15℃則在處理17天後消蕾,所有試驗植株皆無開花。另觀察不同日夜溫對原生種單瓣、半重瓣‘小燕子’及重瓣‘石榴裙’花粉萌發之影響,結果顯示三品種沙漠玫瑰於30/25℃培育有最高花粉萌發率。 沙漠玫瑰依花瓣輪數可分為單瓣‘黑色月光’(一輪花瓣)、半重瓣‘小燕子’(兩輪花瓣)及重瓣‘石榴裙’(三輪花瓣)。半重瓣具有兩輪花冠筒,一為萼片瓣化之花冠筒,可見萼片遺跡,且花冠筒可完整分離為五瓣,另一輪為正常花瓣,第四輪為正常雄蕊,可取得可稔花粉,第五輪為正常雌蕊;重瓣花朵具有三輪花冠筒,三輪皆為完整花冠筒,第五輪雄蕊之花藥常畸形,若花藥發生畸形則無法取得花粉,若正常發育則為可稔花粉,第六輪為雌蕊正常無畸形。 將單瓣‘黑色月光’、半重瓣‘小燕子’及重瓣‘石榴裙’依照花發育階段分為6個階段,分別為花瓣尚未突出萼片、花瓣突出部位與萼片等長、花瓣突出部位與萼片2:1、花瓣突出部位與萼片3:1、花朵開放前最大長度及完全開放花朵,分別調查各階段之花器結構,結果顯示三品種中以完全開放花朵有最高柱頭可受性、花粉活力及花粉萌發率,且半重瓣及重瓣者於完全開放階段花朵才可取得花粉。 三品種沙漠玫瑰皆以添加10%蔗糖之處理其花粉萌發率最高。取三種花型沙漠玫瑰花粉以不同水浴溫度處理後,將最低與最高萌發率溫度與更高水浴溫度之數據行直線迴歸後,計算兩直線迴歸線之交叉點,可得花粉萌發之基礎溫度、最適溫度及最高溫度。單瓣‘黑色月光’之花粉萌發基礎溫度為8.8℃,最適溫度為26.6℃,最高萌發溫度為41.9℃;半重瓣‘小燕子’之花粉萌發基礎溫度為11.6℃,最適溫度為30.7℃,最高萌發溫度為42.8℃;重瓣‘石榴裙’之花粉萌發基礎溫度為11.6℃,最適溫度為27.0℃,最高萌發溫度為42.1℃。 取單瓣‘黑色月光’、半重瓣‘小燕子’及重瓣‘石榴裙’新鮮花粉於室溫乾燥一週後,放入不同溫度貯藏,結果顯示單瓣‘黑色月光’以4℃貯藏花粉萌發率可維持2週,至第4週則顯著降低;半重瓣‘小燕子’以4℃貯藏花粉萌發率可維持至第4週,至第8週才有明顯降低;重瓣‘石榴裙’以-20℃貯藏1週可有最佳花粉萌發,其他溫度處理及貯藏時間超過1週皆顯著降低花粉萌發率。 以單瓣、半重瓣及重瓣沙漠玫瑰進行自交及正反交,結果顯示9種授粉組合皆可成功結實並獲得種子,雜交後代亦可順利萌發,待日後觀察是否可將重瓣基因導入子代。 | zh_TW |
dc.description.abstract | The desert rose (Adenium obesum), belonging to the Apocynaceae family, is a perennial flowering plant. Its prominent features include enlarged stem and showy flowers, which have various single- and double-flowered forms, and are often utilized as potted ornamental plants or in landscaping. Currently, there is still a lack of research on the photosynthetic characteristics of the desert rose. Temperature is likely a primary factor facilitating growth of desert rose based on response of gas exchange parameters towards various environmental factors. Therefore, further exploration into the effects of temperature on the growth, flowering, and pollen germination of the desert rose is necessary. To expedite and ensure the breeding process, it is essential to explore the stigma receptivity and pollen characteristics of both single- and double-flowered desert rose. This research would aid breeders in accelerating and ensuring the smooth progression of the breeding procedures.
