請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91583
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃心豪 | zh_TW |
dc.contributor.advisor | Hsin-Haou Huang | en |
dc.contributor.author | 周煒傑 | zh_TW |
dc.contributor.author | Wei-Chieh Chou | en |
dc.date.accessioned | 2024-02-01T16:12:39Z | - |
dc.date.available | 2024-07-09 | - |
dc.date.copyright | 2024-02-01 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-01-26 | - |
dc.identifier.citation | [1] "Salperton broken mast." https://www.yachtingworld.com/microsites/supersail-world/supersail-news/salperton-broken-mast-see-pics-6600,last accessed 2023/ 12 / 05.
[2] A. Yucel and A. Arpaci, "Free and forced vibration analyses of ship structures using the finite element method," Journal of marine science and technology, vol. 18, pp. 324-338, 2013. [3] X. Zou, G. Jiang, and L. Ye, "Vibration response analysis of a new scientific research ship based on finite element modeling," Journal of Marine Science and Application, vol. 21, no. 2, pp. 69-81, 2022. [4] G. Vergassola, T. Pais, and D. Boote, "Low-Frequency analysis of super yacht free vibrations," Ocean Engineering, vol. 176, pp. 199-210, 2019. [5] M. S. Ahmad, M. Jamil, J. Iqbal, M. N. Khan, M. H. Malik, and S. I. Butt, "Modal analysis of ship’s mast structure using effective mass participation factor," Indian Journal of Science and Technology, vol. 9, no. 21, pp. 1-5, 2016. [6] Y. Yasuzawa, A. Morooka, and K. Tanimoto, "Vibration Characteristics of Separated Superstructure of a Ship," in Practical Design of Ships and Other Floating Structures: Proceedings of the 14th International Symposium, PRADS 2019, September 22-26, 2019, Yokohama, Japan-Volume II 14, 2021: Springer, pp. 365-376. [7] A. Haris, S. Sepehrirahnama, H. P. Lee, and K.-M. Lim, "Mitigation of vibration of ship structure via local structural modifications," Ships and Offshore Structures, vol. 17, no. 8, pp. 1684-1694, 2022. [8] P. W. Christensen and A. Klarbring, An introduction to structural optimization. Springer Science & Business Media, 2008. [9] Y. Wang, Z. Wang, Z. Xia, and L. H. Poh, "Structural Design Optimization Using Isogeometric Analysis: A Comprehensive Review," CMES-Computer Modeling in Engineering & Sciences, vol. 117, no. 3, 2018. [10] G. I. Rozvany, "A critical review of established methods of structural topology optimization," Structural and multidisciplinary optimization, vol. 37, pp. 217-237, 2009. [11] M. P. Bendsøe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Computer methods in applied mechanics and engineering, vol. 71, no. 2, pp. 197-224, 1988. [12] Y. Saadlaoui, J.-L. Milan, J.-M. Rossi, and P. Chabrand, "Topology optimization and additive manufacturing: Comparison of conception methods using industrial codes," Journal of Manufacturing Systems, vol. 43, pp. 178-186, 2017. [13] S. Liu, Q. Li, J. Liu, W. Chen, and Y. Zhang, "A realization method for transforming a topology optimization design into additive manufacturing structures," Engineering, vol. 4, no. 2, pp. 277-285, 2018. [14] M. P. Bendsøe and O. Sigmund, "Material interpolation schemes in topology optimization," Archive of applied mechanics, vol. 69, pp. 635-654, 1999. [15] D. Tcherniak, "Topology optimization of resonating structures using SIMP method," International Journal for Numerical Methods in Engineering, vol. 54, no. 11, pp. 1605-1622, 2002. [16] E. Tyflopoulos and M. Steinert, "A comparative study of the application of different commercial software for topology optimization," Applied Sciences, vol. 12, no. 2, p. 611, 2022. [17] F. Niu, S. Xu, and G. Cheng, "A general formulation of structural topology optimization for maximizing structural stiffness," Structural and Multidisciplinary Optimization, vol. 43, pp. 561-572, 2011. [18] K. Long, X. Wang, and H. Liu, "Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming," Structural and Multidisciplinary Optimization, vol. 59, pp. 1747-1759, 2019. [19] E. Holmberg, B. Torstenfelt, and A. Klarbring, "Stress constrained topology optimization," Structural and Multidisciplinary Optimization, vol. 48, pp. 33-47, 2013. [20] D. Yang, H. Liu, W. Zhang, and S. Li, "Stress-constrained topology optimization based on maximum stress measures," Computers & Structures, vol. 198, pp. 23-39, 2018. [21] J.-H. Zhu, W.