Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91528
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林美聆zh_TW
dc.contributor.advisorMeei-Ling Linen
dc.contributor.author許哲瑋zh_TW
dc.contributor.authorChe-Wei Hsuen
dc.date.accessioned2024-01-28T16:24:04Z-
dc.date.available2024-01-29-
dc.date.copyright2024-01-27-
dc.date.issued2023-
dc.date.submitted2023-07-26-
dc.identifier.citationArias, A. (1970). A measure of earthquake intensity. Seismic design for nuclear plants, 438-483.
Arthur, D., & Vassilvitskii, S. (2007). K-means++ the advantages of careful seeding. Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. 1027-1035.
Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29-61.
Chang, J. M., Chen, H. E., Jou, B. J. D., Tsou, N. C., & Lin, G. W. (2017). Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Engineering geology, 231, 81-87.
Chen, C. Y., Chen, T. C., Yu, F. C., Yu, W. H., & Tseng, C. C. (2005). Rainfall duration and debris-flow initiated studies for real-time monitoring. Environmental Geology, 47, 715-724.
Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons.
Geli, L., Bard, P.-Y., & Jullien, B. (1988). The effect of topography on earthquake ground motion: a review and new results. Bulletin of the Seismological Society of America, 78(1), 42-63.
Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and atmospheric physics, 98, 239-267.
Hovius, N., Meunier, P., Lin, C. W., Chen, H. e., Chen, Y. G., Dadson, S., Horng, M. J., & Lines, M. (2011). Prolonged seismically induced erosion and the mass balance of a large earthquake. Earth and Planetary Science Letters, 304(3-4), 347-355.
Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water resources research, 36(7), 1897-1910.
Jan, C. D., & Chen, C. L. (2005). Debris fows caused by Typhoon Herb in Taiwan. Debris-ow hazards and related phenomena. Praxis, UK, 539-563.
Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406-421.
Keefer, D. K. (2000). Statistical analysis of an earthquake-induced landslide distribution—the 1989 Loma Prieta, California event. Engineering geology, 58(3-4), 231-249.
Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown III, W. M., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., & Zatkin, R. S. (1987). Real-time landslide warning during heavy rainfall. Science, 238(4829), 921-925.
Lermo, J., & Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83(5), 1574-1594.
Lin, G. W., & Chen, H. E. (2012). The relationship of rainfall energy with landslides and sediment delivery. Engineering geology, 125, 108-118.
Lin, M. L., & Tung, C. C. (2004). A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Engineering geology, 71(1-2), 63-77.
M. L. Lin, K. L. Wang, & T. C. Kao. (2008). The effects of earthquake on landslides–A case study of Chi-Chi earthquake, 1999. Landslides and Engineered Slopes. From the Past to the Future, Two Volumes+ CD-ROM. CRC Press, 215-224.
Ling, S. X., & Chigira, M. (2020). Characteristics and triggers of earthquake-induced landslides of pyroclastic fall deposits: An example from Hachinohe during the 1968 M7. 9 tokachi-Oki earthquake, Japan. Engineering geology, 264, 105301.
Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3-4), 221-232.
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).
Parise, M., & Jibson, R. W. (2000). A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Engineering geology, 58(3-4), 251-270.
Ruhe, R. V. (1975). Geomorphology : geomorphic processes and surficial geology. . Houghton Mifflin.
Segoni, S., Piciullo, L., & Gariano, S. L. (2018). A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides, 15(8), 1483-1501.
Shieh, C. L., Chen, Y. S., Tsai, Y. J., & Wu, J. H. (2009). Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China. International Journal of Sediment Research, 24(2), 177-188.
Tanoli, J. I., Ningsheng, C., Regmi, A. D., & Jun, L. (2017). Spatial distribution analysis and susceptibility mapping of landslides triggered before and after Mw7. 8 Gorkha earthquake along Upper Bhote Koshi, Nepal. Arabian Journal of Geosciences, 10, 1-24.