The net photosynthetic rate (Pn) increases with rising light intensity. The net photosynthetic rate reached saturation at light intensity of 300 μmol∙m−2∙s−1. Light compensation point was estimated as 24.6 μmol∙m−2∙s−1. With light intensity increases further, there was no significant change observed in transpiration rates (E) or stomatal conductance (gs), but the intercellular CO2 concentration (Ci) decreased as light intensity increased. As the CO2 concentration increased from 0 to 800 μL∙L-1, the Pn and Ci of the desert rose increased. When the vapor pressure deficit (VPD) was fixed at 1.2 kPa, the optimal temperature range for photosynthesis in desert rose is between 22-28°C. The desert rose, pinched before treatments, flowered at day/night temperatures of 25/20°C, 30/25°C, and 35/30°C. The number of leaves below flowers showed no significant difference among treatments. However, at 30/25°C and 35/30°C, there was a notable reduction in the time to visible buds and anthesis, and the 30/25°C treatment had the greatest flowering rate. Under 15/13 and 20/15°C, desert rose exhibited chilling symptoms and lower Fv/Fm, qN and SPAD-502 values. Plants with 1.5 cm-longed flower buds were treated with various day/night temperatures. All plants under the 25/20°C, 30/25°C, and 35/30°C treatments exhibited flowered. As temperature decreased, number of days to flowering and the lifespan of flowers significantly increased. However, plants at 15/13°C and 20/15°C exhibited bud abortion after 17 days. The single-flowered Adenium obesum, semi-double-flowered ‘Little Swallow’, and doubled-flowered ‘Entrancing’ all had the greatest pollen germination with their flower buds developed under 30/25°C. Desert rose could be categorized as single-flowered (one corolla whorl, Type 0), semi-doubled-flowered (two corolla whorl, Type 1), or doubled-flowered (three corolla whorl, Type 2). Type 1 could be further classified as 1-A, 1-B, and 1-C. Type 1-A flower had two complete corolla, suggesting the repetition of the petal organ; Type 1-B had a visible remnant of sepals in one whorl of the corolla; Type 1-C possessed two whorls of corolla while simultaneously having normal and petaloid stamen. Floral development in desert rose was divided into 6 stages as corolla not protruding out of sepal tube, corolla length was the same as sepal tube, corolla length was twice the sepal tube, corolla length was three times of sepal tube, maximal corolla length, and anthesis. Results showed that all cultivars had the best stigma receptivity and highest pollen germination rate. All desert rose cultivars tested exhibited the highest pollen germination when incubated with the BK medium containing 10% sucrose. The base (Tb), optimum (To) and maximal (Tm) temperature for pollen germination in single-flowered ''Black Moon Light'' was estimated to be 8.8, 26.6 and 41.9℃, respectively. While Tb, To, Tm for pollen germination for semi-double-flowered ‘Little Swallow’ were 11.6, 30.7 and 42.8℃, and 11.6, 27.0 and 42.1℃ for double-flowered ‘Entrancing’. Pollen of