-H. Zhang, and L. Xia, "Topology optimization in aircraft and aerospace structures design," Archives of computational methods in engineering, vol. 23, pp. 595-622, 2016. [22] A. Remouchamps, M. Bruyneel, C. Fleury, and S. Grihon, "Application of a bi-level scheme including topology optimization to the design of an aircraft pylon," Structural and Multidisciplinary Optimization, vol. 44, pp. 739-750, 2011. [23] N. Aage, E. Andreassen, B. S. Lazarov, and O. Sigmund, "Giga-voxel computational morphogenesis for structural design," Nature, vol. 550, no. 7674, pp. 84-86, 2017. [24] X. Song and D. Guan, "Simulation and optimization of wave adaptive unmanned boat fore and aft rods based on Workbench," in Third International Conference on Mechanical Design and Simulation (MDS 2023, vol. 12639: SPIE, pp. 672-678), 2023. [25] D. Jia, F. Li, C. Zhang, and L. Li, "Design and simulation analysis of trimaran bulkhead based on topological optimization," Ocean Engineering, vol. 191, p. 106304, 2019. [26] D. Jia and F. Li, "Design of bulkhead reinforcement of trimaran based on topological optimization," Ocean Engineering, vol. 191, p. 106498, 2019. [27] X. Tian, X Sun, W Deng, H wang, Z Li and D Li, "Optimization design of the jacket support structure for offshore wind turbine using topology optimization method," Ocean Engineering, vol. 243, p. 110084, 2022. [28] X. Tian, Q. Wang, G. Liu, Y. Liu, Y. Xie, and W. Deng, "Topology optimization design for offshore platform jacket structure," Applied Ocean Research, vol. 84, pp. 38-50, 2019. [29] N. Gunantara, "A review of multi-objective optimization: Methods and its applications," Cogent Engineering, vol. 5, no. 1, p. 1502242, 2018. [30] J. J. Thakkar, Multi-criteria decision making. Springer, 2021. [31] M. Keshavarz-Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis, and J. Antucheviciene, "Determination of objective weights using a new method based on the removal effects of criteria (MEREC)," Symmetry, vol. 13, no. 4, p. 525, 2021. [32] Y. Zhu, D. Tian, and F. Yan, "Effectiveness of entropy weight method in decision-making," Mathematical Problems in Engineering, vol. 2020, pp. 1-5, 2020. [33] A. S. Sidhu, S. Singh, and R. Kumar, "Bibliometric analysis of entropy weights method for multi-objective optimization in machining operations," Materials Today: Proceedings, vol. 50, pp. 1248-1255, 2022. [34] K. Deb, K. Sindhya, and J. Hakanen, "Multi-objective optimization," in Decision sciences, 2016. [35] R. T. Marler and J. S. Arora, "Survey of multi-objective optimization methods for engineering," Structural and multidisciplinary optimization, vol. 26, pp. 369-395, 2004. [36] Y. Zhang, Y. Shan, X. Liu, and T. He, "An integrated multi-objective topology optimization method for automobile wheels made of lightweight materials," Structural and Multidisciplinary Optimization, vol. 64, pp. 1585-1605, 2021. [37] A. Mancuso, A. Saporito, and D. Tumino, "Designing the internal reinforcements of a sailing boat using a topology optimization approach," Applied Ocean Research, vol. 129, p. 103384, 2022. [38] W. Fan, Z. Xu, B. Wu, Y. He, and Z. Zhang, "Structural multi-objective topology optimization and application based on the criteria importance through intercriteria correlation method," Engineering optimization, vol. 54, no. 5, pp. 830-846, 2022. [39] "Det Norske Veritas rules and standards." https://rules.dnv.com,last accessed 2023/12/05. [40] J. P. Den Hartog, Mechanical vibrations. Courier Corporation, 1985 [41] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications. Springer Science & Business Media, 2003. [42] K. Liu and A. Tovar, "An efficient 3D topology optimization code written in Matlab," Structural and Multidisciplinary Optimization, vol. 50, pp. 1175-1196, 2014. [43] P. Duysinx, M. Bruyneel, and C. Fleury, "Solution of topology optimization problems with sequential convex programming," in Lecture présentée aux cours de troisième cycle" Advanced Topics in strucural Optimizaion/Topology Design-Theory and Practice, 2003. [44] N. M. Patel, D. Tillotson, J. E. Renaud, A. Tovar, and K. Izui, "Comparative study of topology optimization techniques," AIAA journal, vol. 46, no. 8, pp. 1963-1975, 2008. [45] R. T. Marler and J. S. Arora, "The weighted sum method for multi-objective optimization: new insights," Structural and multidisciplinary optimization, vol. 41, pp. 853-862, 2010. [46] R. Kumar, Sehijpal Singh, Paramjit Singh Bilga, Jatin, Jasveer Singh, Sunpreet Singh, Maria-Luminita Scutaru and Catalin Iulian Pruncu, "Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review," Journal of materials research and technology, vol. 10, pp. 1471-1492, 2021. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91583 | - |
dc.description.abstract | 在船舶桅杆結構設計中,通常依賴設計者的經驗來進行設計,然而,這種方式不僅耗時,且設計出的結構未必符合實際應用之需求。為此,本文提出以多目標拓樸優化結合客觀賦權法進行船舶桅杆結構設計,以達到提升桅杆結構的剛度、降低重量並減少振動訊號的目的。
首先,對原始設計之桅杆結構進行了船舶設計負載分析、模態分析以及隨機振動分析,建立優化前後結構的比較標準。接著,根據可設計的尺寸範圍和需要安裝的設備等設計條件,建立桅杆結構之優化設計空間,並利用拓樸優化之密度法進行優化設計。 在單目標優化中,分別考慮了應變能最小化和重量最小化,並通過單目標優化的分析結果,建立了決策矩陣,利用客觀附權法之熵權法計算各單目標的權重係數,並進行多目標優化。完成多目標優化後,根據優化後的材料分佈情況重建結構,並將其與原始設計的桅杆結構進行比較,評估優化效果。 | zh_TW |
dc.description.abstract | Conventional ship mast structure design heavily relies on experiential methods, often resulting in time-intensive processes and structures that may not fully align with practical requirements. This study introduces a methodology that integrates multi-objective topology optimization and an objective weighting approach to refine ship mast structure design, aiming to bolster structural rigidity, minimize weight, and attenuate vibration signals.