Van Asch, T. W. J., Buma, J., & Van Beek, L. P. H. (1999). A Review on Some hydrological triggering systems in Landslides. Geomorphology, 30(25-32).
Van Dijk, A., Bruijnzeel, L., & Rosewell, C. (2002). Rainfall intensity–kinetic energy relationships: a critical literature appraisal. Journal of Hydrology, 261(1-4), 1-23.
Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
Weissel, J.K., Stark, C.P., & Hovius, N. (2001). Landslides triggered by the 1999 Mw7.6 Chichi earthquake in Taiwan and their relationship to topography. International Geoscience and Remote Sensing Symposium (IGARSS). 2. 759-761
Wischmeier, W. H., & Smith, D. D. (1958). Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39(2), 285-291.
Wu, B. S., Chuang, R. Y., Chen, Y. C., & Lin, Y. S. (2022). Characteristics of landslides triggered by the 2013 M L6. 5 Nantou, Taiwan, earthquake. Earth, Planets and Space, 74(1), 7.
池谷浩 (1974)。降雨強度比による土砂害からの避難基準に関する一私案。新砂防,27(3),7-11。
內政部 (1991)。1990年12月13、14日花蓮地區震災勘查報告書。
謝正倫、陸源忠、游保杉、陳禮仁 (1995)。土石流發生臨界降雨線設定方法之研究。中華水土保持學報,26(3),167-172。
陳時祖 (1996)。雨量與邊坡崩塌的關係。地工技術,57,78-80。
洪如江 (1997)。「簡略工程地質分區圖」。
吳逸民、張建興、辛在勤 (1998)。1998年嘉義瑞里地震之初步探討。氣象學報,42(4),343-355。
林美聆、王幼行 (1999)。地表水及地下水對土石流破壞型態之影響。地工技術,74,29-38。
沖村孝、鳥居宣之、永井久徳、渡辺英志 (1999)。地震後の降雨による山腹斜面崩壊に関する研究-地震動が表土層厚に与えた影響。神戸大学都市安全研究センター研究報告,3,1-15。
鄭世楠 (2000)。九二一集集大地震後續短期研究─強餘震強震資料處理。國家地震工程研究中心。
溫國樑、黃柏壽、羅俊雄、彭瀚毅、張芝苓、陳阿斌 (2000)。九二一集集大地震後續短期研究─臺灣中部地區微地動調查。國家地震工程研究中心。
王文能、尹承遠、陳志清、李木青 (2000)。九二一地震崩塌地現況與災害防治。九二一震災後中日土砂災害調查及治理研討會論文集,79-90。
洪如江、林美聆、陳天健、王國隆 (2000)。921集集大地震相關的坡地災害、坡地破壞特性、與案例分析。地工技術,81,17-32。
詹錢登、李明熹、黃婷卉 (2003)。土石流發生降雨警戒值模式之研究。九十一年度防救災專案計畫成果研討會,臺北,臺灣。
鐘仁光、張建興、吳慶餘 (2003)。建置集集地震和1994南澳地震之地理資訊系統。中央氣象局。
詹錢登、李明熹 (2004)。土石流發生降雨警戒模式。中華水土保持學報,35(3),275-285。
張子瑩、徐美鈴 (2004)。暴雨與地震觸發崩塌發生區位之比較—以陳有蘭溪流域為例。地理學報,35,1-16。
林冠瑋 (2005)。陳有蘭溪流域的山崩作用在颱風及地震事件中與河流輸砂量之相對關係。國立臺灣大學地質科學研究所碩士論文,臺北,臺灣。
李明熹 (2006)。土石流發生降雨警戒分析及其應用。國立成功大學水利及海洋工程研究所博士論文,臺南,臺灣。
張光宗、翁秉瑞、林昭遠、楊明德 (2013)。陳有蘭溪流域公路邊坡崩塌潛勢分析。水土保持學報,45(4),859-870。
劉守恆 (2013)。以統計模式解析集集地震對後續降雨觸發崩塌之長期影響。國立成功大學地球科學系博士論文,臺南,臺灣。
江定國 (2013)。集集地震後多時序邊坡崩塌特性變遷分析。國立臺灣大學土木工程學系碩士論文,臺北,臺灣。