desert rose cultivars tested were harvested and dehydrated at room temperature for 1 week followed by various storage treatments. Pollen of single-flowered ‘Black Moon Light’ and semi-double-flowered ‘Little Swallow’ could only be stored at 4℃ for 1-2 weeks. Pollen of double-flowered ‘Entrancing’ could only be stored at -20℃ for 1 week and the germination rate of stored pollen decreased significantly with increased storage duration. Self-pollination and reciprocal crosses were made with single-, semi-double- and double-flowered desert rose. Results showed that all nine pollination combinations resulted in successful fruiting and seed production. The hybrid offspring also germinated successfully, indicating that desert rose possess self-compatibility. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-01T16:15:18Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-01T16:15:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 ii
摘要 I Abstract IV 目錄 VII 表目錄 X 圖目錄 XI 前言(Introduction) 1 前人研究(Literature Review) 3 一、 沙漠玫瑰形態與生長習性 3 二、 光強度、溫度、葉片與大氣之蒸氣壓差及二氧化碳濃度對熱帶木本植物氣體交換速率之影響 4 三、 溫度對熱帶木本植物開花之影響 8 四、 木本花卉之重瓣花分類 11 五、 重瓣花之重瓣起源 12 六、 木本觀賞植物之柱頭可受性、花粉活力及萌發檢測 13 (一) 木本植物之柱頭可受性檢測 14 (二) 夾竹桃科及木本觀賞植物花粉體外萌發檢測 15 (三) 花粉體內萌發檢測 17 (四) 花粉化學染色法 18 七、 花粉貯藏溫度及天數 18 八、 夾竹桃科植物之花器結構與其自交、雜交不親和性 21 材料與方法(Materials and Methods) 23 試驗一、光度、葉溫、蒸氣壓差與二氧化碳濃度對原生種沙漠玫瑰氣體交換速率之影響 23 試驗二、溫度對原生種沙漠玫瑰葉片葉片生長及開花之影響 25 試驗三、栽培溫度對原生種沙漠玫瑰花芽發育之影響 26 試驗四、不同花型之沙漠玫瑰花朵花器排列分類 26 試驗五、花發育階段對不同花型沙漠玫瑰花粉活力與萌發及柱頭可受性之影響 27 試驗六、蔗糖濃度對不同花型沙漠玫瑰花粉萌發之影響 28 試驗七、栽培溫度及水浴溫度對不同花型沙漠玫瑰花粉萌發之影響 29 試驗八、貯藏溫度及時間對不同花型沙漠玫瑰花粉萌發之影響 30 試驗九、不同花型沙漠玫瑰自交與雜交之結實 31 結果(Results) 32 試驗一、光度、葉溫、蒸氣壓差與二氧化碳濃度對沙漠玫瑰氣體交換速率之影響 32 試驗二、溫度對沙漠玫瑰開花之影響 34 試驗三、栽培溫度對原生種沙漠玫瑰花芽發育之影響 35 試驗四、不同花型之沙漠玫瑰花朵花器排列分類 35 試驗五、花發育階段對不同花型沙漠玫瑰花粉活力與萌發及柱頭可受性之影響 36 試驗六、蔗糖濃度對不同花型沙漠玫瑰花粉萌發之影響 37 試驗七、栽培溫度及水浴溫度對不同花型沙漠玫瑰花粉萌發之影響 37 試驗八、貯藏溫度及時間對不同花型沙漠玫瑰花粉萌發之影響 39 試驗九、不同花型沙漠玫瑰自交與雜交之結實 40 討論(Discussion) 85 試驗一、光度、葉溫、蒸氣壓差與二氧化碳濃度對原生種沙漠玫瑰氣體交換速率之影響 85 試驗二、溫度對原生種沙漠玫瑰開花之影響 88 試驗三、栽培溫度對原生種沙漠玫瑰花芽發育之影響 90 試驗四、不同花型之沙漠玫瑰花朵花器排列分類 92 試驗五、花發育階段對不同花型沙漠玫瑰花粉活力與萌發及柱頭可受性之影響 93 試驗六、蔗糖濃度對不同花型沙漠玫瑰花粉萌發之影響 95 試驗七、栽培溫度及水浴溫度對不同花型沙漠玫瑰花粉萌發之影響 96 試驗八、貯藏溫度及時間對不同花型沙漠玫瑰花粉萌發之影響 98 試驗九、不同花型沙漠玫瑰自交與雜交之結實 99 綜合討論(General Discussion) 101 結論(Conclusion) 104 參考文獻(References) 105 | - |
dc.language.iso | zh_TW | - |
dc.title | 溫度對沙漠玫瑰光合作用、葉片生理、開花及花粉萌發之影響 | zh_TW |
dc.title | Effects of Temperature on Photosynthesis, Leaf Physiology, Flowering, and Pollen Germination of Adenium obesum | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李國譚;張育森 | zh_TW |
dc.contributor.oralexamcommittee | Kuo-Tan Li;Yu-Sen Chang | en |
dc.subject.keyword | 沙漠玫瑰,氣體交換速率,溫度,開花,花發育階段,花粉萌發, | zh_TW |
dc.subject.keyword | Adenium obesum,floral stage,flowering,gas exchange,pollen germination,temperature, | en |
dc.relation.page | 121 | - |
dc.identifier.doi | 10.6342/NTU202400048 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-01-16 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 園藝暨景觀學系 | - |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.19 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。