The original mast design undergoes vessel design load analysis, modal analysis, and random vibration analysis to establish benchmarks for comparing pre- and post-optimization structures. Defining optimization design parameters considering dimensional constraints and equipment installations, the mast structure's optimization design space is determined. Utilizing density methods, topology optimization is performed. In single-objective optimization, strain energy and weight reduction are separately assessed. Analysis results from the single-objective optimization form the basis for a decision matrix. The entropy weighting method, part of the objective weighting approach, determines coefficients for each objective, facilitating multi-objective optimization. Post multi-objective optimization, the optimized material distribution reconstructs the structure for comparative evaluation against the original mast design to assess optimization effectiveness. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-02-01T16:12:39Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-02-01T16:12:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目 次 v 圖 次 viii 表 次 xiii 名詞對照表 xiv 符號說明表 xvi 第一章 簡介 1 1.1動機 1 1.2研究背景 2 1.3研究目的 3 1.4重要性與貢獻 4 1.5研究流程 5 第二章 文獻探討 7 2.1船舶結構振動 7 2.2結構優化 11 2.3多目標優化 16 第三章 桅杆結構設計定義 21 3.1原始桅杆結構說明 21 3.2原始桅杆結構設計分析 23 3.2.1船舶設計負載分析 23 3.2.2模態分析 28 3.2.3隨機振動分析 29 3.3優化目標及優化設計空間定義 34 3.3.1優化目標 34 3.3.2優化設計空間建立 34 第四章 單目標優化 36 4.1拓樸優化簡介 36 4.2.1密度法 36 4.2.2目標函數 37 4.2.3優化算法 39 4.2單目標優化結果 40 第五章 多目標優化與結果討論 43 5.1加權求和法 43 5.2權重係數計算 43 5.2.1熵權法簡介 44 5.2.2熵權法計算過程及結果 45 5.3多目標優化結果 47 5.3.1不同賦權結果比較 49 5.3.2優化桅杆結構重建及分析結果比較 52 5.4案例二桅杆結構優化 56 5.4.1案例二原始桅杆結構分析 56 5.4.2案例二優化設計空間建立與單目標優化結果 60 5.4.3案例二多目標優化結果 63 5.4.4案例二優化桅杆分析及結果比較 65 第六章 結論與未來展望 71 6.1結論 71 6.2未來展望 72 參考文獻 74 附錄 80 附錄A原始桅杆結構分析結果 80 附錄B單目標優化分析結果 83 附錄C多目標優化分析結果 85 附錄D優化桅杆分析結果 88 附錄E案例二桅杆結構分析結果 91 附錄E.1原始桅杆結構分析結果(案例二) 91 附錄E.2單目標優化分析結果(案例二) 94 附錄E.3多目標優化分析結果(案例二) 96 附錄E.4多目標優化之桅杆結構重建分析結果(案例二) 97 | - |
dc.language.iso | zh_TW | - |
dc.title | 基於多目標拓樸優化與熵權法於船舶桅杆結構之優化與設計 | zh_TW |
dc.title | Optimization and design of vessel mast structure based on multi-objective topology optimization and entropy weight method | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-1 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王昭男;李佳翰;周光武;施博仁 | zh_TW |
dc.contributor.oralexamcommittee | Jhao-Nan Wang ;Jia-Han Li;Guang-Wu Chou;Po-Jen Shih | en |
dc.subject.keyword | 船舶桅杆,結構振動,多目標拓樸優化,密度法,客觀權重, | zh_TW |
dc.subject.keyword | ship mast,structural vibration,multi-objective topology optimization,density methods,objective weighting, | en |
dc.relation.page | 99 | - |
dc.identifier.doi | 10.6342/NTU202400226 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-01-30 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-1.pdf | 9.94 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。