詹勳全、張嘉琪、陳樹群、魏郁軒、王昭堡、李桃生 (2015)。台灣山區淺層崩塌地特性調查與分析。中華水土保持學報,46(1),19-28。
林政侑、陳垣榮、林昭遠 (2016)。降雨重現期距與集水區崩塌區位關係之研究。水土保持學報,48(4),1863-1876。
曾美綺 (2017)。地表地形對地震震波反應影響之數值模擬。國立臺灣大學土木工程學系碩士論文,臺北,臺灣。
行政院農業委員會水土保持局 (2017)。水土保持手冊。
林美聆、陳彥澄 (2020)。建立淺層崩塌通用潛勢評估模式可行性研究-南部沉積岩地區(2)。行政院農業委員會水土保持局研究創新研究計畫報告。
洪誌偉 (2020)。地形效應對於地震反應之影響。國立臺灣大學土木工程學系碩士論文,臺北,臺灣。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/91528-
dc.description.abstract台灣因地理位置特殊,颱風和地震的作用下,使得邊坡崩塌頻傳,對人民生命財產造成威脅。在1999年集集地震後,鄰近震央的中部山區發生多起崩塌,邊坡結構也在地震力作用下變得鬆散且脆弱,因而在震後每逢颱風、豪雨侵襲,常會誘發大量的新生或復發崩塌,可視為地震對邊坡造成的長期影響,使誘發崩塌所需之臨界降雨下降,直至震後數年方才逐漸恢復。
本研究以台灣中部之大甲溪、眉溪和陳有蘭溪集水區為研究區,先對集集地震前後7期災害事件之崩塌地圈繪資料進行崩塌特性分析,觀察歷年各期崩塌中地震誘發崩塌特性的變化,以此分析地震長期影響;而地震之影響仰賴於地震波的能量傳遞,故以能量角度切入進行崩塌門檻能量分析,將地震與降雨誘發崩塌量化為誘發能量,分析震後地震、降雨誘發能量之消長,以瞭解誘發邊坡崩塌所需之能量門檻和地震對其之影響,並與崩塌特性變遷的結果相互驗證。
研究結果顯示,震後崩塌率和降雨能量臨界線的變化趨勢相反,顯示誘發邊坡崩塌所需之誘發能量趨於常數,而地震長期影響可視為地震儲存於坡體中的殘餘能量,使震後破壞所需之降雨能量減少;而地震的殘餘能量會隨時間衰減,其影響大小和衰減速度受地形放大效應影響,地勢較平緩之淺山區所受地震長期影響於震後5年已然微弱,而較陡峭的高山區,至震後10年影響也已不顯著。
zh_TW
dc.description.abstractDue to the unique geographic location of Taiwan, typhoons and earthquakes have caused landslides frequently, threatening people's lives and properties. After the 1999 Chi-Chi earthquake, severe landslides occurred in mountain area of central Taiwan. The slope body became fragile subjected to the significant seismic force. Thereafter, typhoons and heavy rainfall often caused new or reoccurring landslides, which are likely affected by the long-term effects of the earthquake. Such effects lead to lower threshold rainfall for landslides, and gradually diminished several years after the quake.
In this study, we analyzed the long-term effect of three watersheds located in central Taiwan. Inventories of events after Chi-Chi earthquake were used to observe the variations of landslide characteristics which implied the long-term effect. Then, we quantify the contribution of earthquake and rainfall to triggering landslides, and analyze their variations before and after earthquake to determine the energy threshold for triggering landslides. Finally, we verify the results with the observed long-term effect.
This study shows changes of landslide area ratios after earthquake and critical rainfall energy after the quake are complementary, indicating the energy threshold for triggering landslides is about constant, while the long-term effect can be regarded as residual seismic energy accumulated in the slopes, leading to lower threshold rainfall. The residual energy dissipated with time and appeared to relate to topographic site effect. The residual energy in the mountain areas with lower elevation and gentle slopes had already diminished 5 years after the quake, while it took 10 years for the residual energy in higher elevation and steeper slopes to fade away.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-01-28T16:24:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-01-28T16:24:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究內容概述 2
第二章 文獻回顧 4
2.1 崩塌之定義 4
2.2 地震誘發崩塌之特性 5
2.2.1 誘發因子 6
2.2.2 潛在因子 8
2.3 誘發崩塌的降雨門檻 10
2.3.1 臨界降雨線 10
2.3.2 其它降雨門檻指標 12
2.3.3 降雨動能 13
2.4 集集地震長期效應之回顧 14
第三章 研究區概述和資料處理 23
3.1 研究區概述 23
3.2 原始資料蒐集 25
3.3 災害事件選定 26
3.4 崩塌地資料圈繪 27
3.5 雨量資料處理 30
第四章 研究方法 53
4.1 崩塌特性分析 53
4.1.1 崩塌影響因子選定 53
4.1.2 地震誘發崩塌之影響因子特性 54
4.2 誘發崩塌能量分析 60
4.2.1 誘發崩塌的能量觀點 60
4.2.2 崩塌點位能量分析 63
4.2.3 降雨能量臨界線分析 65
第五章 崩塌特性分析 73
5.1 區位因子 73
5.2 形狀因子 75
5.3 坡度因子 76
5.4 地震因子 79
5.5 綜合比較 84
5.5.1 大甲溪集水區之討論 84
5.5.2 眉溪集水區之討論 85
5.5.3 陳有蘭溪集水區之討論 86
5.5.4 跨集水區比較 87
5.5.5 小結 88
第六章 崩塌能量分析 110
6.1 崩塌點位能量分析 110
6.1.1 降雨能量變遷 110
6.1.2 地震殘餘能量分析 111
6.1.3 邊坡條件對災點能量的影響 114
6.2 降雨能量臨界線分析 118
6.3 綜合比較 120
6.3.1 降雨能量變遷之討論 120
6.3.2 地震殘餘能量分析之討論 121
6.3.3 降雨能量臨界線分析之討論 121
6.3.4 崩塌能量門檻之討論 122
6.3.5 地震能量衰減趨勢之討論 124
第七章 結論與建議 143
7.1 結論 143
7.2 建議 145
參考文獻 146
附錄A 151
附錄B 156
-
dc.language.isozh_TW-
dc.subject崩塌誘發能量門檻zh_TW
dc.subject崩塌特性變遷zh_TW
dc.subject集集地震zh_TW
dc.subject臨界降雨zh_TW
dc.subject地震誘發崩塌zh_TW
dc.subject降雨動能zh_TW
dc.subjectLandslide energy thresholden
dc.subjectEarthquake triggered landslideen
dc.subjectRainfall thresholden
dc.subjectRainfall kinetic energyen
dc.subjectLandslides characteristicen
dc.subjectChi-Chi earthquakeen
dc.title地震於坡地崩塌能量門檻值之長期影響研究zh_TW
dc.titleA Study of Earthquake’s Long-term Effect on Energy-Based Threshold of Landslideen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳天健;王國隆zh_TW
dc.contributor.oralexamcommitteeTien-Chien Chen;Kuo-Lung Wangen
dc.subject.keyword崩塌誘發能量門檻,地震誘發崩塌,臨界降雨,降雨動能,崩塌特性變遷,集集地震,zh_TW
dc.subject.keywordLandslide energy threshold,Earthquake triggered landslide,Rainfall threshold,Rainfall kinetic energy,Landslides characteristic,Chi-Chi earthquake,en
dc.relation.page156-
dc.identifier.doi10.6342/NTU202302073-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-07-27-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-07-25-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
17.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved